Cow’s Milk Intake and Risk of Coronary Heart Disease in Korean Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection of Study Subjects
2.2. Analysis of Milk Intake Frequency
2.3. General Characteristics of the Subjects According to Cow’s Milk Intake Frequency
2.4. Evaluation of Nutrient Intakes Compared with the KDRIs
2.5. Anthropometric Measurements and Blood Profiles
2.6. Smoking Status and Disease Fraction (%)
2.7. Framingham Risk Score (FRS), Atherogenic Index (AI), and Atherogenic Index of Plasma (AIP)
2.8. Statistical Analysis
3. Results
3.1. General Characteristics of Subjects According to Cow’s Milk Intake Frequency
3.2. Nutrient Intakes Compared with the KDRIs According to Cow’s Milk Intake Frequency
3.3. Anthropometric Measurements and Blood Profiles According to the Cow’s Milk Intake Frequency
3.4. Smoking Status and Disease Fraction (%) According to Cow’s Milk Intake Frequency
3.5. Indicators for CHD Risk According to Cow’s Milk Intake Frequency
3.6. Correlations between Cow’s Milk Intake, Calcium Intake, AI, FRS, and AIP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gracia, C.R.; Freeman, E.W. Onset of the menopause transition: The earliest signs and symptoms. Obstet. Gynecol. Clin. N. Am. 2018, 45, 585–597. [Google Scholar] [CrossRef]
- Stanhewicz, A.E.; Wenner, M.M.; Stachenfeld, N.S. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, H1569–H1588. [Google Scholar] [CrossRef]
- Merz, A.A.; Cheng, S. Sex differences in cardiovascular ageing. Heart 2016, 102, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Dennis, K.E. Postmenopausal women and the health consequences of obesity. J. Obstet. Gynecol. Neonatal Nurs. 2007, 36, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Pardhe, B.D.; Ghimire, S.; Shakya, J.; Pathak, S.; Shakya, S.; Bhetwal, A.; Khanal, P.R.; Parajuli, N.P. Elevated cardiovascular risks among postmenopausal women: A community-based case control study from Nepal. Biochem. Res. Int. 2017, 3824903. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Tucker, K.L. Coronary heart disease prevention: Nutrients, foods, and dietary patterns. Clin. Chim. Acta 2011, 412, 1493–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Givens, D.I. Milk and dairy foods: Implications for cardiometabolic health. Cardiovasc. Endocrinol. Metab. 2018, 7, 56–57. [Google Scholar] [CrossRef]
- Elwood, P.C.; Pickering, J.E.; Hughes, J.; Fehily, A.M.; Ness, A.R. Milk drinking, ischaemic heart disease and ischaemic stroke II. Evidence from cohort studies. Eur. J. Clin. Nutr. 2004, 58, 718–724. [Google Scholar] [CrossRef]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Dairy consumption in association with weight change and risk of becoming overweight or obese in middle-aged and older women: A prospective cohort study. Am. J. Clin. Nutr. 2016, 103, 979–988. [Google Scholar] [CrossRef]
- German, J.B.; Gibson, R.A.; Krauss, R.M.; Nestel, P.; Lamarche, B.; van Staveren, W.A.; Steijns, J.M.; de Groot, L.C.; Lock, A.L.; Destaillats, F. A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. Eur. J. Nutr. 2009, 48, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Elwood, P.C.; Pickering, J.E.; Givens, D.I.; Gallacher, J.E. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: An overview of the evidence. Lipids 2010, 45, 925–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontecha, J.; Calvo, M.V.; Juarez, M.; Gil, A.; Martínez-Vizcaino, V. Milk and dairy product consumption and cardiovascular diseases: An overview of systematic reviews and meta-analyses. Adv. Nutr. 2019, 10 (Suppl. 2), S164–S189. [Google Scholar] [CrossRef]
- Jakobsen, M.U.; Trolle, E.; Outzen, M.; Mejborn, H.; Grønberg, M.G.; Lyndgaard, C.B.; Stockmarr, A.; Venø, S.K.; Bysted, A. Intake of dairy products and associations with major atherosclerotic cardiovascular diseases: A systematic review and meta-analysis of cohort studies. Sci. Rep. 2021, 11, 1303. [Google Scholar] [CrossRef]
- Korea Center for Disease Control and Prevention. Report Presentation of the Korea National Health and Nutrition Examination Survey (KNHANES) VII; Ministry of Health and Welfare: Sejong, Korea, 2017.
- Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart diseases using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, R.B.; Grundy, S.; Sullivan, L.M.; Wilson, P.; CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001, 286, 180–187. [Google Scholar] [CrossRef]
- Cortés, Y.I.; Reame, N.; Zeana, C.; Jia, H.; Ferris, D.C.; Shane, E.; Yin, M.T. Cardiovascular risk in HIV-infected and uninfected postmenopausal minority women: Use of the Framingham Risk Score. J. Women’s Health 2017, 26, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.K.; Bae, Y.J. Evaluation of nutrient intake and food variety in Korean male adults according to Framingham Risk Score. Korean J. Food Nutr. 2014, 27, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Rychter, A.M.; Ratajczak, A.E.; Zawada, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Non-systematic review of diet and nutritional risk factors of cardiovascular disease in obesity. Nutrients 2020, 12, 814. [Google Scholar] [CrossRef] [Green Version]
- Procter-Gray, E.; Olendzki, B.; Kane, K.; Churchill, L.; Hayes, R.B.; Aguirre, A.; Kang, H.J.; Li, W. Comparison of dietary quality assessment using food frequency questionnaire and 24-hour-recalls in older men and women. AIMS Public Health 2017, 4, 326–346. [Google Scholar] [CrossRef]
- Freedman, L.S.; Commins, J.M.; Willett, W.; Tinker, L.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; Moshfegh, A.J.; Kipnis, V.; et al. Evaluation of the 24-Hour Recall as a Reference Instrument for Calibrating Other Self-Report Instruments in Nutritional Cohort Studies: Evidence from the validation studies pooling project. Am. J. Epidemiol. 2017, 186, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, Y.; Lee, J.E.; Paik, H.Y.; Lee, H.K.; Jo, I.; Kim, K. Development of a semi-quantitative food frequency questionnaire based on dietary data from the Korea National Health and Nutrition Examination Survey. Nutr. Sci. 2003, 6, 173–184. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: The Korean Genome and Epidemiology Study (KoGES). Br. J. Nutr. 2017, 117, 148–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.T.; Lee, C.M.; Park, J.H.; Ko, J.A.; Seong, E.J.; Park, M.S.; Cho, B. Milk intake and its association with metabolic syndrome in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). J. Korean Med. Sci. 2010, 25, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Garcia, R.; Mendoza, N.; Palacios, S.; Salas, N.; Quesada-Charneco, M.; Garcia-Martin, A.; Fonolla, J.; Lara-Villoslada, F.; Muñoz-Torres, M. Effects of daily intake of calcium and vitamin D-enriched milk in healthy postmenopausal women: A randomized, controlled, double-blind nutritional study. J. Women’s Health 2018, 27, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Kai, S.H.Y.; Bongard, V.; Simon, C.; Ruidavets, J.B.; Arveiler, D.; Dallongeville, J.; Wagner, A.; Amouyel, P.; Ferrieres, J. Low-fat and high-fat dairy products are differently related to blood lipids and cardiovascular risk score. Eur. J. Prev. Cardiol. 2014, 21, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Dairy food consumption is inversely associated with the risk of the metabolic syndrome in Korean adults. J. Hum. Nutr. Diet. 2013, 26 (Suppl. S1), 171–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, Y.; Ford, E.S.; Manson, J.E.; Buring, J.E.; Ridker, P.M. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 2926–2932. [Google Scholar] [CrossRef] [Green Version]
- Vinarova, L.; Vinarov, Z.; Tcholakova, S.; Denkov, N.D.; Stoyanov, S.; Lips, A. The mechanism of lowering cholesterol absorption by calcium studied by using an in vitro digestion model. Food Funct. 2016, 7, 151–163. [Google Scholar] [CrossRef]
- Nansseu, J.R.; Moor, V.J.; Nouaga, M.E.; Zing-Awona, B.; Tchanana, G.; Ketcha, A. Atherogenic index of plasma and risk of cardiovascular disease among Cameroonian postmenopausal women. Lipids Health Dis. 2016, 15, 49. [Google Scholar] [CrossRef] [Green Version]
- Despres, J.P.; Lemieux, I.; Dagenais, G.R.; Cantin, B.; Lamarche, B. HDL-cholesterol as a marker of coronary heart disease risk: The Quebec cardiovascular study. Atherosclerosis 2000, 153, 263–272. [Google Scholar] [CrossRef]
- Pelletier, P.; Lapointe, A.; Laflamme, N.; Piché, M.E.; Weisnagel, S.J.; Nadeau, A.; Lemieux, S.; Bergeron, J. Discordances among different tools used to estimate cardiovascular risk in postmenopausal women. Can. J. Cardiol. 2009, 25, e413–e416. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.Y.; Na, Y.A. The assessment of Framingham Risk Score and 10 year CHD risk according to application of LDL cholesterol or total cholesterol. Korean J. Clin. Lab. Sci. 2016, 48, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.M.; Kim, D.J. Metabolic syndrome versus Framingham Risk Score for association of self-reported coronary heart disease: The 2005 Korean Health and Nutrition Examination Survey. Diabetes Metab. J. 2012, 36, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.O.; Seo, J.Y. Gender differences in factors influencing the Framingham Risk Score-coronary heart disease by BMI. J. Korean Acad. Community Health Nurs. 2014, 25, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Joo, N.S.; Yang, S.W.; Park, S.J.; Choi, S.J.; Song, B.C.; Yeum, K.J. Milk consumption and Framingham Risk Score: Analysis of the Korea National Health and Nutrition Examination Survey data (2008–2011). Yonsei Med. J. 2016, 57, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Soedamah-Muthu, S.S.; Ding, E.L.; Al-Delaimy, W.K.; Hu, F.B.; Engberink, M.F.; Willett, W.C.; Geleijnse, J.M. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2011, 93, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Mullie, P.; Pizot, C.; Autier, P. Daily milk consumption and all-cause mortality, coronary heart disease and stroke: A systematic review and meta-analysis of observational cohort studies. BMC Public Health 2016, 16, 1236. [Google Scholar] [CrossRef] [Green Version]
Variables | Q1 1 (n = 666) | Q2 (n = 453) | Q3 (n = 319) | Q4 (n = 387) | Total (n = 1825) | p Value 2 | |
---|---|---|---|---|---|---|---|
Daily cow’s milk intake (mL/d) (mean ± SE) | 0.0 ± 0.0 3a4 | 18.2 ± 0.5 b | 85.9 ± 1.2 c | 215.9 ± 4.6 d | 66.8 ± 2.4 | <0.0001 *** | |
Age (year) (mean ± SE) | 57.1 ± 0.2 | 56.8 ± 0.3 | 56.3 ± 0.3 | 57.1 ± 0.3 | 57.0 ± 0.1 | 0.1453 | |
Education Level (n (%)) | ≤Elementary school | 273(36.8) 5 | 130(27.2) | 85(25.0) | 109(26.4) | 597(30.1) | 0.6229 |
Middle school | 129(21.1) | 109(24.3) | 79(24.2) | 94(23.7) | 411(23.0) | ||
High school | 181(30.3) | 157(35.3) | 109(36.9) | 119(31.3) | 566(32.9) | ||
≥College | 83(11.9) | 57(13.2) | 46(13.9) | 65(18.5) | 251(14.0) | ||
Total | 666(100.0) | 453(100.0) | 319(100.0) | 387(100.0) | 1825(100.0) | ||
Household income (n (%)) | Low | 146(20.0) | 66(13.8) | 45(13.7) | 44(11.4) | 301(15.6) | 0.0012 ** |
Middle–low | 181(28.7) | 131(28.4) | 82(23.6) | 110(25.1) | 504(26.9) | ||
Middle–high | 165(24.5) | 127(27.8) | 88(28.7) | 99(26.0) | 479(26.4) | ||
High | 172(26.8) | 129(30.0) | 101(34.0) | 133(37.5) | 535(31.1) | ||
Total | 664(100.0) | 453(100.0) | 316(100.0) | 386(100.0) | 1819(100.0) | ||
Region (Living area) (n (%)) | Large city | 303(46.6) | 223(49.7) | 164(53.3) | 172(43.9) | 862(48.0) | 0.0928 |
Middle and Small city | 218(33.5) | 136(30.7) | 108(34.3) | 147(39.2) | 609(34.2) | ||
Rural area | 145(19.9) | 94(19.6) | 47(12.4) | 68(16.9) | 354(17.8) | ||
Total | 666(100.0) | 453(100.0) | 319(100.0) | 387(100.0) | 1825(100.0) | ||
Obesity 6 (n (%)) | Underweight | 20(3.5) | 4(1.2) | 6(1.9) | 5(1.5) | 35(2.2) | 0.0570 |
Normal weight | 415(64.4) | 280(64.0) | 204(63.8) | 245(63.0) | 1144(63.9) | ||
Obese | 230(32.2) | 168(34.8) | 109(34.3) | 137(35.5) | 644(33.9) | ||
Total | 665(100.0) | 452(100.0) | 319(100.0) | 387(100.0) | 1823(100.0) |
Variables 3 | Q1 1 (n = 666) | Q2 (n = 453) | Q3 (n = 319) | Q4 (n = 387) | Total (n = 1825) | p Value 2 |
---|---|---|---|---|---|---|
Energy | 89.8 ± 1.5 4 | 99.2 ± 2.0 | 99.0 ± 2.1 | 103.5 ± 2.0 | 97.0 ± 0.9 | 0.8562 |
Protein | 119.4 ± 2.5 | 134.0 ± 3.3 | 134.7 ± 3.5 | 146.3 ± 4.3 | 132.2 ± 1.7 | 0.0802 |
Calcium | 50.0 ± 1.2 a5 | 56.7 ± 1.6 a | 62.1 ± 1.8 b | 76.0 ± 2.1 c | 59.8 ± 0.9 | <0.0001 *** |
Phosphorus | 128.6 ± 2.5 a | 140.8 ± 3.1 a | 147.3 ± 3.6 b | 163.9 ± 4.0 c | 143.0 ± 1.6 | <0.0001 *** |
Iron | 194.3 ± 4.4 | 206.1 ± 5.8 | 203.7 ± 5.5 | 209.4 ± 5.7 | 202.1 ± 2.7 | 0.3764 |
Sodium | 203.8 ± 5.6 | 234.3 ± 10.8 | 218.3 ± 7.9 | 233.2 ± 9.2 | 220.8 ± 4.2 | 0.5958 |
Vitamin A | 108.6 ± 5.2 | 118.9 ± 6.6 | 123.3 ± 7.7 | 153.7 ± 20.6 | 127.2 ± 5.3 | 0.4879 |
Thiamin | 145.0 ± 3.1 | 156.8 ± 3.9 | 156.7 ± 4.2 | 167.2 ± 4.2 | 154.8 ± 1.9 | 0.7107 |
Riboflavin | 70.5 ± 1.7 a | 79.5 ± 2.1 a | 83.1 ± 2.6 b | 97.3 ± 2.6 c | 80.6 ± 1.2 | <0.0001 *** |
Niacin | 96.9 ± 2.2 | 107.9 ± 2.8 | 109.2 ± 3.3 | 111.5 ± 3.1 | 105.0 ± 1.4 | 0.8911 |
Vitamin C | 131.0 ± 6.4 | 132.6 ± 8.4 | 135.8 ± 9.3 | 156.7 ± 11.0 | 137.8 ± 4.6 | 0.4170 |
Energy from carbohydrates (%) | 71.0 ± 0.5 a | 68.8 ± 0.6 b | 67.7 ± 0.7 b | 67.4 ± 0.6 b | 69.1 ± 0.3 | 0.0002 ** |
Energy from protein (%) | 13.5 ± 0.2 | 13.8 ± 0.2 | 13.8 ± 0.2 | 14.3 ± 0.2 | 13.8 ± 0.1 | 0.1820 |
Energy from fat (%) | 15.5 ± 0.3 a | 17.4 ± 0.5 b | 18.5 ± 0.6 b | 18.3 ± 0.5 b | 17.1 ± 0.2 | 0.0001 ** |
Variables | Q1 1 (n = 666) | Q2 (n = 453) | Q3 (n = 319) | Q4 (n = 387) | Total (n = 1825) | p Value 2 |
---|---|---|---|---|---|---|
Height (cm) | 155.5 ± 0.2 3 | 156.2 ± 0.3 | 156.1 ± 0.3 | 156.0 ± 0.3 | 155.9 ± 0.1 | 0.4929 |
Weight (kg) | 57.9 ± 0.4 | 58.6 ± 0.4 | 58.7 ± 0.5 | 57.9 ± 0.5 | 58.2 ± 0.2 | 0.3544 |
Body Mass index (kg/m2) | 24.0 ± 0.2 | 24.1 ± 0.2 | 24.2 ± 0.2 | 23.93 ± 0.2 | 24.0 ± 0.1 | 0.5507 |
Fasting blood glucose (mg/dL) | 99.1 ± 0.8 | 101.2 ± 1.2 | 102.0 ± 1.7 | 101.4 ± 1.4 | 100.9 ± 0.6 | 0.1396 |
Hemoglobin A1c (%) | 5.9 ± 0.0 | 5.9 ± 0.0 | 5.9 ± 0.0 | 5.9 ± 0.0 | 5.9 ± 0.0 | 0.5511 |
Total cholesterol (mg/dL) | 201.1 ± 1.5 | 200.5 ± 1.7 | 200.4 ± 2.2 | 202.4 ± 2.0 | 201.0 ± 0.9 | 0.8819 |
Triglyceride (mg/dL) | 137.2 ± 3.8 | 122.2 ± 4.0 | 125.1 ± 5.6 | 125.7 ± 4.0 | 129.1 ± 2.0 | 0.0586 |
LDL-cholesterol (mg/dL) | 123.3 ± 1.9 | 122.1 ± 2.5 | 124.5 ± 3.1 | 122.2 ± 2.8 | 122.8 ± 1.2 | 0.8818 |
HDL-cholesterol (mg/dL) | 51.5 ± 0.5 a4 | 53.3 ± 0.7 ab | 53.4 ± 0.8 ab | 55.5 ± 0.7 b | 53.2 ± 0.3 | 0.0002 ** |
Systolic blood pressure (mmHg) | 120.5 ± 0.7 | 118.5 ± 0.8 | 118.9 ± 0.9 | 119.1 ± 0.9 | 119.6 ± 0.4 | 0.5947 |
Diastolic blood pressure (mmHg) | 76.4 ± 0.4 | 75.6 ± 0.5 | 75.7 ± 0.6 | 75.7 ± 0.5 | 76.0 ± 0.3 | 0.6264 |
Variables | Q1 1 (n = 666) | Q2 (n = 453) | Q3 (n = 319) | Q4 (n = 387) | Total (n = 1825) | p Value 2 | |
---|---|---|---|---|---|---|---|
Smoking status | No 3 | 643(96.8) | 436(97.0) | 312(97.3) | 372(95.6) | 1763(96.7) | 0.4123 |
Yes | 20(3.2) | 16(3.0) | 6(2.7) | 13(4.4) | 55(3.3) | ||
Total | 663(100.0) | 452(100.0) | 318(100.0) | 385(100.0) | 1818(100.0) | ||
Diabetes | No 4 | 613(93.2) | 408(90.5) | 294(90.6) | 353(91.8) | 1667(91.8) | 0.4492 |
Yes | 53(6.7) | 45(9.5) | 25(9.4) | 34(8.2) | 157(8.2) | ||
Total | 666(100.0) | 453(100.0) | 319(100.0) | 387(100.0) | 1825(100.0) | ||
Hypertension | No 4 | 476(71.9) | 341(75.3) | 238(75.8) | 282(74.2) | 1337(73.9) | 0.5687 |
Yes | 190(28.1) | 112(24.7) | 81(24.2) | 105(25.8) | 488(26.1) | ||
Total | 666(100.0) | 453(100.0) | 319(100.0) | 387(100.0) | 1825(100.0) | ||
Hyperlipidemia | No 4 | 573(86.2) | 404(89.5) | 265(85.8) | 316(82.6) | 1558(86.2) | 0.0779 |
Yes | 93(13.8) | 49(10.5) | 54(14.2) | 71(17.4) | 267(13.8) | ||
Total | 666(100.0) | 453(100.0) | 319(100.0) | 387(100.0) | 1825(100.0) |
Variables 3 | Standard Score Range | Q1 1 (n = 666) | Q2 (n = 453) | Q3 (n = 319) | Q4 (n = 387) | Total (n = 1825) | p Value 2 |
---|---|---|---|---|---|---|---|
Age (years) | −9–8 | 7.0 ± 0.1 3 | 7.0 ± 0.1 | 6.9 ± 0.1 | 7.0 ± 0.1 | 7.0 ± 0.1 | 0.6904 |
Total cholesterol | −2–3 | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.9950 |
HDL-cholesterol | −3–5 | 0.1 ± 0.1 a4 | −0.1 ± 0.1 a | −0.1 ± 0.1 a | −0.4 ± 0.1 b | −0.1 ± 0.1 | 0.0184 * |
Systolic blood pressure | −1~7 | 1.1 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.4534 |
Diabetes status | 0~4 | 0.3 ± 0.0 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0 | 0.3818 |
Smoking status | 0~2 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0 | 0.7980 |
Total FRS score | −3~37 | 8.9 ± 0.2 a | 8.5 ± 0.2 ab | 8.4 ± 0.3 ab | 8.3 ± 0.2 b | 8.6 ± 0.1 | 0.0277 * |
10-year coronary heart disease (CHD) risk (%) | 1~>30 | 9.4 ± 0.3 a | 8.9 ± 0.3 ab | 8.6 ± 0.3 ab | 8.5 ± 0.3 b | 8.9 ± 0.2 | 0.0490 * |
AI 5 | 3.06 ± 0.04 a | 2.94 ± 0.06 ab | 2.89±0.06 b | 2.83±0.06 b | 2.95 ± 0.03 | 0.0060 ** | |
AIP 6 | 0.37 ± 0.01 a | 0.31 ± 0.01 b | 0.31±0.02 b | 0.32±0.02 b | 0.33 ± 0.01 | 0.0032 ** |
Milk Intake | Calcium Intake | FRS | AI | AIP | |
---|---|---|---|---|---|
Milk intake | 1.000 1 | 0.626 *** | −0.048 * | −0.089 ** | −0.040 |
Calcium intake | 0.626 *** | 1.000 | −0.057 ** | −0.053 * | −0.033 |
FRS | −0.048 * | −0.057 ** | 1.000 | 0.575 *** | 0.540 *** |
AI | −0.089 *** | −0.053 ** | 0.575 *** | 1.000 | 0.715 *** |
AIP | −0.040 | −0.033 | 0.540 *** | 0.715 *** | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, A.-W.; Kim, W.-K.; Kim, S.-H. Cow’s Milk Intake and Risk of Coronary Heart Disease in Korean Postmenopausal Women. Nutrients 2022, 14, 1092. https://doi.org/10.3390/nu14051092
Ha A-W, Kim W-K, Kim S-H. Cow’s Milk Intake and Risk of Coronary Heart Disease in Korean Postmenopausal Women. Nutrients. 2022; 14(5):1092. https://doi.org/10.3390/nu14051092
Chicago/Turabian StyleHa, Ae-Wha, Woo-Kyoung Kim, and Sun-Hyo Kim. 2022. "Cow’s Milk Intake and Risk of Coronary Heart Disease in Korean Postmenopausal Women" Nutrients 14, no. 5: 1092. https://doi.org/10.3390/nu14051092
APA StyleHa, A. -W., Kim, W. -K., & Kim, S. -H. (2022). Cow’s Milk Intake and Risk of Coronary Heart Disease in Korean Postmenopausal Women. Nutrients, 14(5), 1092. https://doi.org/10.3390/nu14051092