Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Association between Selenium Level and Chronic Liver Diseases
3.3. Association between Body Selenium Status and Incidence of Advanced Chronic Liver Diseases
3.4. Association between Selenium Intake and Chronic Liver Diseases Risk
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHRQ | Agency for Healthcare Research and Quality |
AST | aspartate transaminase |
ALT | alanine transaminase |
CI | confidence interval |
GPX1 | glutathione peroxidases 1 |
HR | hazard ratio |
IRR | incidence rate ratios |
NAFLD | non-alcoholic fatty liver diseases |
NOS | Newcastle Ottawa Scale |
OR | odds ratio |
ROS | reactive oxygen species |
RR | relative risk |
RCT | randomized controlled trial |
SD | standard deviation |
SELENOP | selenoprotein P |
SMD | Standard mean differences |
TXNRD | thioredoxin reductases |
References
- Kieliszek, M.; Lipinski, B.; Błażejak, S. Application of Sodium Selenite in the Prevention and Treatment of Cancers. Cells 2017, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, B. Redox-Active Selenium in Health and Disease: A Conceptual Review. Mini Rev. Med. Chem. 2019, 19, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Kuria, A.; Fang, X.; Li, M.; Han, H.; He, J.; Aaseth, J.O.; Cao, Y. Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 684–694. [Google Scholar] [CrossRef]
- Reja, M.; Makar, M.; Visaria, A.; Marino, D.; Rustgi, V. Increased serum selenium levels are associated with reduced risk of advanced liver fibrosis and all-cause mortality in NAFLD patients: National Health and Nutrition Examination Survey (NHANES) III. Ann. Hepatol. 2020, 19, 635–640. [Google Scholar] [CrossRef]
- Himoto, T.; Masaki, T. Current Trends of Essential Trace Elements in Patients with Chronic Liver Diseases. Nutrients 2020, 12, 2084. [Google Scholar] [CrossRef]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhan, T.; Zhao, Q.; Guo, X.; Zhang, J. Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol. 2020, 36, 101519. [Google Scholar] [CrossRef]
- Gladyshev, V.N.; Arnér, E.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef] [Green Version]
- Behne, D.; Kyriakopoulos, A. Mammalian selenium-containing proteins. Annu. Rev. Nutr. 2001, 21, 453–473. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Report on Biochemical Indicators of Diet and Nutrition in the U.S Population 1999–2002. Trace Elements: Selenium. Available online: https://www.cdc.gov/nutritionreport/pdf/nr_ch4b.pdf (accessed on 27 March 2012).
- Thuluvath, P.; Triger, D. Selenium in chronic liver disease. J. Hepatol. 1992, 14, 176–182. [Google Scholar] [CrossRef]
- Downey, J.; Bingle, C.; Cottrell, S.; Ward, N.; Churchman, D.; Dobrota, M.; Powell, C. The LEC Rat Possesses Reduced Hepatic Selenium, Contributing to the Severity of Spontaneous Hepatitis and Sensitivity to Carcinogenesis. Biochem. Biophys. Res. Commun. 1998, 244, 463–467. [Google Scholar] [CrossRef]
- Gao, P.-T.; Ding, G.-Y.; Yang, X.; Dong, R.-Z.; Hu, B.; Zhu, X.-D.; Cai, J.-B.; Ji, Y.; Shi, G.-M.; Shen, Y.-H.; et al. Invasive potential of hepatocellular carcinoma is enhanced by loss of selenium-binding protein 1 and subsequent upregulation of CXCR4. Am. J. Cancer Res. 2018, 8, 1040–1049. [Google Scholar]
- Pan, D.; Huang, H. Hair Selenium Levels in Hepatic Steatosis Patients. Biol. Trace Elem. Res. 2013, 152, 305–309. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, C.; Liu, G.; Niu, Y.; Zhang, W.; Lu, S.; Li, X.; Zhang, H.; Ning, G.; Fan, J.; et al. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: A cross-sectional analysis. Sci. Rep. 2016, 6, 37288. [Google Scholar] [CrossRef]
- Kim, H.G.; Huang, M.; Xin, Y.; Zhang, Y.; Zhang, X.; Wang, G.; Liu, S.; Wan, J.; Ahmadi, A.R.; Sun, Z.; et al. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J. Hepatol. 2019, 71, 960–969. [Google Scholar] [CrossRef]
- Navarro, L.A.; Were, A.; Povero, D.; Berk, M.P.; Eguchi, A.; Ghosh, S.; Papouchado, B.G.; Erzurum, S.C.; Feldstein, A.E. Arginase 2 deficiency results in spontaneous steatohepatitis: A novel link between innate immune activation and hepatic de novo lipogenesis. J. Hepatol. 2015, 62, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Ko, E.; Kim, J.S.; Ju, S.; Seo, H.W.; Chang, Y.; Kang, J.A.; Park, S.G.; Jung, G. Oxidatively Modified Protein-Disulfide Isomerase-Associated 3 Promotes Dyskerin Pseudouridine Synthase 1-Mediated Malignancy and Survival of Hepatocellular Carcinoma Cells. Hepatology 2018, 68, 1851–1864. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-M. A suggestion for quality assessment in systematic reviews of observational studies in nutritional epidemiology. Epidemiol. Health 2016, 38, e2016014. [Google Scholar] [CrossRef] [Green Version]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, K.F. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef] [Green Version]
- Bastola, M.M.; Locatis, C.; Maisiak, R.; Fontelo, P. Selenium, copper, zinc and hypertension: An analysis of the National Health and Nutrition Examination Survey (2011–2016). BMC Cardiovasc. Disord. 2020, 20, 45. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T. Cochrane Handbook for Systematic Reviews of Interventions, version 5.0.1; The Cochrane Collaboration: London, UK, 2008; Available online: http://www.cochrane-handbook.org (accessed on 2 February 2022).
- Higgins, J.P.T. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.J.; Peters, T.J. The antioxidant status of patients with either alcohol-induced liver damage or myopathy. Alcohol Alcohol. 1992, 27, 359–365. [Google Scholar]
- Valimaki, M.J.; Harju, K.J.; Ylikahri, R.H. Decreased serum selenium m alcoholics—A consequence of liver dysfunction. Clin. Chim. Acta 1983, 130, 291–296. [Google Scholar] [CrossRef]
- Li, L.; Huang, L.; Huang, S.; Luo, X.; Zhang, H.; Mo, Z.; Wu, T.; Yang, X. Non-linear association of serum molybdenum and linear association of serum zinc with nonalcoholic fatty liver disease: Multiple-exposure and Mendelian randomization approach. Sci. Total Environ. 2020, 720, 137655. [Google Scholar] [CrossRef] [PubMed]
- Korpela, H.; Kumpulainen, J.; Luoma, P.V.; Arranto, A.J.; Sotaniemi, E.A. Decreased serum selenium in alcoholics as related to liver structure and function. Am. J. Clin. Nutr. 1985, 42, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Seo, Y.A.; Park, S.K. Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2011–2016. Environ. Res. 2021, 197, 111190. [Google Scholar] [CrossRef]
- Shamberger, R.J.; Rukovena, E.; Longfield, A.K.; Tytko, S.A.; Deodhar, S.; Willis, C.E. Antioxidants and Cancer. I. Selenium in the Blood of Normals and Cancer Patients. JNCI J. Natl. Cancer Inst. 1973, 50, 863–870. [Google Scholar] [CrossRef]
- Aaseth, J.; Alexander, J.; Thomassen, Y.; Blomhoff, J.P.; Skrede, S. Serum selenium levels in liver diseases. Clin. Biochem. 1982, 15, 281–283. [Google Scholar] [CrossRef]
- Johansson, U.; Johnsson, F.; Joelsson, B.; Berglund, M.; Akesson, B. Selenium status in patients with liver cirrhosis and alcoholism. Br. J. Nutr. 1986, 55, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Gerli, G.; Locatelli, G.F.; Mongiat, R.; Zenoni, L.; Agostoni, A.; Moschini, G.; Zafiropoulos, D.; Bruno, S.; Rossi, S.; Vignati, A.; et al. Erythrocyte antioxidant activity, serum ceruloplasmin, and trace element levels in subjects with alcoholic liver disease. Am. J. Clin. Pathol. 1992, 97, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Loguercio, C.; De Girolamo, V.; Federico, A.A.; Feng, S.; Cataldi, V.; Blanco, C.D.V.; Gialanella, G. Trace Elements and Chronic Liver Diseases. J. Trace Elem. Med. Biol. 1997, 11, 158–161. [Google Scholar] [CrossRef]
- Yu, M.-W.; Horng, I.-S.; Hsu, K.-H.; Chiang, Y.-C.; Liaw, Y.F.; Chen, C.-J. Plasma Selenium Levels and Risk of Hepatocellular Carcinoma among Men with Chronic Hepatitis Virus Infection. Am. J. Epidemiol. 1999, 150, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Alarcón, M.; de la Serrana, H.L.-G.; Pérez-Valero, V.; López-Martıínez, M. Selenium concentrations in serum of individuals with liver diseases (cirrhosis or hepatitis): Relationship with some nutritional and biochemical markers. Sci. Total Environ. 2002, 291, 135–141. [Google Scholar] [CrossRef]
- Czuczejko, J.; Zachara, B.A.; Staubach-Topczewska, E.; Halota, W.; Kedziora, J. Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases. Acta Biochim. Pol. 2003, 50, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Sayed, H.A.; El Ayyat, A.; Dusoki, H.; Zoheiry, M.; Mohamed, S.; Hassan, M.; El Assaly, N.; Awad, A.; El Ansary, M.; Saad, A.; et al. A cross sectional study of hepatitis B, C, some trace elements, heavy metals, aflatoxin B1 and schistosomiasis in a rural population, Egypt. J. Egypt. Public Health Assoc. 2005, 80, 355–388. [Google Scholar]
- Lin, C.C.; Huang, J.F.; Tsai, L.Y.; Huang, Y.L. Selenium, iron, copper, and zinc levels and copper-to-zinc ratios in serum of patients at different stages of viral hepatic diseases. Biol. Trace Elem. Res. 2006, 109, 15–24. [Google Scholar] [CrossRef]
- Balamtekin, N.; Kurekci, A.E.; Atay, A.; Kalman, S.; Okutan, V.; Gökçay, E.; Aydin, A.; Sener, K.; Safali, M.; Ozcan, O.; et al. Plasma Levels of Trace Elements Have an Implication on Interferon Treatment of Children with Chronic Hepatitis B Infection. Biol. Trace Elem. Res. 2010, 135, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Himoto, T.; Yoneyama, H.; Kurokohchi, K.; Inukai, M.; Masugata, H.; Goda, F.; Haba, R.; Watababe, S.; Kubota, S.; Senda, S.; et al. Selenium deficiency is associated with insulin resistance in patients with hepatitis C virus–related chronic liver disease. Nutr. Res. 2011, 31, 829–835. [Google Scholar] [CrossRef]
- Khan, M.S.; Dilawar, S.; Ali, I.; Rauf, N. The possible role of selenium concentration in hepatitis B and C patients. Saudi J. Gastroenterol. 2012, 18, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-W.; Bae, S.-M.; Kim, Y.-W.; Liu, H.-B.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Chaturvedi, P.K.; Battogtokh, G.; Ahn, W.S. Serum Selenium Levels in Korean Hepatoma Patients. Biol. Trace Elem. Res. 2012, 148, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kolachi, N.F.; Kazi, T.G.; Afridi, H.I.; Kazi, N.G.; Mughal, M.A.; Khan, S. Effects of Selenium and Zinc Status in Biological Samples of Hepatitis C Patient After Herbal and Pharmaceutical Supplements. Biol. Trace Elem. Res. 2013, 152, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, D.; Schultheiss, M.; Hennecke, N.; Panther, E.; Knüppel, E.; Blum, H.E.; Thimme, R.; Spangenberg, H.C. Selenium levels in patients with hepatitis C virus-related chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma: A pilot study. Hepatology 2013, 57, 2543–2544. [Google Scholar] [CrossRef]
- González-Reimers, E.; Martín-González, M.C.; Alemán-Valls, M.R.; De La Vega-Prieto, M.J.; Galindo-Martín, L.; Abreu-González, P.; Santolaria-Fernández, F. Relative and Combined Effects of Chronic Alcohol Consumption and HCV Infection on Serum Zinc, Copper, and Selenium. Biol. Trace Elem. Res. 2009, 132, 75–84. [Google Scholar] [CrossRef]
- Dhanda, A.; Atkinson, S.; Vergis, N.; Enki, D.; Fisher, A.; Clough, R.; Cramp, M.; Thursz, M. Trace element deficiency is highly prevalent and associated with infection and mortality in patients with alcoholic hepatitis. Aliment. Pharmacol. Ther. 2020, 52, 537–544. [Google Scholar] [CrossRef]
- Ko, W.S.; Guo, C.H.; Yeh, M.S.; Lin, L.Y.; Hsu, G.S.; Chen, P.C.; Luo, M.C.; Lin, C.Y. Blood micronutrient, oxidative stress, and viral load in patients with chronic hepatitis C. World J. Gastroenterol. 2005, 11, 4697–4702. [Google Scholar] [CrossRef]
- Burch, R.E.; Sackin, D.A.; Ursick, J.A.; Jetton, M.M.; Sullivan, J.F. Decreased taste and smell acuity in cirrhosis. Arch. Intern. Med. 1978, 138, 743–746. [Google Scholar] [CrossRef]
- Sullivan, J.F.; Blotcky, A.J.; Jetton, M.M.; Hahn, H.K.; Burch, R.E. Serum levels of selenium, calcium, copper magnesium, manganese and zinc in various human diseases. J. Nutr. 1979, 109, 1432–1437. [Google Scholar] [CrossRef]
- Milman, N.; Laursen, J.; Pødenphant, J.; Asnaes, S. Trace elements in normal and cirrhotic human liver tissue. I. Iron, copper, zinc, selenium, manganese, titanium and lead measured by X-ray fluorescence spectrometry. Liver 1986, 6, 111–117. [Google Scholar] [CrossRef]
- Sharda, B.; Bhandari, B. Studies of trace elements in childhood cirrhosis. Acta Pharmacol. Toxicol. 1986, 59, 206–210. [Google Scholar] [CrossRef]
- Dworkin, B.M.; Rosenthal, W.S.; Stahl, R.E.; Panesar, N.K. Decreased hepatic selenium content in alcoholic cirrhosis. Dig. Dis. Sci. 1988, 33, 1213–1217. [Google Scholar] [CrossRef]
- Buljevac, M.; Romić, Z.; Vucelić, B.; Banić, M.; Krznarić, Z.; Plesko, S. Serum selenium concentration in patients with liver cirrhosis and hepatocellular carcinoma. Acta Med. Croat. 1996, 50, 11–14. [Google Scholar]
- Guarini, P.; Stanzial, A.M.; Olivieri, O.; Casaril, M.; Galvani, S.; Pantalena, M.; Corrocher, R. Erythrocyte membrane lipids and serum selenium in post-viral and alcoholic cirrhosis. Clin. Chim. Acta 1998, 270, 139–150. [Google Scholar] [CrossRef]
- Pemberton, P.W.; Smith, A.; Warnes, T.W. Non-invasive monitoring of oxidant stress in alcoholic liver disease. Scand. J. Gastroenterol. 2005, 40, 1102–1108. [Google Scholar] [CrossRef]
- Martínez-Peinado, M.; Nogueras-López, F.; Arcos-Cebrián, A.; Agil, A.; Navarro-Alarcón, M. Serum selenium levels in cirrhotic patients are not influenced by the disease severity index. Nutr. Res. 2010, 30, 574–578. [Google Scholar] [CrossRef]
- Uslu, N.; Temizel, I.N.S.; Demir, H.; Gurakan, F.; Ozen, H.; Yuce, A. Serum selenium concentrations in cirrhotic children. Turk. J. Gastroenterol. 2010, 21, 153–155. [Google Scholar] [CrossRef]
- Kolachi, N.F.; Kazi, T.G.; Afridi, H.I.; Kazi, N.G.; Khan, S. Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin. Nutr. 2012, 31, 967–973. [Google Scholar] [CrossRef]
- Kazi, T.G.; Kolachi, N.F.; Afridi, H.I.; Kazi, N.G.; Arain, S.S. Effects of Mineral Supplementation on Liver Cirrhotic/Cancer Male Patients. Biol. Trace Elem. Res. 2012, 150, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Nangliya, V.; Sharma, A.; Yadav, D.; Sunder, S.; Nijhawan, S.; Mishra, S. Study of Trace Elements in Liver Cirrhosis Patients and Their Role in Prognosis of Disease. Biol. Trace Elem. Res. 2015, 165, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Casaril, M.; Stanzial, A.M.; Gabrielli, G.B.; Capra, F.; Zenari, L.; Galassini, S.; Moschini, G.; Liu, N.Q.; Corrocher, R. Serum selenium in liver cirrhosis: Correlation with markers of fibrosis. Clin. Chim. Acta 1989, 182, 221–227. [Google Scholar] [CrossRef]
- Välimäki, M.; Alfthan, G.; Vuoristo, M.; Ylikahri, R. Effects of selenium supplementation on blood and urine selenium levels and liver function in patients with primary biliary cirrhosis. Clin. Chim. Acta 1991, 196, 7–15. [Google Scholar] [CrossRef]
- Prystupa, A.; Kiciński, P.; Luchowska-Kocot, D.; Błażewicz, A.; Niedziałek, J.; Mizerski, G.; Jojczuk, M.; Ochal, A.; Sak, J.J.; Załuska, W. Association between Serum Selenium Concentrations and Levels of Proinflammatory and Profibrotic Cytokines-Interleukin-6 and Growth Differentiation Factor-15, in Patients with Alcoholic Liver Cirrhosis. Int. J. Environ. Res. Public Health 2017, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Thomassen, Y.; Alexander, J.; Norheim, G. Decreased serum selenium in alcoholic cirrhosis. N. Engl. J. Med. 1980, 303, 944–945. [Google Scholar]
- Corrocher, R.; Casaril, M.; Bellisola, G.; Gabrielli, G.; Hulpe, M.; Garofoli, E.; Nicoli, N. Reduction of Liver Glutathione Peroxidase Activity and Deficiency of Serum Selenium in Patients with Hepatocellular Carcinoma. Tumori J. 1986, 72, 617–619. [Google Scholar] [CrossRef]
- Chin-Thin, W.; Wei-Tun, C.; Tzu-Ming, P.; Ren-Tse, W. Blood Concentrations of Selenium, Zinc, Iron, Copper and Calcium in Patients with Hepatocellular Carcinoma. Clin. Chem. Lab. Med. 2002, 40, 1118–1122. [Google Scholar] [CrossRef]
- Sakoda, L.C.; Graubard, B.I.; Evans, A.A.; London, W.T.; Lin, W.Y.; Shen, F.M.; McGlynn, K.A. Toenail selenium and risk of hepatocellular carcinoma mortality in Haimen City, China. Int. J. Cancer 2005, 115, 618–624. [Google Scholar] [CrossRef]
- Váli, L.; Hahn, O.; Kupcsulik, P.; Drahos, Á.; Sárváry, E.; Szentmihályi, K.; Pallai, Z.; Kurucz, T.; Sípos, P.; Blázovics, A. Oxidative stress with altered element content and decreased ATP level of erythrocytes in hepatocellular carcinoma and colorectal liver metastases. Eur. J. Gastroenterol. Hepatol. 2008, 20, 393–398. [Google Scholar] [CrossRef]
- Hughes, D.J.; Duarte-Salles, T.; Hybsier, S.; Trichopoulou, A.; Stepien, M.; Aleksandrova, K.; Overvad, K.; Tjønneland, A.; Olsen, A.; Affret, A.; et al. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2016, 104, 406–414. [Google Scholar] [CrossRef]
- Fu, L.; Xie, H.; Huang, J.; Chen, L. Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry. Anal. Chim. Acta 2020, 1112, 1–7. [Google Scholar] [CrossRef]
- Burk, R.F.; Norsworthy, B.K.; Hill, K.E.; Motley, A.K.; Byrne, D.W. Effects of Chemical Form of Selenium on Plasma Biomarkers in a High-Dose Human Supplementation Trial. Cancer Epidemiol. Biomark. Prev. 2006, 15, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Zhu, Y.J.; Li, W.G. Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biol. Trace Elem. Res. 1997, 56, 117–124. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Zhu, Y.J.; Li, W.-G.; Huang, Q.-S.; Zhi-Huang, C.; Zhang, Q.N.; Hou, C. A preliminary report on the intervention trials of primary liver cancer in high-risk populations with nutritional supplementation of selenium in China. Biol. Trace Elem. Res. 1991, 29, 289–294. [Google Scholar] [CrossRef]
- Yu, S.Y.; Li, W.G.; Zhu, Y.J.; Yu, W.P.; Hou, C. Chemoprevention trial of human hepatitis with selenium supplementation in China. Biol. Trace Elem Res. 1989, 20, 15–22. [Google Scholar] [CrossRef]
- Chen, T.; Yao, H.; Ni, Z.; Zhu, J.; Zhang, Q.; Zhang, H.; Sheng, H.; Chen, J. The effect of selenium intake on the risk of liver cancer of HBsAg carriers: A cohort study. Tumor 2006, 12, 1085–1087. [Google Scholar]
- Ma, X.; Yang, Y.; Li, H.-L.; Zheng, W.; Gao, J.; Zhang, W.; Yang, G.; Shu, X.-O.; Xiang, Y.-B. Dietary trace element intake and liver cancer risk: Results from two population-based cohorts in China. Int. J. Cancer 2017, 140, 1050–1059. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zeng, C.; Yang, Z.; Li, X.; Lei, G.; Xie, D.; Wang, Y.; Wei, J.; Yang, T. Association Between Dietary Selenium Intake and the Prevalence of Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. J. Am. Coll. Nutr. 2020, 39, 103–111. [Google Scholar] [CrossRef]
- Longnecker, M.P.; Stram, D.O.; Taylor, P.R.; Levander, O.A.; Howe, M.; Veillon, C.; McAdam, P.A.; Patterson, K.Y.; Holden, J.M.; Morris, J.S.; et al. Use of Selenium Concentration in Whole Blood, Serum, Toenails, or Urine as a Surrogate Measure of Selenium Intake. Epidemiology 1996, 7, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandt, P.A.; Goldbohm, R.A.; van’t Veer, P.; Bode, P.; Hermus, R.J.; Sturmans, F. Predictors of toenail selenium levels in men and women. Cancer Epidemiol. Biomark. Prev. 1993, 2, 107–112. [Google Scholar]
- Burk, R.F.; Hill, K.E. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.J.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: Implications for insulin resistance, inflammation, and atherosclerosis. J. Clin. Endocrinol. Metab. 2011, 96, E1325–E1329. [Google Scholar] [CrossRef]
- Burk, R.F.; Early, D.S.; Hill, K.E.; Palmer, I.S.; Boeglin, M.E. Plasma selenium in patients with cirrhosis. Hepatology 1998, 27, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Crespi, C.M.; Vinceti, M.; Del Giovane, C.; Zeegers, M.P.A.; Brinkman, M.; D’Amico, R.; Zwahlen, M.; Dennert, G.; Horneber, M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 1, CD005195. [Google Scholar]
- Li, W.; Zhu, Y.; Yan, X.; Zhang, Q.; Li, X.; Ni, Z.; Shen, Z.; Yao, H.; Zhu, J. The prevention of primary liver cancer by selenium in high risk populations. Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 2000, 34, 336–338. [Google Scholar]
- Kieliszek, M.; Lipinski, B. Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis. Med. Hypotheses 2018, 110, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Mavrouli, M.; Katsinelos, P.; Doulberis, M.; Gavana, E.; Duntas, L. Selenoprotein P in Patients with Nonalcoholic Fatty Liver Disease. Exp. Clin. Endocrinol. Diabetes 2019, 127, 598–602. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Chan, W.K.; Chitturi, S.; Chawla, Y.; Dan, Y.Y.; Duseja, A.; Fan, J.; Goh, K.-L.; Hamaguchi, M.; Hashimoto, E.; et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 1: Definition, risk factors and assessment. J. Gastroenterol. Hepatol. 2018, 33, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Satia, J.A.; King, I.B.; Morris, J.S.; Stratton, K.; White, E. Toenail and Plasma Levels as Biomarkers of Selenium Exposure. Ann. Epidemiol. 2006, 16, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F., Jr. Biomarkers of selenium status. Nutrients 2015, 7, 2209–2236. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.S.; Klomann, S.D.; Wolf, N.M.; Schneider, S.; Schmidt, R.; Spielmann, J.; Stangl, G.; Eder, K.; Pallauf, J. Redox Regulation of Protein Tyrosine Phosphatase 1B by Manipulation of Dietary Selenium Affects the Triglyceride Concentration in Rat Liver. J. Nutr. 2008, 138, 2328–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Dong, F.; Geng, Y.; Zhuang, K.; Ma, Z.; Zhou, Z.; Huang, B.; Sun, Z.; Hou, B. Selenium concentration, dietary intake and risk of hepatocellular carcinoma—A systematic review with meta-analysis. Nutr. Hosp. 2019, 36, 1430–1437. [Google Scholar] [PubMed]
- Olave, M.C.; Gurung, A.; Mistry, P.K.; Kakar, S.; Yeh, M.; Xu, M.; Wu, T.-T.; Torbenson, M.; Jain, D. Etiology of cirrhosis in the young. Hum. Pathol. 2020, 96, 96–103. [Google Scholar] [CrossRef] [PubMed]
Outcome | Group Variable | Subgroup | Doses, n | SMD (95% CI) | I2 | p of I2 |
---|---|---|---|---|---|---|
Fatty liver diseases | Overall | 11 | 1.06 (−1.78, 3.89) | 99.9% | <0.001 | |
Disease types | Alcoholic fatty liver diseases | 3 | −1.29 (−2.08, −0.50) | 71.7% | 0.032 | |
Simple fatty liver diseases | 4 | −0.51(−0.90, −0.12) | 0 | 0.864 | ||
NAFLD | 4 | 4.39(−0.55, 9.34) | 100% | <0.001 | ||
Study design | Case-control | 7 | −0.86 (−1.29, −0.43) | 55.1% | 0.038 | |
Cross-sectional | 4 | 4.39 (−0.55, 9.34) | 100% | <0.001 | ||
Study regions | Asia | 7 | 2.21 (−3.39, 7.81) | 100% | <0.001 | |
Europe | 3 | −1.29 (−2.08, −0.50) | 71.1% | 0.032 | ||
USA | 1 | 0.06 (−0.01, 0.12) | ||||
Sample sources | Hair | 4 | −0.51 (−0.90, −0.12) | 0% | 0.864 | |
Serum | 3 | −0.98 (−2.13, 0.17) | 95.4% | <0.001 | ||
Whole blood | 3 | 5.84 (−3.29, 14.97) | 100% | <0.001 | ||
Plasma | 1 | −0.76 (−1.65, 0.13) | ||||
Year of publication | 1973–1990 | 2 | −1.55 (−2.76, −0.33) | 83.1% | 0.015 | |
1991–2000 | 1 | −0.76 (−1.65, 0.13) | ||||
2011–now | 8 | 1.95 (−1.46, 5.36) | 100% | <0.001 | ||
Blood selenium level 1 | 70–150 µg/L | 4 | −0.92 (−1.87, 0.02) | 93.5% | <0.001 | |
>150 µg/L | 3 | 5.84 (−3.29, 14.97) | 100% | <0.001 | ||
Hepatitis | Overall | 44 | −1.78 (−2.22, −1.34) | 95.8% | <0.001 | |
Disease types | Other hepatitis | 1 | −2.42 (−3.69, −1.16) | |||
Viral hepatitis | 34 | −1.88 (−2.42, −1.35) | 96.6% | <0.001 | ||
Alcoholic hepatitis | 9 | −1.36 (−1.94, −0.77) | 84.6% | <0.001 | ||
Study design | Case-control | 36 | −1.07 (−1.31, −0.84) | 78.1% | <0.001 | |
Cross-sectional | 1 | −0.89 (−1.27, −0.52) | ||||
Cohort | 4 | −6.67 (−9.98, −3.37) | 98.9% | <0.001 | ||
RCT | 3 | −6.03 (−10.18, −1.87) | 99.1% | <0.001 | ||
Study regions | Asia | 20 | −2.69 (−3.55, −1.84) | 97.9% | <0.001 | |
Europe | 20 | −1.17 (−1.51, −0.83) | 81.0% | <0.001 | ||
USA | 1 | −2.42 (−3.69, −1.16) | ||||
Africa | 3 | −0.55 (−0.92, 0.19) | 0% | 0.885 | ||
Sample sources | Hair | 4 | −1.27 (−1.69, −0.84) | 28.1% | 0.244 | |
Serum | 15 | −1.46 (−2.06, −0.85) | 92.3% | <0.001 | ||
Whole blood | 18 | −2.08 (−2.85, −1.31) | 97.3% | <0.001 | ||
Plasma | 7 | −2.16 (−3.51, −0.82) | 95.6% | <0.001 | ||
Year of publication | 1973–1990 | 7 | −1.44 (−2.16, −0.72) | 80.6% | <0.001 | |
1991–2000 | 5 | −0.44 (−1.01, 0.13) | 77.3% | 0.001 | ||
2001–2010 | 16 | −1.80 (−2.45, −1.16) | 94.7% | <0.001 | ||
2011–now | 16 | −2.21 (−3.16, −1.25) | 97.4% | <0.001 | ||
Blood selenium level 1 | <70 µg/L | 4 | −2.38 (−3.57, −1.19) | 95.3% | <0.001 | |
70–150 µg/L | 24 | −1.22 (−1.62, −0.82) | 90.4% | <0.001 | ||
>150 µg/L | 12 | −2.65 (−4.04, −1.26) | 98.1% | <0.001 | ||
Liver cirrhosis | Overall | 57 | −2.06 (−2.48, −1.63) | 95.4% | <0.001 | |
Disease types | Alcoholic cirrhosis | 21 | −2.45 (−2.99, −1.90) | 92.0% | <0.001 | |
Other cirrhosis | 21 | −2.41 (−2.94, −1.69) | 95.0% | <0.001 | ||
Primary cirrhosis | 9 | 0.90 (−1.98, 3.79) | 98.2% | <0.001 | ||
Study design | Case-control | 46 | −1.66 (−2.09, −1.23) | 94.5% | <0.001 | |
Cross-sectional | 2 | −2.37 (−4.50, −0.25) | 96.7% | <0.001 | ||
Cohort | 1 | −1.67 (−2.58, 0.76) | ||||
RCT | 8 | −4.51 (−6.12, −2.90) | 97.1% | <0.001 | ||
Study regions | Asia | 15 | −2.12 (−3.30, −0.94) | 97.9% | <0.001 | |
Europe | 38 | −1.95 (−2.37, −1.53) | 93.1% | <0.001 | ||
USA | 4 | −2.86 (−3.65, −2.07) | 53.3% | 0.093 | ||
Sample sources | Liver | 4 | 3.03 (−4.96, 11.03) | 99.2% | <0.001 | |
Serum | 28 | −2.18 (−2.57, −1.80) | 90.9% | <0.001 | ||
Whole blood | 13 | −3.39 (−4.56, −2.22) | 97.1% | <0.001 | ||
Plasma | 8 | −2.08 (−2.65, −1.51) | 68.9% | 0.002 | ||
Nail | 1 | 6.63 (5.01, 8.24) | ||||
Hair | 3 | −1.68 (−2.22, −1.14) | 50.1% | 0.135 | ||
Year of publication | 1973–1990 | 17 | −0.77 (−1.98, 0.44) | 96.9% | <0.001 | |
1991–2000 | 16 | −1.89 (−2.34, −1.44) | 85.5% | <0.001 | ||
2001–2010 | 9 | −2.21 (−3.00, −1.41) | 94.3% | <0.001 | ||
2011–now | 15 | −3.15 (−4.09, −2.21) | 96.6% | <0.001 | ||
Blood selenium level 1 | <70 µg/L | 5 | −2.09 (−2.62, −1.55) | 81.8% | <0.001 | |
70–150 µg/L | 37 | −2.00 (−2.35, −1.64) | 91.0% | <0.001 | ||
>150 µg/L | 7 | −5.44 (−7.77, −3.11) | 95.6% | <0.001 | ||
Liver cancer | Overall | 25 | −2.71 (−3.31, −2.11) | 97.5% | <0.001 | |
Study design | Case-control | 12 | −1.64 (−2.23, −1.06) | 91.7% | <0.001 | |
Nest case-control | 1 | −0.45 (−0.63, −0.26) | ||||
Cohort | 4 | −0.74 (−1.37, −0.11) | 93.7% | <0.001 | ||
RCT | 8 | −6.15 (−8.10, −4.20) | 98% | <0.001 | ||
Study regions | Asia | 14 | −3.92 (−4.91, −2.93) | 98.4% | <0.001 | |
Europe | 10 | −1.22 (−1.81, −0.63) | 92.5% | <0.001 | ||
USA | 1 | −2.36 (−3.09, −1.63) | ||||
Sample sources | Hair | 2 | −2.31 (−3.93, −0.69) | 93.9% | <0.001 | |
Serum | 8 | −2.38 (−3.37, −1.40) | 95.7% | <0.001 | ||
Whole blood | 13 | −3.29 (−4.26, −2.32) | 98.0% | <0.001 | ||
Plasma | 1 | −2.36 (−3.53, −1.19) | ||||
Nail | 1 | −0.45 (−0.63, −0.26) | ||||
Year of publication | 1973–1990 | 2 | −2.08 (−2.79, −1.38) | 24% | 0.251 | |
1991–2000 | 4 | −1.00 (−1.80, −0.19) | 91.7% | <0.001 | ||
2001–2010 | 5 | −1.27 (−2.24, −0.30) | 95.2% | <0.001 | ||
2011–now | 14 | −3.98 (−4.98, −2.97) | 98.1% | |||
Blood selenium level 1 | <70 µg/L | 2 | −2.96 (−3.43, −2.50) | 4.2% | 0.307 | |
70–150 µg/L | 11 | −1.58 (−2.23, −0.93) | 95% | <0.001 | ||
>150 µg/L | 9 | −4.47 (−6.43, −3.11) | 98.5% | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; He, F.; Lian, S.; Xie, B.; Liu, T.; He, J.; Liu, C. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 952. https://doi.org/10.3390/nu14050952
Lin Y, He F, Lian S, Xie B, Liu T, He J, Liu C. Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(5):952. https://doi.org/10.3390/nu14050952
Chicago/Turabian StyleLin, Yaduan, Fanchen He, Shaoyan Lian, Binbin Xie, Ting Liu, Jiang He, and Chaoqun Liu. 2022. "Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis" Nutrients 14, no. 5: 952. https://doi.org/10.3390/nu14050952
APA StyleLin, Y., He, F., Lian, S., Xie, B., Liu, T., He, J., & Liu, C. (2022). Selenium Status in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Nutrients, 14(5), 952. https://doi.org/10.3390/nu14050952