Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants Characteristics
3.2. Dietary Intakes by Cases and Controls
3.3. Associations of Dietary Lignans Consumption and Hip Fracture Risks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sambrook, P.; Cooper, C. Osteoporosis. Lancet 2006, 367, 2010–2018. [Google Scholar] [CrossRef]
- Xia, W.-B.; He, S.-L.; Xu, L.; Liu, A.-M.; Jiang, Y.; Li, M.; Wang, O.; Xing, X.-P.; Sun, Y.; Cummings, S.R. Rapidly increasing rates of hip fracture in Beijing, China. J. Bone Miner. Res. 2011, 27, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Lagari, V.S.; Levis, S. Phytoestrogens and bone health. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 546–553. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Kuhnle, G.; Mulligan, A.A.; Touillaud, M.; Slimani, N.; Romieu, I.; Powell, N.; Tumino, R.; et al. Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur. J. Clin. Nutr. 2012, 66, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wähälä, K.; Deyama, T.; Nishibe, S.; Adlercreutz, H. In Vitro Metabolism of Plant Lignans: New Precursors of Mammalian Lignans Enterolactone and Enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186. [Google Scholar] [CrossRef]
- Zhang, R.; Pan, Y.-L.; Hu, S.-J.; Kong, X.-H.; Juan, W.; Mei, Q.-B. Effects of total lignans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro. J. Ethnopharmacol. 2014, 155, 104–112. [Google Scholar] [CrossRef]
- Ward, W.E.; Yuan, Y.V.; Cheung, A.M.; Thompson, L.U. Exposure to purified lignan from flaxseed (Linum usitatissimum) alters bone development in female rats. Br. J. Nutr. 2001, 86, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Kardinaal, A.; Morton, M.; Brüggemann-Rotgans, I.; Van Beresteijn, E. Phyto-oestrogen excretion and rate of bone loss in postmenopausal women. Eur. J. Clin. Nutr. 1998, 52, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-K.; Chung, B.C.; Yu, V.Y.; Nam, J.H.; Lee, H.C.; Huh, K.B.; Lim, S.K. Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women. Clin. Endocrinol. 2002, 56, 321–328. [Google Scholar] [CrossRef]
- Cornish, S.M.; Chilibeck, P.D.; Paus-Jennsen, L.; Biem, H.J.; Talaei-Khozani, T.; Senanayake, V.; Vatanparast, H.; Little, J.P.; Whiting, S.J.; Pahwa, P. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Appl. Physiol. Nutr. Metab. 2009, 34, 89–98. [Google Scholar] [CrossRef]
- Dodin, S.; Lemay, A.; Jacques, H.; Légaré, F.; Forest, J.-C.; Masse, B. The Effects of Flaxseed Dietary Supplement on Lipid Profile, Bone Mineral Density, and Symptoms in Menopausal Women: A Randomized, Double-Blind, Wheat Germ Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2005, 90, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.D.; Ward, W.; Lewis, J.E.; Hilditch, J.; Nickell, L.; Wong, E.; Thompson, L.U. Supplementation with flaxseed alters estrogen metabolism in postmenopausal women to a greater extent than does supplementation with an equal amount of soy. Am. J. Clin. Nutr. 2004, 79, 318–325. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, X.; Xia, J.; Zhao, L.; Yang, Y. Consumption of meat and dairy products in China: A review. Proc. Nutr. Soc. 2016, 75, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishizawa, Y.; Nakamura, T.; Ohta, H.; Kushida, K.; Gorai, I.; Shiraki, M.; Fukunaga, M.; Hosoi, T.; Miki, T.; Chaki, O.; et al. Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). J. Bone Miner. Metab. 2005, 23, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.-F.; Wu, B.-H.; Fan, F.; Xie, H.-L.; Xue, W.-Q.; Zhu, H.-L.; Chen, Y.-M. Dietary Patterns and the Risk of Hip Fractures in Elderly Chinese: A Matched Case-Control Study. J. Clin. Endocrinol. Metab. 2013, 98, 2347–2355. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-X.; Ho, S.C. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac. J. Clin. Nutr. 2009, 18, 240–250. [Google Scholar]
- Milder, I.E.J.; Arts, I.; Van De Putte, B.; Venema, D.P.; Hollman, P.C.H. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 2005, 93, 393–402. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen Content of Foods Consumed in Canada, Including Isoflavones, Lignans, and Coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Adlercreutz, H.; Uehara, M.; Ristimaki, A.; Watanabe, S. Lignan Content of Selected Foods from Japan. J. Agric. Food Chem. 2007, 56, 401–409. [Google Scholar] [CrossRef]
- Neveu, V.; Pérez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.D.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Adlercreutz, H. Mammalian Lignans and Phytoestrogens: Recent Studies on Their Formation, Metabolism and Biological Rols in Health and Disease. In The Role of Gut Microflora in Toxicity and Cancer; Rowland, I., Ed.; Academic Press: London, UK, 1998; pp. 315–345. [Google Scholar]
- Borriello, S.; Setchell, K.; Axelson, M.; Lawson, A. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 1985, 58, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.; Filardo, E.; Lolait, S.J.; Thomas, P.; Maggiolini, M.; Prossnitz, E.R. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J. Steroid Biochem. Mol. Biol. 2017, 176, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponti, G.; Farinetti, A.; Marraudino, M.; Panzica, G.; Gotti, S. Postnatal genistein administration selectively abolishes sexual dimorphism in specific hypothalamic dopaminergic system in mice. Brain Res. 2019, 1724, 146434. [Google Scholar] [CrossRef]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, K.L.; O’Neill, S.; Lyons, P.M. Intake of isoflavone and lignan phytoestrogens and associated demographic and lifestyle factors in older Australian women. Asia Pac. J. Clin. Nutr. 2010, 19, 540–549. [Google Scholar]
- Gunn, C.A.; Weber, J.L.; McGill, A.-T.; Kruger, M.C. Increased Intake of Selected Vegetables, Herbs and Fruit may Reduce Bone Turnover in Post-Menopausal Women. Nutrients 2015, 7, 2499–2517. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.Y.; Li, Y.; Luo, H.; Yin, X.H.; Lin, D.R.; Zhao, K.; Huang, G.L.; Song, J.K. Increased intake of vegetables, but not fruits, may be associated with reduced risk of hip fracture: A meta-analysis. Sci. Rep. 2016, 6, 19783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrient-rich diet linked to reduction in fracture risk. Eating fruits, vegetables and whole grains is deemed key to bone health. Duke Med. Health News 2011, 17, 7.
- Legette, L.L.; Lee, W.-H.; Martin, B.R.; Story, J.A.; Campbell, J.K.; Weaver, C.M. Prebiotics Enhance Magnesium Absorption and Inulin-based Fibers Exert Chronic Effects on Calcium Utilization in a Postmenopausal Rodent Model. J. Food Sci. 2012, 77, 88–94. [Google Scholar] [CrossRef]
- García-Vieyra, M.I.; Del Real, A.; López, M.G. Agave Fructans: Their Effect on Mineral Absorption and Bone Mineral Content. J. Med. Food 2014, 17, 1247–1255. [Google Scholar] [CrossRef]
- Abrams, S.A.; Griffin, I.J.; Hawthorne, K.M.; Liang, L.; Gunn, S.K.; Darlington, G.; Ellis, K.J. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 2005, 82, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Heuvel, E.V.D.; Schoterman, M.H.C.; Muijs, T. Transgalactooligosaccharides Stimulate Calcium Absorption in Postmenopausal Women. J. Nutr. 2000, 130, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
- Holloway, L.; Moynihan, S.; Abrams, S.; Kent, K.; Hsu, A.R.; Friedlander, A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br. J. Nutr. 2007, 97, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Jakeman, S.A.; Henry, C.N.; Martin, B.R.; McCabe, G.P.; McCabe, L.D.; Jackson, G.S.; Peacock, M.; Weaver, C.M. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: A randomized crossover trial. Am. J. Clin. Nutr. 2016, 104, 837–843. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhang, Y.; Lu, N.; Felson, D.; Kiel, U.P.; Sahni, S. Association Between Dietary Fiber Intake and Bone Loss in the Framingham Offspring Study. J. Bone Miner. Res. 2017, 33, 241–249. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin and Oligofructose and Mineral Metabolism: The Evidence from Animal Trials. J. Nutr. 2007, 137, 2513S. [Google Scholar] [CrossRef] [Green Version]
- McCabe, L.R.; Britton, R.A.; Parameswaran, N. Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome. Curr. Osteoporos. Rep. 2015, 13, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Penttinen, P.; Jaehrling, J.; Damdimopoulos, A.E.; Inzunza, J.; Lemmen, J.G.; Van Der Saag, P.; Pettersson, K.; Gauglitz, G.; Makela, S.; Pongratz, I. Diet-Derived Polyphenol Metabolite Enterolactone Is a Tissue-Specific Estrogen Receptor Activator. Endocrinology 2007, 148, 4875–4886. [Google Scholar] [CrossRef] [Green Version]
- Adlercreutz, H. Lignans and Human Health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef]
- Kuijsten, A.; Arts, I.C.W.; Vree, T.B.; Hollman, P.C.H. Pharmacokinetics of Enterolignans in Healthy Men and Women Consuming a Single Dose of Secoisolariciresinol Diglucoside. J. Nutr. 2005, 135, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Little, P.; Dorward, M.; Warner, G.; Stephens, K.; Senior, J.; Moore, M. Importance of patient pressure and perceived pressure and perceived medical need for investigations, referral, and prescribing in primary care: Nested observational study. BMJ 2004, 328, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Cases | Controls | p |
---|---|---|---|
n | 1070 | 1070 | |
Men/women | 277/793 | 276/794 | 0.961 |
Age (year) | 70.7 ± 7.3 | 70.5 ± 7.0 | 0.326 |
BMI (kg/m2) | 21.8 ± 6.4 | 23.2 ± 3.2 | <0.001 |
Education (≥high school, n%) | 335 (31.5%) | 561 (52.4%) | <0.001 |
Retired (n, %) | 691 (83.6%) | 768 (92.4%) | <0.001 |
Living in rural area (%) | 405 (48.8%) | 419 (50.4%) | 0.494 |
Household income (≥3000, n%) | 210 (19.8%) | 398 (37.2%) | <0.001 |
Married or cohabitated (%) | 671 (63.6%) | 791 (74.0%) | <0.001 |
Orientation of house (facing to the sun, n %) | 740 (80.4%) | 723 (78.5%) | 0.305 |
Depression (%) | 282 (34.1%) | 301 (36.2%) | 0.421 |
Smoking (n %) | |||
Current smoking (n %) | 180 (16.8%) | 135 (12.6%) | 0.006 |
Passive smoking (n %) | 226 (21.2%) | 172 (16.1%) | 0.003 |
Habitual alcohol drinking (n %) | 73 (6.8%) | 77 (7.2%) | 0.739 |
Habitual tea-drinking (n %) | 371 (34.7%) | 540 (50.5%) | <0.001 |
Regular calcium entation (n %) | 313 (29.3%) | 455 (42.5%) | <0.001 |
Regular multivitamin usage (n %) | 102 (9.5%) | 307 (28.7%) | <0.001 |
Medical history (n %) | |||
Hypertension | 328 (30.7%) | 319 (29.8%) | 0.373 |
Hyperlipidemia | 58 (5.4%) | 265 (24.8%) | <0.001 |
Diabetes | 101 (9.4%) | 75 (7.0%) | 0.115 |
CHD | 47 (4.4%) | 96 (9.0%) | <0.001 |
Stroke | 52 (4.9%) | 20 (1.9%) | <0.001 |
Previous fracture | 60 (18.1%) | 150 (7.7%) | <0.001 |
Family history of fracture | 136 (13.3%) | 142 (12.7%) | 0.681 |
Fall in past two years | 260 (24.3%) | 236 (22.1%) | 0.214 |
Total physical activity (Mets) | 67.7 ± 40.2 | 80.9 ± 52.1 | <0.001 |
Sports (Mets) | 1.14 ± 2.55 | 2.37 ± 3.38 | <0.001 |
Sedentary time (hours) | 6.6 ± 2.7 | 6.2 ± 2.6 | 0.015 |
Foods, Nutrients and Lignans | Cases (n = 1070) | Controls (n = 1070) | p |
---|---|---|---|
Food groups (g/d) | |||
Cereals | 609.8 ± 268.6 | 599.5 ± 210.2 | 0.326 |
Vegetables | 247.3 ± 137.2 | 321.8 ± 175.9 | <0.001 |
Fruits | 68.0 ± 64.4 | 98.9 ± 79.0 | <0.001 |
Legumes | 86.4 ± 433.3 | 72.3 ± 292.7 | 0.379 |
Red meat | 74.5 ± 74.3 | 76.9 ± 55.9 | 0.403 |
Total fish | 29.9 ± 30.8 | 39.6 ± 39.2 | <0.001 |
Milk and dairy products | 68.0 ± 114.6 | 87.9 ± 116.2 | <0.001 |
Energy and nutrients intake * | |||
Energy (kcal/d) | 1479.4 ± 953.3 | 1582.6 ± 468.3 | 0.002 |
Protein (g/d) | 72.7 ± 22.0 | 72.4 ± 14.2 | 0.683 |
Soy protein (g/d) | 8.2 ± 24.9 | 6.4 ± 8.5 | 0.030 |
Fat (g/d) | 63.8 ± 26.1 | 61.8 ± 16.3 | 0.033 |
Carbohydrate (g/d) | 235.2 ± 60.5 | 231.5 ± 49.5 | 0.127 |
Calcium (mg/d) | 497.0 ± 266.9 | 531.0 ± 176.1 | 0.001 |
Vitamin D (IU/d) | 100.4 ± 337.5 | 93.5 ± 245.0 | 0.594 |
Folate (μg/d) | 221.0 ± 115.3 | 223.6 ± 62.1 | 0.520 |
Total lignans (μg/d) | 414.5 ± 1197.6 | 525.1 ± 418.4 | <0.001 |
MAT | 4.1 ± 17.0 | 5.1 ± 5.5 | 0.060 |
LARI | 165.5 ± 206.4 | 201.6 ± 104.6 | <0.001 |
PINO | 194.9 ± 916.1 | 258.5 ± 300.8 | 0.031 |
SECO | 51.0 ± 112.0 | 60.7 ± 54.4 | <0.001 |
Estimated ENL (μg/d) | 313.5 ± 763.7 | 392.7 ± 277.9 | <0.001 |
Dietary fibers | 8.3 ± 14.4 | 9.6 ± 4.7 | 0.005 |
Quartiles(Q) of Total and Individual Lignans Intakes (Energy Adjusted) | Ptrend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Total lignans | |||||
No. cases/controls | 392/267 | 286/268 | 226/267 | 166/267 | |
Model 1 (crude OR) | 1.00 | 0.708 (0.492, 1.017) | 0.482(0.324, 0.718) | 0.272(0.170, 0.434) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.477(0.284, 0.803) | 0.353(0.186, 0.667) | 0.237(0.103,0.544) | <0.001 |
Matairesinol (MAT) | |||||
No. cases/controls | 335/267 | 313/267 | 236/268 | 186/267 | |
Model 1 (crude OR) | 1.00 | 0.856(0.593,1.236) | 0.706(0.479, 1.039) | 0.264(0.160, 0.436) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.827(0.487, 1.405) | 0.531(0.299, 0.943) | 0.222(0.104, 0.475) | <0.001 |
Lariciresinol (LARI) | |||||
No. cases/controls | 404/267 | 275/268 | 229/267 | 162/267 | |
Model 1 (crude OR) | 1.00 | 0.516(0.355,0.748) | 0.414(0.278, 0.619) | 0.348(0.226, 0.535) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.427(0.253,0.721) | 0.296(0.163,0.538) | 0.374(0.199, 0.703) | <0.001 |
Pinoresinol (PINO) | |||||
No. cases/controls | 358/267 | 331/268 | 213/267 | 168/267 | |
Model 1 (crude OR) | 1.00 | 0.900(0.619,1.309) | 0.489(0.327,0.731) | 0.241(0.147, 0.395) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.932(0.536,1.620) | 0.346(0.189,0.632) | 0.221(0.107, 0.460) | <0.001 |
Secoisolariciresinol (SECO) | |||||
No. cases/controls | 355/267 | 253/268 | 266/267 | 196/267 | |
Model 1 (crude OR) | 1.00 | 0.844(0.576,1.236) | 0.902(0.610,1.333) | 0.535(0.353, 0.809) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 1.135(0.655,1.966) | 0.771(0.428,1.389) | 0.572(0.289, 1.134) | 0.084 |
Enterolactone (ENL) | |||||
No. cases/controls | 467/267 | 277/268 | 189/267 | 137/267 | |
Model 1 (crude OR) | 1.00 | 0.562(0.386, 0.816) | 0.255(0.163, 0.398) | 0.195(0.122, 0.313) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.540(0.325, 0.897) | 0.318(0.173, 0.587) | 0.224(0.116, 0.433) | <0.001 |
Quartiles(Q) of Lignan-Rich Food Intakes | Ptrend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Lignans from vegetables | |||||
No. cases/controls | 447/267 | 334/269 | 174/267 | 115/267 | |
Model 1 (crude OR) | 1.00 | 0.432(0.279, 0.670) | 0.251(0.161, 0.392) | 0.180(0.110, 0.295) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.466(0.261, 0.835) | 0.334(0.177, 0.629) | 0.470(0.231, 0.954) | 0.012 |
Lignans from nuts | |||||
No. cases/controls | 327/267 | 290/268 | 259/267 | 194/267 | |
Model 1 (crude OR) | 1.00 | 0.761(0.531, 1.092) | 0.634(0.426, 0.945) | 0.296(0.180, 0.486) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.919(0.544, 1.551) | 0.491(0.273, 0.881) | 0.245(0.115, 0.521) | <0.001 |
Lignans from fruits | |||||
No. cases/controls | 396/267 | 360/268 | 193/268 | 121/267 | |
Model 1 (crude OR) | 1.00 | 0.591(0.367, 0.951) | 0.309(0.192, 0.496) | 0.221(0.130, 0.376) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.804(0.417, 1.549) | 0.866(0.437, 1.717) | 0.756(0.356, 1.607) | 0.612 |
Lignans from cereals | |||||
No. cases/controls | 252/267 | 273/268 | 273/268 | 272/267 | |
Model 1 (crude OR) | 1.00 | 1.969(1.308, 2.964) | 2.176(1.438, 3.292) | 4.109(2.648,6.377) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 1.379(0.757, 2.512) | 1.480(0.747, 2.933) | 1.768(0.788, 3.968) | 0.188 |
Dietary fibers | |||||
No. cases/controls | 491/269 | 292/267 | 183/268 | 104/267 | |
Model 1 (crude OR) | 1.00 | 0.502(0.339, 0.742) | 0.252(0.163, 0.389) | 0.150(0.088, 0.254) | <0.001 |
Model 2 (fully adjusted OR) | 1.00 | 0.661(0.405, 1.080) | 0.420(0.238, 0.740) | 0.375(0.194, 0.724) | 0.001 |
Subgroup Analyses | Quartiles (Q) of Total Lignans Intake | Ptrend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Genders | 0.085 * | ||||
Male | |||||
No. cases/controls | 55/29 | 77/59 | 82/77 | 111/63 | |
Adjusted OR (95%CI) | 1.00 | 0.787(0.274, 2.261) | 0.520(0.175, 1.545) | 0.118(0.033, 0.431) | 0.001 |
Female | |||||
No. cases/controls | 337/238 | 209/209 | 144/190 | 103/156 | |
Adjusted OR (95%CI) | 1.00 | 0.358(0.201, 0.639) | 0.263(0.135, 0.512) | 0.252(0.112, 0.563) | <0.001 |
Source of control | <0.001 * | ||||
Community controls | |||||
No. cases/controls | 315/191 | 240/212 | 194/235 | 143/248 | |
Adjusted OR (95%CI) | 1.00 | 0.274(0.123, 0.613) | 0.242(0.104, 0.559) | 0.109(0.040, 0.299) | <0.001 |
Hospital controls | |||||
No. cases/controls | 77/76 | 46/56 | 32/32 | 23/19 | |
Adjusted OR (95%CI) | 1.00 | 0.826(0.410, 1.665) | 0.464(0.157,1.371) | 1.116(0.327, 3.812) | 0.557 |
Body mass index (BMI) | 0.659 * | ||||
BMI < 24 | |||||
No. cases/controls | 291/179 | 214/161 | 185/163 | 126/156 | |
Adjusted OR (95%CI) | 1.00 | 0.468(0.230, 0.953) | 0.425(0.191, 0.950) | 0.340(0.150, 0.768) | 0.006 |
BMI ≥ 24 | |||||
No. cases/controls | 96/86 | 68/106 | 40/104 | 38/111 | |
Adjusted OR (95%CI) | 1.00 | 0.878(0.127, 6.045) | 0.288(0.028, 2.999) | 0.216(0.012, 3.782) | 0.038 |
Healthy lifestyle scores | 0.292 * | ||||
Scores < median | |||||
No. cases/controls | 258/122 | 160/107 | 113/75 | 72/64 | |
Adjusted OR (95%CI) | 1.00 | 0.234(0.063, 0.866) | 0.073(0.013, 0.422) | 0.012(0.001, 0.200) | <0.001 |
Scores > median | |||||
No. cases/controls | 123/143 | 122/157 | 106/190 | 92/202 | |
Adjusted OR (95%CI) | 1.00 | 0.354(0.140, 0.894) | 0.195(0.068, 0.559) | 0.223(0.071, 0.700) | 0.004 |
Regular calcium supplementation | 0.609 * | ||||
Yes | |||||
No. cases/controls | 122/111 | 93/108 | 49/127 | 49/108 | |
Adjusted OR (95%CI) | 1.00 | 0.866(0.288, 2.609) | 0.803(0.284, 2.271) | 0.373(0.087, 1.608) | 0.240 |
No | |||||
No. cases/controls | 270/156 | 193/160 | 177/140 | 117/159 | |
Adjusted OR (95%CI) | 1.00 | 0.447(0.210, 0.954) | 0.329(0.131, 0.827) | 0.180(0.065, 0.498) | <0.001 |
Regular tea-drinking | 0.576 * | ||||
Yes | |||||
No. cases/controls | 122/114 | 97/140 | 94/136 | 58/150 | |
Adjusted OR (95%CI) | 1.00 | 0.425(0.134, 1.346) | 0.680(0.244, 1.891) | 0.213(0.056, 0.811) | 0.056 |
No | |||||
No. cases/controls | 270/153 | 189/128 | 131/130 | 108/117 | |
Adjusted OR (95%CI) | 1.00 | 0.284(0.121, 0.663) | 0.086(0.026, 0.284) | 0.178(0.054, 0.591) | <0.001 |
Sensitivity analysis | |||||
Non-smoking | |||||
No. cases/controls | 346/247 | 240/233 | 168/232 | 135/222 | |
Adjusted OR (95%CI) | 1.00 | 0.367(0.206, 0.652) | 0.224(0.112, 0.451) | 0.207(0.091, 0.468) | <0.001 |
No regular alcohol drinking | |||||
No. cases/controls | 373/255 | 269/250 | 204/248 | 150/239 | |
Adjusted OR (95%CI) | 1.00 | 0.423(0.249, 0.720) | 0.319(0.173, 0.589) | 0.228(0.110, 0.470) | <0.001 |
No history of diabetes | |||||
No. cases/controls | 283/171 | 213/201 | 146/200 | 85/181 | |
Adjusted OR (95%CI) | 1.00 | 0.417(0.234, 0.741) | 0.258(0.134, 0.499) | 0.222(0.104, 0.472) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, B.; Li, B.; Wang, C.; Li, G.; Cao, W.; Zeng, F.; Chen, Y. Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women. Nutrients 2022, 14, 1100. https://doi.org/10.3390/nu14051100
Liu Z, Chen B, Li B, Wang C, Li G, Cao W, Zeng F, Chen Y. Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women. Nutrients. 2022; 14(5):1100. https://doi.org/10.3390/nu14051100
Chicago/Turabian StyleLiu, Zhaomin, Bailing Chen, Baolin Li, Cheng Wang, Guoyi Li, Wenting Cao, Fangfang Zeng, and Yuming Chen. 2022. "Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women" Nutrients 14, no. 5: 1100. https://doi.org/10.3390/nu14051100
APA StyleLiu, Z., Chen, B., Li, B., Wang, C., Li, G., Cao, W., Zeng, F., & Chen, Y. (2022). Greater Consumption of Total and Individual Lignans and Dietary Fibers Were Significantly Associated with Lowered Risk of Hip Fracture—A 1:1 Matched Case–Control Study among Chinese Elderly Men and Women. Nutrients, 14(5), 1100. https://doi.org/10.3390/nu14051100