Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management
Abstract
:1. Introduction
2. Sinusitis
3. Lung Disease
4. Gastroesophageal Reflux Disease
5. Gastroparesis
6. Small Bowel Bacterial Overgrowth
7. Constipation and Distal Intestinal Obstruction Syndrome
8. Other Gastrointestinal Enteropathies
9. Functional Gastrointestinal Disorders
10. Disordered Eating
11. Cystic-Fibrosis-Related Liver Disease
12. Cystic-Fibrosis-Related Diabetes
13. Renal Stone
14. Micronutrient Deficiency
14.1. Vitamin A
14.2. Vitamin D and Calcium
14.3. Vitamin E
14.4. Iron
14.5. Zinc
14.6. Essential Fatty Acids
15. Nutritional Impact of CF Therapy in the Era of HEMs
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratchford, T.L.; Teckman, J.H.; Patel, D.R. Gastrointestinal pathophysiology and nutrition in cystic fibrosis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.S.; Mascarenhas, M.R. Nutrition: Prevention and management of nutritional failure in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16, S87–S93. [Google Scholar] [CrossRef] [Green Version]
- Borowitz, D.; Baker, R.D.; Stallings, V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipirneni, K.E.; Woodworth, B.A. Medical and Surgical Advancements in the Management of Cystic Fibrosis Chronic Rhinosinusitis. Curr. Otorhinolaryngol. Rep. 2017, 5, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvo, A.; Villarroel, G.; Sedano, C. Neonatal nasal obstruction. Eur. Arch. Otorhinolaryngol. 2021, 278, 3605–3611. [Google Scholar] [CrossRef]
- Johansen, H.K.; Aanaes, K.; Pressler, T.; Nielsen, K.G.; Fisker, J.; Skov, M.; Hoiby, N.; von Buchwald, C. Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN response. J. Cyst. Fibros. 2012, 11, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Safi, C.; Zheng, Z.; Dimango, E.; Keating, C.; Gudis, D.A. Chronic Rhinosinusitis in Cystic Fibrosis: Diagnosis and Medical Management. Med. Sci. 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; McCrary, H.C.; Chang, E. Cystic Fibrosis Sinusitis. Adv. Otorhinolaryngol. 2016, 79, 29–37. [Google Scholar]
- Illing, E.A.; Woodworth, B.A. Management of the upper airway in cystic fibrosis. Curr. Opin. Pulm. Med. 2014, 20, 623–631. [Google Scholar] [CrossRef]
- Gramegna, A.; Contarini, M.; Aliberti, S.; Casciaro, R.; Blasi, F.; Castellani, C. From Ivacaftor to Triple Combination: A Systematic Review of Efficacy and Safety of CFTR Modulators in People with Cystic Fibrosis. Int. J. Mol. Sci. 2020, 21, 5882. [Google Scholar] [CrossRef]
- Chang, E.H.; Tang, X.X.; Shah, V.S.; Launspach, J.L.; Ernst, S.E.; Hilkin, B.; Karp, P.H.; Abou Alaiwa, M.H.; Graham, S.M.; Hornick, D.B.; et al. Medical reversal of chronic sinusitis in a cystic fibrosis patient with ivacaftor. Int. Forum. Allergy Rhinol. 2015, 5, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beswick, D.M.; Humphries, S.M.; Balkissoon, C.D.; Strand, M.; Vladar, E.K.; Lynch, D.A.; Taylor-Cousar, J.L. Impact of Cystic Fibrosis Transmembrane Conductance Regulator Therapy on Chronic Rhinosinusitis and Health Status: Deep Learning CT Analysis and Patient-reported Outcomes. Ann. Am. Thorac. Soc. 2022, 19, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.S.; Kawchak, D.A.; Cnaan, A.; Zhao, H.; Scanlin, T.F.; Stallings, V.A. Prospective evaluation of resting energy expenditure, nutritional status, pulmonary function, and genotype in children with cystic fibrosis. Pediatr. Res. 1996, 40, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp, G.; Wiedemann, B. Relationship between nutritional status and lung function in cystic fibrosis: Cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax 2002, 57, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.L.; Jacobs, D.R., Jr.; Milla, C.E. Longitudinal changes in growth parameters are correlated with changes in pulmonary function in children with cystic fibrosis. Pediatrics 2003, 112 Pt 1, 588–592. [Google Scholar] [CrossRef]
- Millward, D.J. Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- Welsh, P.; Polisecki, E.; Robertson, M.; Jahn, S.; Buckley, B.M.; de Craen, A.J.; Ford, I.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; et al. Unraveling the directional link between adiposity and inflammation: A bidirectional Mendelian randomization approach. J. Clin. Endocrinol. Metab. 2010, 95, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Heilbronn, L.K.; Noakes, M.; Clifton, P.M. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 968–970. [Google Scholar] [CrossRef] [Green Version]
- Rosen, R.; Vandenplas, Y.; Singendonk, M.; Cabana, M.; DiLorenzo, C.; Gottrand, F.; Gupta, S.; Langendam, M.; Staiano, A.; Thapar, N.; et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 516–554. [Google Scholar] [CrossRef]
- Kelly, T.; Buxbaum, J. Gastrointestinal Manifestations of Cystic Fibrosis. Dig. Dis. Sci. 2015, 60, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Bolia, R.; Ooi, C.Y.; Lewindon, P.; Bishop, J.; Ranganathan, S.; Harrison, J. Ford K, van der Haak N, Oliver MR. Practical approach to the gastrointestinal manifestations of cystic fibrosis. J. Paediatr. Child Health 2018, 54, 609–619. [Google Scholar] [CrossRef]
- Pauwels, A.; Blondeau, K.; Dupont, L.J.; Sifrim, D. Mechanisms of increased gastroesophageal reflux in patients with cystic fibrosis. Am. J. Gastroenterol. 2012, 107, 1346–1353. [Google Scholar] [CrossRef]
- Mousa, H.M.; Woodley, F.W. Gastroesophageal reflux in cystic fibrosis: Current understandings of mechanisms and management. Curr. Gastroenterol. Rep. 2012, 14, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Prayle, A. Gastrointestinal complications of cystic fibrosis. Paediatr. Child Health 2020, 30, 345–349. [Google Scholar] [CrossRef]
- Cucchiara, S.; Santamaria, F.; Andreotti, M.R.; Minella, R.; Ercolini, P.; Oggero, V. Mechanisms of gastro-oesophageal reflux in cystic fibrosis. Arch. Dis. Child 1991, 66, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Assis, D.N.; Freedman, S.D. Gastrointestinal Disorders in Cystic Fibrosis. Clin. Chest Med. 2016, 37, 109–118. [Google Scholar] [CrossRef]
- Gupta, S.K.; Hassall, E.; Chiu, Y.L.; Amer, F.; Heyman, M.B. Presenting symptoms of nonerosive and erosive esophagitis in pediatric patients. Dig. Dis. Sci. 2006, 51, 858–863. [Google Scholar] [CrossRef]
- Duffield, R.A. Cystic fibrosis and the gastrointestinal tract. J. Pediatr. Health Care 1996, 10, 51–57. [Google Scholar] [CrossRef]
- Tolone, S.; Savarino, E.; Docimo, L. Is there a role for high resolution manometry in GERD diagnosis? Minerva Gastroenterol Dietol. 2017, 63, 235–248. [Google Scholar] [CrossRef]
- Henen, S.; Denton, C.; Teckman, J.; Borowitz, D.; Patel, D. Review of Gastrointestinal Motility in Cystic Fibrosis. J. Cyst. Fibros. 2021, 20, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Gifford, A.H.; Sanville, J.L.; Sathe, M.; Heltshe, S.L.; Goss, C.H. Use of proton pump inhibitors is associated with lower hemoglobin levels in people with cystic fibrosis. Pediatr. Pulmonol. 2021, 56, 2048–2056. [Google Scholar] [CrossRef]
- Turk, H.; Hauser, B.; Brecelj, J.; Vandenplas, Y.; Orel, R. Effect of proton pump inhibition on acid, weakly acid and weakly alkaline gastro-esophageal reflux in children. World J. Pediatrics 2013, 9, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Dimango, E.; Walker, P.; Keating, C.; Berdella, M.; Robinson, N.; Langfelder-Schwind, E.; Levy, D.; Liu, X. Effect of esomeprazole versus placebo on pulmonary exacerbations in cystic fibrosis. BMC Pulm. Med. 2014, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- van der Doef, H.P.; Arets, H.G.; Froeling, S.P.; Westers, P.; Houwen, R.H. Gastric acid inhibition for fat malabsorption or gastroesophageal reflux disease in cystic fibrosis: Longitudinal effect on bacterial colonization and pulmonary function. J. Pediatr. 2009, 155, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Boesch, R.P.; Acton, J.D. Outcomes of fundoplication in children with cystic fibrosis. J. Pediatr. Surg. 2007, 42, 1341–1344. [Google Scholar] [CrossRef]
- Sheikh, S.I.; Ryan-Wenger, N.A.; McCoy, K.S. Outcomes of surgical management of severe GERD in patients with cystic fibrosis. Pediatr. Pulmonol. 2013, 48, 556–562. [Google Scholar] [CrossRef]
- Ng, J.; Friedmacher, F.; Pao, C.; Charlesworth, P. Gastroesophageal Reflux Disease and Need for Antireflux Surgery in Children with Cystic Fibrosis: A Systematic Review on Incidence, Surgical Complications, and Postoperative Outcomes. Eur. J. Pediatr. Surg. 2021, 31, 106–114. [Google Scholar] [CrossRef]
- Davis, R.D.; Lau, C.L.; Eubanks, S.; Messier, R.H.; Hadjiliadis, D.; Steele, M.P.; Palmer, S.M. Improved lung allograft function after fundoplication in patients with gastroesophageal reflux disease undergoing lung transplantation. J. Thorac. Cardiovasc. Surg. 2003, 125, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Kovacic, K.; Elfar, W.; Rosen, J.M.; Yacob, D.; Raynor, J.; Mostamand, S.; Punati, J.; Fortunato, J.E.; Saps, M. Update on pediatric gastroparesis: A review of the published literature and recommendations for future research. Neurogastroenterol. Motil. 2020, 32, e13780. [Google Scholar] [CrossRef] [Green Version]
- Waseem, S.; Islam, S.; Kahn, G.; Moshiree, B.; Talley, N.J. Spectrum of gastroparesis in children. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Corral, J.E.; Dye, C.W.; Mascarenhas, M.R.; Barkin, J.S.; Salathe, M.; Moshiree, B. Is Gastroparesis Found More Frequently in Patients with Cystic Fibrosis? A Systematic Review. Scientifica 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Sijp, J.R.M.; Kamm, M.A.; Nightingale, J.M.D.; Britton, K.E.; Granowska, M.; Mather, S.J.; Akkermans, L.M.A.; Lennard-Jones, J.E. Disturbed gastric and small bowel transit in severe idiopathic constipation. Dig. Dis. Sci. 1993, 38, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Van Citters, G.W.; Lin, H.C. Ileal brake: Neuropeptidergic control of intestinal transit. Curr. Gastroenterol. Rep. 2006, 8, 367–373. [Google Scholar] [CrossRef]
- Murphy, M.S.; Brunetto, A.L.; Pearson, A.D.J.; Ghatei, M.A.; Nelson, R.; Eastham, E.J.; Bloom, S.R.; Green, A.A. Gut hormones and gastrointestinal motility in children with cystic fibrosis. Dig. Dis. Sci. 1992, 37, 187–192. [Google Scholar] [CrossRef]
- Rodriguez, L.; Irani, K.; Jiang, H.; Goldstein, A.M. Clinical presentation, response to therapy, and outcome of gastroparesis in children. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 185–190. [Google Scholar] [CrossRef]
- Parkman, H.P.; Wilson, L.A.; Yates, K.P.; Koch, K.L.; Abell, T.L.; McCallum, R.W.; Sarosiek, I.; Kuo, B.; Malik, Z.; Schey, R.; et al. Factors that contribute to the impairment of quality of life in gastroparesis. Neurogastroenterol. Motil. 2021, 33, e14087. [Google Scholar] [CrossRef]
- Lu, P.L.; Moore-Clingenpeel, M.; Yacob, D.; Di Lorenzo, C.; Mousa, H.M. The rising cost of hospital care for children with gastroparesis: 2004–2013. Neurogastroenterol. Motil. 2016, 28, 1698–1704. [Google Scholar] [CrossRef]
- Wytiaz, V.; Homko, C.; Duffy, F.; Schey, R.; Parkman, H.P. Foods provoking and alleviating symptoms in gastroparesis: Patient experiences. Dig Dis Sci. 2015, 60, 1052–1058. [Google Scholar] [CrossRef]
- Parkman, H.P.; Yates, K.P.; Hasler, W.L.; Nguyan, L.; Pasricha, P.J.; Snape, W.J.; Farrugia, G.; Calles, J.; Koch, K.L.; Abell, T.L.; et al. Dietary Intake and Nutritional Deficiencies in Patients with Diabetic or Idiopathic Gastroparesis. Gastroenterology 2011, 141, 486–498.e7. [Google Scholar] [CrossRef] [Green Version]
- Parrish, C.R. Nutrition concerns for the patient with gastroparesis. Curr. Gastroenterol. Rep. 2007, 9, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Krantz, B.; Lebenthal, E. Effect of fat and carbohydrate composition on the gastric emptying of isocaloric feedings in premature infants. Gastroenterology 1985, 89, 785–790. [Google Scholar] [CrossRef]
- Tolia, V.; Lin, C.H.; Kuhns, L.R. Gastric emptying using three different formulas in infants with gastroesophageal reflux. J. Pediatr. Gastroenterol. Nutr. 1992, 15, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Pascale, J.A.; Mims, L.C.; Greenberg, M.G.; Alexander, J.B. Gastric response in low birth weight infants fed various formulas. Biol. Neonate 1978, 34, 150–154. [Google Scholar] [CrossRef]
- Tonelli, A.R.; Drane, W.E.; Collins, D.P.; Nichols, W.; Antony, V.B.; Olson, E.L. Erythromycin improves gastric emptying half-time in adult cystic fibrosis patients with gastroparesis. J. Cyst. Fibros. 2009, 8, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Gomez, R.; Fernandez, S.; Aspirot, A.; Punati, J.; Skaggs, B.; Mousa, H.; Di Lorenzo, C. Effect of amoxicillin/clavulanate on gastrointestinal motility in children. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 780–784. [Google Scholar] [CrossRef]
- Schey, R.; Saadi, M.; Midani, D.; Roberts, A.C.; Parupalli, R.; Parkman, H.P. Domperidone to Treat Symptoms of Gastroparesis: Benefits and Side Effects from a Large Single-Center Cohort. Dig. Dis. Sci. 2016, 61, 3545–3551. [Google Scholar] [CrossRef]
- Lisowska, A.; Wójtowicz, J.; Walkowiak, J. Small intestine bacterial overgrowth is frequent in cystic fibrosis: Combined hydrogen and methane measurements are required for its detection. Acta Biochim. Pol. 2009, 56, 631–634. [Google Scholar] [CrossRef]
- Dorsey, J.; Gonska, T. Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the Cystic Fibrosis intestine. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S14–S23. [Google Scholar] [CrossRef] [Green Version]
- Fridge, J.L.; Conrad, C.; Gerson, L.; Castillo, R.O.; Cox, K. Risk factors for small bowel bacterial overgrowth in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 212–218. [Google Scholar] [CrossRef]
- Avelar Rodriguez, D.; Ryan, P.M.; Toro Monjaraz, E.M.; Ramirez Mayans, J.A.; Quigley, E.M. Small Intestinal Bacterial Overgrowth in Children: A State-Of-The-Art Review. Front. Pediatr. 2019, 7, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, S.A.; Ahmed, T.; Brüssow, H. Hunger and microbiology: Is a low gastric acid-induced bacterial overgrowth in the small intestine a contributor to malnutrition in developing countries? Microb. Biotechnol. 2017, 10, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Lappinga, P.J.; Abraham, S.C.; Murray, J.A.; Vetter, E.A.; Patel, R.; Wu, T.T. Small intestinal bacterial overgrowth: Histopathologic features and clinical correlates in an underrecognized entity. Arch. Pathol. Lab Med. 2010, 134, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Lewindon, P.J.; Robb, T.A.; Moore, D.J.; Davidson, G.P.; Martin, A.J. Bowel dysfunction in cystic fibrosis: Importance of breath testing. J. Paediatr. Child Health 1998, 34, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Elphick, D.A.; Chew, T.S.; Higham, S.E.; Bird, N.; Ahmad, A.; Sanders, D.S. Small bowel bacterial overgrowth in symptomatic older people: Can it be diagnosed earlier? Gerontology 2005, 51, 396–401. [Google Scholar] [CrossRef]
- Furnari, M.; De Alessandri, A.; Cresta, F.; Haupt, M.; Bassi, M.; Calvi, A.; Haupt, R.; Bodini, G.; Ahmed, I.; Bagnasco, F.; et al. The role of small intestinal bacterial overgrowth in cystic fibrosis: A randomized case-controlled clinical trial with rifaximin. J. Gastroenterol. 2019, 54, 261–270. [Google Scholar] [CrossRef]
- Burton, S.J.; Hachem, C.; Abraham, J.M. Luminal Gastrointestinal Manifestations of Cystic Fibrosis. Curr. Gastroenterol. Rep. 2021, 23, 4. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, A.; Pogorzelski, A.; Oracz, G.; Siuda, K.; Skorupa, W.; Rachel, M.; Cofta, S.; Piorunek, T.; Walkowiak, J. Oral antibiotic therapy improves fat absorption in cystic fibrosis patients with small intestine bacterial overgrowth. J. Cyst. Fibros. 2011, 10, 418–421. [Google Scholar] [CrossRef] [Green Version]
- Van Der Doef, H.P.J.; Kokke, F.T.M.; Beek, F.J.A.; Woestenenk, J.W.; Froeling, S.P.; Houwen, R.H.J. Constipation in pediatric Cystic Fibrosis patients: An underestimated medical condition. J. Cyst. Fibros. 2010, 9, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Van Der Doef, H.P.J.; Kokke, F.T.M.; Van Der Ent, C.K.; Houwen, R.H.J. Intestinal Obstruction Syndromes in Cystic Fibrosis: Meconium Ileus, Distal Intestinal Obstruction Syndrome, and Constipation. Curr. Gastroenterol. Rep. 2011, 13, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Houwen, R.H.; van der Doef, H.P.; Sermet, I.; Munck, A.; Hauser, B.; Walkowiak, J.; Robberecht, E.; Colombo, C.; Sinaasappel, M.; Wilschanski, M.; et al. Defining DIOS and constipation in cystic fibrosis with a multicentre study on the incidence, characteristics, and treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munck, A.; Alberti, C.; Colombo, C.; Kashirskaya, N.; Ellemunter, H.; Fotoulaki, M.; Houwen, R.; Robberecht, E.; Boizeau, P.; Wilschanski, M. International prospective study of distal intestinal obstruction syndrome in cystic fibrosis: Associated factors and outcome. J. Cyst. Fibros. 2016, 15, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Declercq, D.; Van Biervliet, S.; Robberecht, E. Nutrition and Pancreatic Enzyme Intake in Patients with Cystic Fibrosis with Distal Intestinal Obstruction Syndrome. Nutr. Clin. Pract. 2015, 30, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.S.; Borowitz, D.; Duffy, L.; Fitzpatrick, L.; Gyamfi, J.; Baker, R.D. Pancreatic enzyme therapy and clinical outcomes in patients with cystic fibrosis. J. Pediatr. 2005, 146, 189–193. [Google Scholar] [CrossRef]
- Lavie, M. Long-term follow-up of distal intestinal obstruction syndrome in cystic fibrosis. World J. Gastroenterol. 2015, 21, 318. [Google Scholar] [CrossRef]
- Stefano, M.A.; Sandy, N.S.; Zagoya, C.; Duckstein, F.; Ribeiro, A.F.; Mainz, J.G.; Lomazi, E.A. Diagnosing constipation in patients with cystic fibrosis applying ESPGHAN criteria. J. Cyst. Fibros. 2021. [Google Scholar] [CrossRef]
- Tan, S.M.J.; Coffey, M.J.; Ooi, C.Y. Differences in clinical outcomes of paediatric cystic fibrosis patients with and without meconium ileus. J. Cyst. Fibros. 2019, 18, 857–862. [Google Scholar] [CrossRef]
- Mentessidou, A.; Loukou, I.; Kampouroglou, G.; Livani, A.; Georgopoulos, I.; Mirilas, P. Long-term intestinal obstruction sequelae and growth in children with cystic fibrosis operated for meconium ileus: Expectancies and surprises. J. Pediatric Surg. 2018, 53, 1504–1508. [Google Scholar] [CrossRef]
- Lai, H.-C.; Kosorok, M.R.; Laxova, A.; Davis, L.A.; Fitzsimmon, S.C.; Farrell, P.M. Nutritional Status of Patients with Cystic Fibrosis with Meconium Ileus: A Comparison with Patients without Meconium Ileus and Diagnosed Early Through Neonatal Screening. Pediatrics 2000, 105, 53–61. [Google Scholar] [CrossRef]
- Chiaravalloti, G.; Baracchini, A.; Rossomando, V.; Ughi, C.; Ceccarelli, M. Celiac disease and cystic fibrosis: Casual association? Minerva Pediatr. 1995, 47, 23–26. [Google Scholar]
- Emiralioglu, N.; Ademhan Tural, D.; Hizarcioglu Gulsen, H.; Ergen, Y.M.; Ozsezen, B.; Sunman, B.; Saltık Temizel, İ.; Yalcin, E.; Dogru, D.; Ozcelik, U.; et al. Does cystic fibrosis make susceptible to celiac disease? Eur. J. Pediatrics 2021, 180, 2807–2813. [Google Scholar] [CrossRef] [PubMed]
- Hjelm, M.; Shaikhkhalil, A.K. Celiac Disease in Patients with Cystic Fibrosis on Ivacaftor: A Case Series. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Sermet-Gaudelus, I.; De Villartay, P.; De Dreuzy, P.; Clairicia, M.; Vrielynck, S.; Canoui, P.; Kirszenbaum, M.; Singh-Mali, I.; Agrario, L.; Salort, M.; et al. Pain in Children and Adults with Cystic Fibrosis: A Comparative Study. J. Pain Symptom Manag. 2009, 38, 281–290. [Google Scholar] [CrossRef]
- Munck, A.; Pesle, A.; Cunin-Roy, C.; Gerardin, M.; Ignace, I.; Delaisi, B.; Wood, C. Recurrent abdominal pain in children with cystic fibrosis: A pilot prospective longitudinal evaluation of characteristics and management. J. Cyst. Fibros. 2012, 11, 46–48. [Google Scholar] [CrossRef] [Green Version]
- Reznikov, L.R. Cystic Fibrosis and the Nervous System. Chest 2017, 151, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusman, S.S.; Grand, R. Approach to chronic abdominal pain in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S24–S31. [Google Scholar] [CrossRef] [Green Version]
- Rajindrajith, S.; Zeevenhooven, J.; Devanarayana, N.M.; Perera, B.J.C.; Benninga, M.A. Functional abdominal pain disorders in children. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 369–390. [Google Scholar] [CrossRef]
- Pinquart, M. Body image of children and adolescents with chronic illness: A meta-analytic comparison with healthy peers. Body Image 2013, 10, 141–148. [Google Scholar] [CrossRef]
- Abbott, J.; Morton, A.M.; Musson, H.; Conway, S.P.; Etherington, C.; Gee, L.; Fitzjohn, J.; Webb, A.K. Nutritional status, perceived body image and eating behaviours in adults with cystic fibrosis. Clin. Nutr. 2007, 26, 91–99. [Google Scholar] [CrossRef]
- Randlesome, K.; Bryon, M.; Evangeli, M. Developing a measure of eating attitudes and behaviours in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Quick, V.M.; Byrd-Bredbenner, C.; Neumark-Sztainer, D. Chronic illness and disordered eating: A discussion of the literature. Adv. Nutr. 2013, 4, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, S.Z.; Hurwitz, M.E.; Brown, R.W.; Elghoroury, M.; Rosen, D. Treatment of anorexia and weight loss with megestrol acetate in patients with cystic fibrosis. Pediatr. Pulmonol. 1999, 28, 380–382. [Google Scholar] [CrossRef]
- Rowland, M.; Gallagher, C.; Gallagher, C.G.; Laoide, R.Ó.; Canny, G.; Broderick, A.M.; Drummond, J.; Greally, P.; Slattery, D.; Daly, L.; et al. Outcome in patients with cystic fibrosis liver disease. J. Cyst. Fibros. 2015, 14, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Rowland, M.; Gallagher, C.G.; O’Laoide, R.; Canny, G.; Broderick, A.; Hayes, R.; Greally, P.; Slattery, D.; Daly, L.; Durie, P.; et al. Outcome in cystic fibrosis liver disease. Am. J. Gastroenterol. 2011, 106, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Stonebraker, J.R.; Ooi, C.Y.; Pace, R.G.; Corvol, H.; Knowles, M.R.; Durie, P.R.; Ling, S.C. Features of Severe Liver Disease with Portal Hypertension in Patients with Cystic Fibrosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1207–1215.e3. [Google Scholar] [CrossRef] [Green Version]
- Debray, D.; Kelly, D.; Houwen, R.; Strandvik, B.; Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J. Cyst. Fibros. 2011, 10 (Suppl. S2), S29–S36. [Google Scholar] [CrossRef] [Green Version]
- Lamireau, T.; Monnereau, S.; Martin, S.; Marcotte, J.E.; Winnock, M.; Alvarez, F. Epidemiology of liver disease in cystic fibrosis: A longitudinal study. J. Hepatol. 2004, 41, 920–925. [Google Scholar] [CrossRef]
- Dos Santos, A.L.M.; De Melo Santos, H.; Nogueira, M.B.; Távora, H.T.O.; De Lourdes Jaborandy Paim Da Cunha, M.; De Melo Seixas, R.B.P.; De Freitas Velloso Monte, L.; De Carvalho, E. Cystic Fibrosis: Clinical Phenotypes in Children and Adolescents. Pediatric Gastroenterol. Hepatol. Nutr. 2018, 21, 306. [Google Scholar] [CrossRef]
- Colombo, C.; Battezzati, P.M.; Crosignani, A.; Morabito, A.; Costantini, D.; Padoan, R.; Giunta, A. Liver disease in cystic fibrosis: A prospective study on incidence, risk factors, and outcome. Hepatology 2002, 36, 1374–1382. [Google Scholar] [CrossRef]
- Lindblad, A.; Glaumann, H.; Strandvik, B. Natural history of liver disease in cystic fibrosis. Hepatology 1999, 30, 1151–1158. [Google Scholar] [CrossRef]
- Valamparampil, J.J.; Gupte, G.L. Cystic fibrosis associated liver disease in children. World J. Hepatol. 2021, 13, 1727–1742. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Vu, M.; Dhingra, S.; Ackah, R.; Goss, J.A.; Rana, A.; Quintanilla, N.; Patel, K.; Leung, D.H. Obliterative Portal Venopathy Without Cirrhosis Is Prevalent in Pediatric Cystic Fibrosis Liver Disease with Portal Hypertension. Clin. Gastroenterol. Hepatol. 2019, 17, 2134–2136. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.R. Genetic Modifiers of Liver Disease in Cystic Fibrosis. JAMA 2009, 302, 1076. [Google Scholar] [CrossRef]
- Karnsakul, W.; Wasuwanich, P.; Ingviya, T.; Vasilescu, A.; Carson, K.A.; Mogayzel, P.J.; Schwarz, K.B. A longitudinal assessment of non-invasive biomarkers to diagnose and predict cystic fibrosis-associated liver disease. J. Cyst. Fibros. 2020, 19, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.H.; Khan, M.; Minard, C.G.; Guffey, D.; Ramm, L.E.; Clouston, A.D.; Miller, G.; Lewindon, P.J.; Shepherd, R.W.; Ramm, G.A. Aspartate aminotransferase to platelet ratio and fibrosis-4 as biomarkers in biopsy-validated pediatric cystic fibrosis liver disease. Hepatology 2015, 62, 1576–1583. [Google Scholar] [CrossRef]
- Calvopina, D.A.; Noble, C.; Weis, A.; Hartel, G.F.; Ramm, L.E.; Balouch, F.; Fernandez-Rojo, M.A.; Coleman, M.A.; Lewindon, P.J.; Ramm, G.A. Supersonic shear-wave elastography and APRI for the detection and staging of liver disease in pediatric cystic fibrosis. J. Cyst. Fibros. 2020, 19, 449–454. [Google Scholar] [CrossRef]
- Loomba, R.; Adams, L.A. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef]
- Singh, H.; Coffey, M.J.; Ooi, C.Y. Cystic Fibrosis-related Liver Disease is Associated with Increased Disease Burden and Endocrine Comorbidities. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 796–800. [Google Scholar] [CrossRef]
- Mouzaki, M.; Bronsky, J.; Gupte, G.; Hojsak, I.; Jahnel, J.; Pai, N.; Quiros-Tejeira, R.E.; Wieman, R.; Sundaram, S. Nutrition Support of Children with Chronic Liver Diseases: A Joint Position Paper of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 498–511. [Google Scholar] [CrossRef] [Green Version]
- Lommatzsch, S.T.; Taylor-Cousar, J.L. The combination of tezacaftor and ivacaftor in the treatment of patients with cystic fibrosis: Clinical evidence and future prospects in cystic fibrosis therapy. Ther. Adv. Respir. Dis. 2019, 13, 175346661984442. [Google Scholar] [CrossRef]
- Staufer, K. Current Treatment Options for Cystic Fibrosis-Related Liver Disease. Int. J. Mol. Sci. 2020, 21, 8586. [Google Scholar] [CrossRef] [PubMed]
- Granados, A.; Chan, C.L.; Ode, K.L.; Moheet, A.; Moran, A.; Holl, R. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J. Cyst. Fibros. 2019, 18 (Suppl. S2), S3–S9. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Norris, A.W.; Wang, K.; Sun, X.; Uc, A.; Moran, A.; Engelhardt, J.F.; Ode, K.L. Abnormal Glucose Tolerance in Infants and Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2016, 194, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löhr, M.; Goertchen, P.; Nizze, H.; Gould, N.S.; Gould, V.E.; Oberholzer, M.; Heitz, P.U.; Klöppel, G. Cystic fibrosis associated islet changes may provide a basis for diabetes. An immunocytochemical and morphometrical study. Virchows Arch. A Pathol. Anat. Histopathol. 1989, 414, 179–185. [Google Scholar] [CrossRef]
- Kelly, A.; Moran, A. Update on cystic fibrosis-related diabetes. J. Cyst. Fibros. 2013, 12, 318–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanng, S.; Hansen, A.; Thorsteinsson, B.; Nerup, J.; Koch, C. Glucose tolerance in patients with cystic fibrosis: Five year prospective study. BMJ 1995, 311, 655–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.; Brunzell, C. Clinical Care Guidelines for Cystic Fibrosis–Related Diabetes A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 2010, 33, 2697–2708. [Google Scholar] [CrossRef] [Green Version]
- Marshall, B.C.; Butler, S.M.; Stoddard, M.; Moran, A.M.; Liou, T.G.; Morgan, W.J. Epidemiology of cystic fibrosis-related diabetes. J. Pediatr. 2005, 146, 681–687. [Google Scholar] [CrossRef]
- Hameed, S.; Morton, J.R.; Jaffé, A.; Field, P.I.; Belessis, Y.; Yoong, T.; Katz, T.; Verge, C.F. Early glucose abnormalities in cystic fibrosis are preceded by poor weight gain. Diabetes Care 2010, 33, 221–226. [Google Scholar] [CrossRef] [Green Version]
- White, H.; Pollard, K.; Etherington, C.; Clifton, I.; Morton, A.M.; Owen, D.; Conway, S.P.; Peckham, D.G. Nutritional decline in cystic fibrosis related diabetes: The effect of intensive nutritional intervention. J. Cyst. Fibros. 2009, 8, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Moran, A.; Becker, D.; Casella, S.J.; Gottlieb, P.A.; Kirkman, M.S.; Marshall, B.C.; Slovis, B.; CFRD Consensus Conference Committee. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: A technical review. Diabetes Care 2010, 33, 2677–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, B.A.; Goldsweig, B.K.; Sidhaye, A.; Blackman, S.M.; Schindler, T.; Moran, A. Cystic fibrosis related diabetes: Nutrition and growth considerations. J. Cyst. Fibros. 2019, 18 (Suppl. S2), S32–S37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onady, G.M.; Stolfi, A. Insulin and oral agents for managing cystic fibrosis-related diabetes. Cochrane Database Syst. Rev. 2016, 4, Cd004730. [Google Scholar] [CrossRef]
- Ballmann, M.; Hubert, D.; Assael, B.M.; Kronfeld, K.; Honer, M.; Holl, R.W. Open randomised prospective comparative multi-centre intervention study of patients with cystic fibrosis and early diagnosed diabetes mellitus. BMC Pediatr. 2014, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.; Pillay, K.; Becker, D.; Granados, A.; Hameed, S.; Acerini, C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. S27), 64–74. [Google Scholar] [CrossRef]
- Bellin, M.D.; Laguna, T.; Leschyshyn, J.; Regelmann, W.; Dunitz, J.; Billings, J.; Moran, A. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: A small pilot study. Pediatr. Diabetes 2013, 14, 417–421. [Google Scholar] [CrossRef] [Green Version]
- Chidekel, A.S.; Dolan, T.F., Jr. Cystic fibrosis and calcium oxalate nephrolithiasis. Yale J. Biol. Med. 1996, 69, 317–321. [Google Scholar]
- Kianifar, H.R.; Talebi, S.; Khazaei, M.; Alamdaran, A.; Hiradfar, S. Predisposing factors for nephrolithiasis and nephrocalcinosis in cystic fibrosis. Iran J. Pediatr. 2011, 21, 65–71. [Google Scholar]
- Hoppe, B.; Hesse, A.; Brömme, S.; Rietschel, E.; Michalk, D. Urinary excretion substances in patients with cystic fibrosis: Risk of urolithiasis? Pediatr. Nephrol. 1998, 12, 275–279. [Google Scholar] [CrossRef]
- Feranchak, A.P.; Sontag, M.K.; Wagener, J.S.; Hammond, K.B.; Accurso, F.J.; Sokol, R.J. Prospective, long-term study of fat-soluble vitamin status in children with cystic fibrosis identified by newborn screen. J. Pediatr. 1999, 135, 601–610. [Google Scholar] [CrossRef]
- Solomons, N.W.; Wagonfeld, J.B.; Rieger, C.; Jacob, R.A.; Bolt, M.; Horst, J.V.; Rothberg, R.; Sandstead, H. Some biochemical indices of nutrition in treated cystic fibrosis patients. Am. J. Clin. Nutr. 1981, 34, 462–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggan, C.; Colin, A.A.; Agil, A.; Higgins, L.; Rifai, N. Vitamin A status in acute exacerbations of cystic fibrosis. Am. J. Clin. Nutr. 1996, 64, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Saxby, N.P.C.; Kench, A.; King, S.; Crowder, T.; van der Haak, N.; The Australian and New Zealand Cystic Fibrosis Nutrition Guideline Authorship Group. Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand; Scott, C., Ed.; Bell, Thoracic Society of Australia and New Zealand: Sydney, Australia, 2017. [Google Scholar]
- Gupta, S.; Mukherjee, A.; Khadgawat, R.; Kabra, M.; Lodha, R.; Kabra, S.K. Bone Mineral Density of Indian Children and Adolescents with Cystic Fibrosis. Indian Pediatr. 2017, 54, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.J.; Squires, A.E.; Halstead, L.R.; Strominger, D.B. Reduced serum 25-hydroxyvitamin D concentration and disordered mineral metabolism in patients with cystic fibrosis. J. Pediatr. 1979, 94, 38–42. [Google Scholar] [CrossRef]
- Winklhofer-Roob, B.M.; Tuchschmid, P.E.; Molinari, L.; Shmerling, D.H. Response to a single oral dose of all-rac-alpha-tocopheryl acetate in patients with cystic fibrosis and in healthy individuals. Am. J. Clin. Nutr. 1996, 63, 717–721. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.M.; Alvarez, J.A.; Bailey, J.; Bowser, E.K.; Farnham, K.; Mangus, M.; Padula, L.; Porco, K.; Rozga, M. Academy of Nutrition and Dietetics: 2020 Cystic Fibrosis Evidence Analysis Center Evidence-Based Nutrition Practice Guideline. J. Acad. Nutr. Diet 2021, 121, 1591–1636.e3. [Google Scholar] [CrossRef]
- Bailey, J.; Rozga, M.; McDonald, C.M.; Bowser, E.K.; Farnham, K.; Mangus, M.; Padula, L.; Porco, K.; Alvarez, J.A. Effect of CFTR Modulators on Anthropometric Parameters in Individuals with Cystic Fibrosis: An Evidence Analysis Center Systematic Review. J. Acad. Nutr. Diet 2021, 121, 1364–1378.e2. [Google Scholar] [CrossRef]
- Petersen, M.C.; Begnel, L.; Wallendorf, M.; Litvin, M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2021, in press. [Google Scholar] [CrossRef]
HEENT | Sinusitis |
---|---|
Respiratory | Chronic Lung Disease, Nocturnal Hypoxia |
GI/Liver | Gastroesophageal reflux disease, gastroparesis, small intestine bacterial overgrowth, distal intestinal obstruction syndrome, constipation, pancreatitis, exocrine pancreas deficiency, enteropathies (e.g., celiac disease), cystic-fibrosis-related liver disease |
Endocrine | Cystic-fibrosis-related diabetes |
Psychosomatic | Disorders of eating, avoidant restrictive food intake disorder, disorders of gut–brain interaction |
Micronutrients | Zinc deficiency, essential fatty acid deficiency, vitamin A, D, E, and iron deficiencies |
HEM related | Overeating/obesity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.; Shan, A.; Mathews, S.; Sathe, M. Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management. Nutrients 2022, 14, 1028. https://doi.org/10.3390/nu14051028
Patel D, Shan A, Mathews S, Sathe M. Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management. Nutrients. 2022; 14(5):1028. https://doi.org/10.3390/nu14051028
Chicago/Turabian StylePatel, Dhiren, Albert Shan, Stacy Mathews, and Meghana Sathe. 2022. "Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management" Nutrients 14, no. 5: 1028. https://doi.org/10.3390/nu14051028
APA StylePatel, D., Shan, A., Mathews, S., & Sathe, M. (2022). Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management. Nutrients, 14(5), 1028. https://doi.org/10.3390/nu14051028