Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. General Characteristics
2.3. Anthropometric Measurements and Biochemical Indicators
2.4. Nutrient and Food Intake Survey
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Subjects According to Quartiles of AIP
3.2. Anthropometric Measurements Data and Biochemical Indicator According to Quartiles of AIP
3.3. Nutrient and Food Intake in Quartiles of AIP
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Zhou, S.; Feng, X.; Yang, J.; Qiao, J.; Zhao, Y.; Shi, D.; Zhou, Y. The sensibility of the new blood lipid indicator—Atherogenic index of plasma (AIP) in menopausal women with coronary artery disease. Lipids Health Dis. 2020, 19, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, K.; Pathak, M.S.; Borah, P.; Hussain, M.I.; Das, D. Association of the apolipoprotein A-I gene polymorphisms with cardiovascular disease risk factors and atherogenic indices in patients from Assam, Northeast India. Balk. J. Med. Genet. 2017, 20, 59–70. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walli-Attaei, M.; Joseph, P.; Rosengren, A.; Chow, C.K.; Rangarajan, S.; Lear, S.A.; AlHabib, K.F.; Davletov, K.; Dans, A.; Lanas, F.; et al. Variations between women and men in risk factors, treatments, cardiovascular disease incidence, and death in 27 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 396, 97–109. [Google Scholar] [CrossRef]
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Heart Views 2017, 18, 109. [Google Scholar] [CrossRef]
- Dobiásová, M.; Frohlich, J.; Sedová, M.; Cheung, M.C.; Brown, B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res. 2011, 52, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.-J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S. 2018 guidelines for the management of dyslipidemia in Korea. J. Lipid Atheroscler. 2019, 8, 78–131. [Google Scholar] [CrossRef]
- AlQuaiz, A.M.; Kazi, A.; Youssef, R.M.; Alshehri, N.; Alduraywish, S.A. Association between standardized vitamin 25(OH)D and dyslipidemia: A community-based study in Riyadh, Saudi Arabia. Environ. Health Prev. Med. 2020, 25, 4. [Google Scholar] [CrossRef]
- Sami Khaza, M. Atherogenic index of plasma (AIP) as a parameter in predicting cardiovascular risk in males compared to the conventional dyslipidemic indices (cholesterol ratios). Karbala J. Med. 2013, 6, 1506–1513. [Google Scholar]
- Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J.; Mänttäri, M.; Heinonen, O.; Frick, M.H. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 1992, 85, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.R.; Jeong, S.J. Relationship between vitamin D level and lipid profile in non-obese children. Metabolites 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/american heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2019, 74, e177–e232. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-W.; Kao, T.-W.; Chang, P.-K.; Chen, W.-L.; Wu, L.-W. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: A 9-year longitudinal study. Sci. Rep. 2021, 11, 9900. [Google Scholar] [CrossRef]
- Bo, M.S.; Cheah, W.L.; Lwin, S.; Moe Nwe, T.; Win, T.T.; Aung, M. Understanding the relationship between atherogenic index of plasma and cardiovascular disease risk factors among staff of an University in Malaysia. Nutr. Metab. 2018, 2018, 7027624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17, 37. [Google Scholar] [CrossRef] [Green Version]
- Dobiášová, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef]
- Regmi, P.; Baral, B.; Raut, M.; Khanal, M. Atherogenic index of plasma for prediction of future cardiovascular disease in prediabetes and diabetes population. Atherosclerosis 2016, 252, e120. [Google Scholar] [CrossRef]
- Scicali, R.; Giral, P.; D’Erasmo, L.; Cluzel, P.; Redheuil, A.; Di Pino, A.; Rabuazzo, A.M.; Piro, S.; Arca, M.; Beliard, S.; et al. High TG to HDL ratio plays a significant role on atherosclerosis extension in prediabetes and newly diagnosed type 2 diabetes subjects. Diabetes Metab. Res. Rev. 2021, 37, e3367. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Q.; Zhang, Q.; Wan, Z.; Hu, L.; Xu, R.; Cheng, A.; Lv, Y.; Wang, L. Sex-specific association between serum vitamin D status and lipid profiles: A cross-sectional study of a middle-aged and elderly Chinese population. J. Nutr. Sci. Vitaminol. 2020, 66, 105–113. [Google Scholar] [CrossRef]
- Statistics Korea. 2015 Annual Report on the Cause of Death Statistics. Available online: https://kostat.go.kr/portal/korea/kor_nw/1/6/2/index.board?bmode=read&bSeq=&aSeq=385219&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt= (accessed on 25 August 2021).
- National Health Insurance Service. 940,000 Patients with Ischemic Heart Disease due to Cardiac Muscle Ischemia in 2019. Available online: https://www.nhis.or.kr/nhis/together/wbhaea01600m01.do?mode=view&articleNo=10805661&article.offset=0&articleLimit=10&srSearchVal=%ED%97%88%ED%98%88 (accessed on 8 November 2021).
- Watts, G.F.; Jackson, P.; Mandalia, S.; Brunt, J.N.H.; Lewis, E.S.; Coltart, D.J.; Lewis, B. Nutrient intake and progression of coronary artery disease. Am. J. Cardiol. 1994, 73, 328–332. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willett, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Zhou, A.; Cavadino, A.; Hyppönen, E. Evidence for a causal association between milk intake and cardiometabolic disease outcomes using a two-sample mendelian randomization analysis in up to 1,904,220 individuals. Int. J. Obes. 2021, 45, 1751–1762. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Kim, H.C.; Ihm, S.-H.; Kim, G.-H.; Kim, J.H.; Kim, K.-i.; Lee, H.-Y.; Lee, J.H.; Park, J.-M.; Park, S.; Pyun, W.B. 2018 Korean society of hypertension guidelines for the management of hypertension: Part I-epidemiology of hypertension. Clin. Hypertens. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Kim, M.K.; Ko, S.-H.; Kim, B.-Y.; Kang, E.S.; Noh, J.; Kim, S.-K.; Park, S.-O.; Hur, K.Y.; Chon, S.; Moon, M.K. 2019 clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J. 2019, 43, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.M.; Huffman, L.H.; Bougatsos, C.; Freeman, M.; Steiner, R.D.; Nelson, H.D. Screening and treatment for lipid disorders in children and adolescents: Systematic evidence review for the US Preventive Services Task Force. Pediatrics 2007, 120, e189–e214. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. The Reference Standard for Korean Health Index. Available online: https://nhiss.nhis.or.kr/bd/ab/bdabf004lv.do (accessed on 24 February 2022).
- Rural Development Administration National Institute of Agricultural Sciences. Standard Food Composition Table (8th Revision); Rural Development Administration National Institute of Agricultural Sciences: Wanju, Korea, 2013.
- The Korean Nutrition Society. Dietary Reference Intakes for Koreans; The Korean Nutrition Society: Seoul, Korea, 2020. [Google Scholar]
- Anber, V.; Griffin, B.A.; McConnell, M.; Packard, C.J.; Shepherd, J. Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 1996, 124, 261–271. [Google Scholar] [CrossRef]
- Kim, J.J.; Yoon, J.; Lee, Y.-J.; Park, B.; Jung, D.-H. Predictive value of the atherogenic index of plasma (AIP) for the risk of incident ischemic heart disease among non-diabetic Koreans. Nutrients 2021, 13, 3231. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.-W.; Lu, Y.; Li, F.; Yang, C.-J.; Feng, Y.-B.; Li, H.-W.; Yao, W.-F.; Shen, Z.-H. Atherogenic index of plasma is an effective index for estimating abdominal obesity. Lipids Health Dis. 2018, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-M.; Kang, S.-M.; Lee, J.-W.; Lee, J.-W.; Kim, S.-W.; Lee, J.-H.; Cho, J.-B. Correlation between the ratio of triglyceride to high-density lipoprotein cholesterol and fasting glucose & hemoglobin A1C. Korean J. Fam. Pract 2015, 5, 462–467. [Google Scholar]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017, 960, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-M.; Kim, E.-K.; Lee, H.-H.; Jung, K.-M.; Park, J.-W.; Ko, J.; Seo, H.-W.; Heo, T.-Y.; Jeong, B.-M. The relationship between smoking and hemoglobin A1c in adults without diabetes mellitus according to body mass index. Korean J. Fam. Pract. 2016, 6, 339–345. [Google Scholar] [CrossRef]
- Suh, S.; Park, H.-D.; Kim, S.W.; Bae, J.C.; Tan, A.H.-K.; Chung, H.S.; Hur, K.Y.; Kim, J.H.; Kim, K.-W.; Lee, M.-K. Smaller mean LDL particle size and higher proportion of small dense LDL in Korean type 2 diabetic patients. Diabetes Metab. J. 2011, 35, 536–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofori, E.; Angmorterh, S. Relationship between physical activity, body mass index (BMI) and lipid profile of students in Ghana. Pan Afr. Med. J. 2019, 33. [Google Scholar] [CrossRef] [PubMed]
- Koda, M.; Kitamura, I.; Okura, T.; Otsuka, R.; Ando, F.; Shimokata, H. The associations between smoking habits and serum triglyceride or hemoglobin A1c levels differ according to visceral fat accumulation. J. Epidemiol. 2016, 26, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.B.; Ducatman, A. Associations between smoking and lipid/lipoprotein concentrations among US adults aged ≥20 years. J. Circ. Biomark. 2018, 7, 1849454418779310. [Google Scholar] [CrossRef] [Green Version]
- Van Mierlo, L.A.J.; Arends, L.R.; Streppel, M.T.; Zeegers, M.P.A.; Kok, F.J.; Grobbee, D.E.; Geleijnse, J.M. Blood pressure response to calcium supplementation: A meta-analysis of randomized controlled trials. J. Hum. Hypertens. 2006, 20, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.H.; Kim, J.H.; Hong, A.R.; Cho, N.H.; Shin, C.S. Dietary calcium intake and risk of cardiovascular disease, stroke, and fracture in a population with low calcium intake. Am. J. Clin. Nutr. 2017, 106, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.Y.; Kim, I.S.; Lee, J.-S. Relationship of riboflavin and niacin with cardiovascular disease. Korean J. Clin. Lab. Sc 2019, 51, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, B.; Sikka, K.; Srivastava, D.; Wali, M. Effect of lactose on serum lipids in cases of coronary artery disease. J. Indian Med. Assoc. 1980, 75, 153–156. [Google Scholar] [PubMed]
- Goseki-Sone, M.; Maruyama, R.; Sogabe, N.; Hosoi, T. Effects of dietary lactose on long-term high-fat-diet-induced obesity in rats. Obesity 2007, 15, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Pörsti, I.; Fan, M.; Kööbi, P.; Jolma, P.; Kalliovalkama, J.; Vehmas, T.I.; Helin, H.; Holthöfer, H.; Mervaala, E.; Nyman, T.; et al. High calcium diet down-regulates kidney angiotensin-converting enzyme in experimental renal failure. Kidney Int. 2004, 66, 2155–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Yu, J.; Choi, H.; An, J.H.; Kim, S.W.; Park, K.S.; Jang, H.C.; Kim, S.Y.; Shin, C.S. Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: A placebo-controlled trial. Diabetes Care 2011, 34, e147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Onge, M.-P.; Farnworth, E.R.; Jones, P.J.H. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr. 2000, 71, 674–681. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Giltay, E.J.; Grobbee, D.E.; Donders, A.R.; Kok, F.J. Blood pressure response to fish oil supplementation: Metaregression analysis of randomized trials. J. Hypertens. 2002, 20, 1493–1499. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Harris, W.S.; Kris-Etherton, P.M.; Harris, K.A. Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr. Atheroscler. Rep. 2008, 10, 503–509. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Mehra, M.R.; Ventura, H.O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol. 2009, 54, 585–594. [Google Scholar] [CrossRef] [Green Version]
Quartiles of AIP | Total (n = 1292) | p-Value | |||||
---|---|---|---|---|---|---|---|
Q1 (n = 322) <−0.38 | Q2 (n = 324) −0.38 to 0.09 | Q3 (n = 323) 0.09 to 0.54 | Q4 (n = 323) ≥0.54 | ||||
Age (years) | 36.7 ± 0.80 | 40.7 ± 0.78 | 42.5 ± 0.88 | 43.1 ± 0.81 | 40.8 ± 0.38 | <0.001 (1) | |
Residential area | Metropolitan | 154 (51.5) | 156 (51.2) | 171 (55.2) | 176 (57.9) | 657 (53.8) | 0.374 |
Non-metropolitan | 168 (48.5) | 168 (48.8) | 152 (44.8) | 147 (42.1) | 635 (46.2) | ||
Occupation | Office workers | 86 (27.1) | 90 (29.8) | 99 (36.1) | 107 (36.0) | 382 (32.1) | 0.242 |
Outdoor workers | 161 (49.7) | 159 (46.2) | 149 (42.4) | 152 (19.6) | 289 (22.1) | ||
Unemployed | 75 (23.2) | 75 (24.0) | 75 (21.5) | 64 (22.8) | 339 (24.4) | ||
Education level | <Middle school | 62 (14.1) | 71 (15.1) | 73 (15.9) | 72 (17.5) | 278 (15.6) | 0.767 |
High school | 132 (46.2) | 129 (43.7) | 120 (39.9) | 124 (41.5) | 505 (42.9) | ||
≥College | 128 (39.7) | 124 (41.1) | 130 (44.2) | 127 (40.9) | 509 (41.4) | ||
Drinking | Yes | 249 (80.0) | 231 (70.9) | 243 (75.8) | 248 (76.8) | 971 (75.9) | 0.096 |
No | 73 (20.0) | 93 (29.1) | 80 (24.2) | 75 (23.2) | 321 (24.1) | ||
Smoking | Yes | 101 (31.0) | 116 (36.6) | 150 (48.4) | 163 (53.7) | 530 (40.9) | <0.001 |
No | 221 (69.0) | 208 (60.4) | 173 (51.6) | 160 (46.3) | 762 (57.1) | ||
MVPA (2) | Yes | 105 (33.4) | 84 (28.4) | 68 (23.2) | 67 (22.2) | 324 (27.0) | 0.019 |
No | 217 (66.6) | 240 (71.6) | 255 (76.8) | 256 (77.8) | 9686 (73.0) | ||
Dietary supplement | Yes | 131 (38.6) | 130 (37.3) | 117 (35.1) | 134 (40.9) | 512 (38.0) | 0.586 |
No | 191 (61.4) | 194 (62.7) | 206 (64.9) | 189 (59.1) | 780 (62.0) | ||
Hypertension | Yes | 51 (10.1) | 78 (18.5) | 92 (26.4) | 105 (29.7) | 326 (20.9) | <0.001 |
No | 273 (89.9) | 246 (81.5) | 231 (73.6) | 218 (70.3) | 966 (79.1) | ||
Dyslipidemia | Yes | 11 (3.2) | 49 (15.0) | 100 (30.5) | 271 (83.0) | 431 (32.4) | <0.001 |
No | 311 (96.8) | 275 (85.0) | 223 (69.5) | 52 (17.0) | 861 (67.6) | ||
Stroke | Yes | 1 (0.3) | 2 (0.3) | 4 (0.5) | 7 (1.8) | 14 (0.7) | 0.034 |
No | 321 (99.7) | 322 (99.7) | 319 (99.5) | 316 (98.2) | 1278 (99.3) | ||
Myocardial infarction | Yes | - | 1 (0.2) | 3 (0.8) | 1 (0.3) | 5 (0.3) | 0.267 |
No | 322 (100) | 323 (99.8) | 320 (99.2) | 322 (99.7) | 1287 (99.7) | ||
Angina | Yes | 4 (0.8) | 1 (0.1) | 3 (0.4) | 4 (1.1) | 12 (0.6) | 0.178 |
No | 318 (99.2) | 323 (99.9) | 320 (99.6) | 319 (98.9) | 1280 (99.4) | ||
Diabetes mellitus | Yes | 15 (2.6) | 27 (6.5) | 30 (7.4) | 53 (13.5) | 125 (7.4) | <0.001 |
No | 307 (97.4) | 297 (93.5) | 293 (92.6) | 270 (86.5) | 1167 (92.6) | ||
Renal failure | Yes | - | - | 1 (0.3) | 2 (0.4) | 3 (0.2) | 0.454 |
No | 322 (100) | 324 (100) | 322 (99.7) | 321 (99.6) | 1289 (99.8) |
Quartiles of AIP | Total (n = 1292) | p for Trend | ||||
---|---|---|---|---|---|---|
Q1 (n = 322) <−0.38 | Q2 (n = 324) −0.38 to 0.09 | Q3 (n = 323) 0.09 to 0.54 | Q4 (n = 323) ≥0.54 | |||
Body mass index (kg/m2) | 22.5 ± 0.18 | 23.7 ± 0.20 | 25.0 ± 0.20 | 25.7 ± 0.21 | 24.27 ± 0.10 | <0.001 |
Waist circumference (cm) | 78.0 ± 0.50 | 82.2 ± 0.52 | 85.1 ± 0.52 | 87.8 ± 0.53 | 83.48 ± 0.26 | <0.001 |
Fasting blood glucose (mg/dL) | 92.1 ± 0.66 | 95.6 ± 1.12 | 97.8 ± 0.90 | 104.3 ± 1.39 | 97.51 ± 0.51 | <0.001 |
HbA1c (%) | 5.54 ± 0.03 | 5.67 ± 0.04 | 5.72 ± 0.03 | 5.87 ± 0.05 | 5.70 ± 0.02 | <0.001 |
TC (mmol/L) | 4.53 ± 0.04 | 4.79 ± 0.05 | 4.85 ± 0.04 | 5.08 ± 0.05 | 4.81 ± 0.02 | <0.001 |
TG (mmol/L) | 0.70 ± 0.01 | 1.15 ± 0.01 | 1.62 ± 0.02 | 2.82 ± 0.05 | 1.57 ± 0.01 | <0.001 |
HDL-C (mmol/L) | 1.51 ± 0.01 | 1.31 ± 0.01 | 1.16 ± 0.01 | 1.07 ± 0.01 | 1.26 ± 0.01 | <0.001 |
LDL-C (mmol/L) | 2.87 ± 0.04 | 3.26 ± 0.04 | 3.36 ± 0.04 | 3.44 ± 0.04 | 3.23 ± 0.02 | <0.001 |
Serum 25(OH)D (ng/mL) | 17.4 ± 0.42 | 17.3 ± 0.48 | 17.0 ± 0.44 | 16.8 ± 0.40 | 17.17 ± 0.25 | 0.216 |
AIP | −0.79 ± 0.02 | −0.13 ± 0.01 | 0.32 ± 0.01 | 0.93 ± 0.02 | 0.08 ± 0.01 | <0.001 |
Quartiles of AIP | Total (n = 1292) | p-Value | p for Trend | |||||
---|---|---|---|---|---|---|---|---|
Reference Value for KDIRs (1) | Q1 (n = 322) <−0.38 | Q2 (n = 324) −0.38 to 0.09 | Q3 (n = 323) 0.09 to 0.54 | Q4 (n = 323) ≥0.54 | ||||
Energy (kcal) | 1900–2600 | 2561.8 ± 66.7 | 2623.0 ± 79.3 | 2561.2 ± 72.8 | 2620.6 ± 70.6 | 2591.7 ± 41.2 | 0.834 | 0.706 |
Carbohydrate (g) | 130 | 361.9 ± 5.87 | 362.2 ± 6.18 | 361.4 ± 5.93 | 346.1 ± 6.75 | 357.9 ± 3.20 | 0.221 | 0.089 |
Lipid (g) | - | 60.7 ± 1.72 | 58.4 ± 1.99 | 59.1 ± 1.81 | 57.1 ± 1.59 | 59.8 ± 1.04 | 0.469 | 0.456 |
Protein (g) | 60–65 | 88.2 ± 1.55 | 87.4 ± 2.22 | 87.7 ± 1.72 | 90.1 ± 1.94 | 88.4 ± 1.02 | 0.764 | 0.154 |
Cholesterol (mg) | <300 | 331.1 ± 15.1 | 327.9 ± 16.7 | 319.9 ± 14.7 | 321.7 ± 18.2 | 325.1 ± 9.43 | 0.948 | 0.643 |
Saturated fatty acid (g) | <7% of energy intake | 17.9 ± 0.65 | 17.2 ± 0.73 | 17.2 ± 0.58 | 15.8 ± 0.57 | 17.0 ± 0.36 | 0.076 | 0.021 |
Monounsaturated fatty acid (g) | - | 19.3 ± 0.65 | 19.0 ± 0.82 | 18.7 ± 0.69 | 17.7 ± 0.61 | 18.7 ± 0.40 | 0.300 | 0.075 |
Polyunsaturated fatty acid (g) | - | 14.8 ± 0.56 | 13.6 ± 0.58 | 14.6 ± 0.61 | 15.2 ± 0.65 | 14.6 ± 0.33 | 0.233 | 0.411 |
Omega-3 fatty acid (g) | 1.4–1.6 (2) | 1.96 ± 0.09 | 1.73 ± 0.89 | 2.00 ± 0.13 | 2.14 ± 0.14 | 1.96 ± 0.06 | 0.058 | 0.127 |
Omega-6 fatty acid (g) | 9–13 (2) | 13.0 ± 0.51 | 12.0 ± 0.52 | 12.7 ± 0.53 | 13.2 ± 0.56 | 12.7 ± 0.29 | 0.354 | 0.558 |
Dietary fiber (g) | 25–30 | 26.0 ± 0.74 | 25.9 ± 0.70 | 25.5 ± 0.62 | 25.1 ± 0.62 | 25.6 ± 0.37 | 0.800 | 0.329 |
Calcium (mg) | 700–800 | 614.6 ± 21.6 | 569.3 ± 18.7 | 552.7 ± 16.3 | 520.8 ± 17.6 | 564.3 ± 10.5 | 0.012 | 0.001 |
Phosphorus (mg) | 700 | 1348.1 ± 22.7 | 1311.9 ± 19.7 | 1287.5 ± 21.2 | 1281.4 ± 19.5 | 1307.2 ± 11.9 | 0.089 | 0.014 |
Iron (mg) | 9–10 | 19.1 ± 0.67 | 21.0 ± 0.97 | 21.1 ± 1.28 | 23.2 ± 4.65 | 21.1 ± 1.50 | 0.444 | 0.433 |
Riboflavin (mg) | 1.3–1.5 | 1.80 ± 0.49 | 1.66 ± 0.40 | 1.64 ± 0.41 | 1.60 ± 0.38 | 1.67 ± 0.23 | 0.013 | 0.002 |
C:P:F ratio (%) | ||||||||
CHO (%) | 55–65 | 62.8 ± 0.67 | 63.5 ± 0.76 | 0.63 ± 0.69 | 62.2 ± 0.74 | 62.9 ± 0.38 | 0.592 | 0.510 |
Protein (%) | 7–20 | 15.0 ± 0.27 | 15.0 ± 0.36 | 14.8 ± 0.28 | 15.7 ± 0.31 | 15.1 ± 0.16 | 0.145 | 0.111 |
Fat (%) | 5–30 | 22.1 ± 0.56 | 21.4 ± 0.58 | 21.8 ± 0.53 | 21.9 ± 0.59 | 21.8 ± 0.32 | 0.804 | 0.953 |
Quartiles of AIP | Total (n = 1292) | p for Trend | ||||
---|---|---|---|---|---|---|
Q1 (n = 322) <−0.38 | Q2 (n = 324) −0.38 to 0.09 | Q3 (n = 323) 0.09 to 0.54 | Q4 (n = 323) ≥0.54 | |||
Grains (g) | 329.2 ± 9.20 | 323.1 ± 10.5 | 333.7 ± 9.55 | 318.5 ± 9.48 | 326.1 ± 5.31 | 0.582 |
Potatoes and starches (g) | 49.8 ± 9.04 | 47.0 ± 7.77 | 39.5 ± 6.43 | 46.0 ± 6.98 | 45.6 ± 4.74 | 0.582 |
Legumes and legume products (g) | 41.6 ± 5.43 | 44.5 ± 6.39 | 48.4 ± 6.02 | 47.9 ± 7.51 | 45.6 ± 3.08 | 0.464 |
Nuts and seeds (g) | 7.59 ± 2.93 | 9.14 ± 2.38 | 6.42 ± 1.80 | 5.61 ± 1.05 | 7.19 ± 1.18 | 0.349 |
Vegetables (g) | 389.2 ± 15.8 | 383.3 ± 13.2 | 402.3 ± 14.6 | 376.8 ± 14.1 | 387.9 ± 7.93 | 0.758 |
Mushrooms (g) | 5.90 ± 1.21 | 6.27 ± 1.17 | 6.23 ± 1.52 | 7.46 ± 1.53 | 6.47 ± 0.61 | 0.496 |
Fruits (g) | 157.8 ± 14.0 | 192.3 ± 16.1 | 168.1 ± 16.5 | 159.4 ± 19.6 | 169.4 ± 9.03 | 0.791 |
Meats and poultries (g) | 149.2 ± 11.2 | 174.2 ± 14.2 | 159.3 ± 11.9 | 150.0 ± 10.4 | 158.2 ± 6.20 | 0.788 |
Eggs (g) | 37.6 ± 3.56 | 34.1 ± 3.10 | 35.9 ± 3.13 | 36.8 ± 4.25 | 36.1 ± 2.08 | 0.980 |
Fish and shellfish (g) | 123.0 ± 11.8 | 104.7 ± 9.82 | 113.9 ± 8.90 | 113.9 ± 8.90 | 109.3 ± 11.3 | 0.524 |
Seaweed (g) | 27.9 ± 5.56 | 20.6 ± 5.40 | 17.7 ± 3.12 | 25.2 ± 6.31 | 22.9 ± 3.12 | 0.684 |
Milk and dairy products (g) | 131.9 ± 16.1 | 84.90 ± 9.74 | 97.1 ± 10.6 | 85.7 ± 12.3 | 99.8 ± 6.80 | 0.044 |
Oils and fats (g) | 11.9 ± 0.83 | 10.8 ± 0.85 | 11.4 ± 0.92 | 12.0 ± 0.83 | 11.5 ± 0.45 | 0.816 |
Beverages and alcohols (g) | 380.9 ± 35.6 | 535.7 ± 55.5 | 359.0 ± 36.0 | 460.4 ± 38.9 | 434.0 ± 24.5 | 0.680 |
Quartiles of AIP | Total (n = 1292) | p for Trend | ||||
---|---|---|---|---|---|---|
Q1 (n = 322) <−0.38 | Q2 (n = 324) −0.38 to 0.09 | Q3 (n = 323) 0.09 to 0.54 | Q4 (n = 323) ≥0.54 | |||
Meats and poultries | 25.5 ± 2.04 | 27.1 ± 2.21 | 23.9 ± 2.01 | 27.2 ± 2.44 | 25.9 ± 1.14 | 0.895 |
Grains | 18.1 ± 1.70 | 18.2 ± 1.85 | 19.4 ± 1.80 | 14.2 ± 1.41 | 17.5 ± 0.93 | 0.165 |
Oils and fats | 14.3 ± 1.41 | 13.7 ± 1.33 | 15.3 ± 1.25 | 17.3 ± 1.48 | 15.1 ± 0.72 | 0.116 |
Milk and dairy products | 9.10 ± 1.48 | 6.17 ± 0.96 | 6.26 ± 1.04 | 4.26 ± 0.79 | 6.45 ± 0.65 | 0.007 |
Legumes and legume products | 6.45 ± 0.97 | 6.60 ± 1.05 | 6.70 ± 0.91 | 5.03 ± 1.06 | 6.20 ± 0.55 | 0.338 |
Eggs | 5.85 ± 0.73 | 5.54 ± 0.75 | 5.15 ± 0.64 | 7.71 ± 1.19 | 6.06 ± 0.49 | 0.223 |
Fish and shellfish | 5.04 ± 0.61 | 4.56 ± 0.61 | 5.39 ± 0.61 | 4.88 ± 0.71 | 4.97 ± 0.33 | 0.889 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.R.; Song, S.; Cho, J.A.; Ly, S.Y. Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES. Nutrients 2022, 14, 1071. https://doi.org/10.3390/nu14051071
Shin HR, Song S, Cho JA, Ly SY. Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES. Nutrients. 2022; 14(5):1071. https://doi.org/10.3390/nu14051071
Chicago/Turabian StyleShin, Hye Ran, SuJin Song, Jin Ah Cho, and Sun Yung Ly. 2022. "Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES" Nutrients 14, no. 5: 1071. https://doi.org/10.3390/nu14051071
APA StyleShin, H. R., Song, S., Cho, J. A., & Ly, S. Y. (2022). Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES. Nutrients, 14(5), 1071. https://doi.org/10.3390/nu14051071