Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Overview
2.3. VO2max Test
2.4. Speed Lactate Test
2.5. Repeated Sprint Test
2.6. Blood Analysis
2.7. Statistical Analyses
3. Results
3.1. Body Mass, VO2max, and Submaximal Test Results
3.2. Power Output and Running Speed Parameters during Repeated Sprinting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrari Bravo, D.; Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Wisloff, U. Sprint Vs. Interval Training in Football. Int. J. Sports Med. 2008, 29, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.; Macpherson, T.; Spears, I.; Weston, M. The Effects of Repeated-Sprint Training on Field-Based Fitness Measures: A Meta-Analysis of Controlled and Non-Controlled Trials. Sports Med. 2015, 45, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Fiorenza, M.; Larghi, L.; Alberti, G.; Millet, G.P.; Girard, O. Short- or Long-Rest Intervals During Repeated-Sprint Training in Soccer? PLoS ONE 2017, 12, e0171462. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-Sprint Ability—Part II: Recommendations for Training. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Iaia, F.M.; Fiorenza, M.; Perri, E.; Alberti, G.; Millet, G.P.; Bangsbo, J. The Effect of Two Speed Endurance Training Regimes on Performance of Soccer Players. PLoS ONE 2015, 10, e0138096. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Recovery of Power Output and Muscle Metabolites Following 30 S of Maximal Sprint Cycling in Man. J. Physiol. 1995, 482 Pt 2, 467–480. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K. Contribution of Phosphocreatine and Aerobic Metabolism to Energy Supply During Repeated Sprint Exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human Muscle Metabolism During Intermittent Maximal Exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J. Regulation of Skeletal Muscle Glycogen Phosphorylase and Pdh During Maximal Intermittent Exercise. Am. J. Physiol. 1999, 277, E890–E900. [Google Scholar] [CrossRef]
- Bogdanis, G.C.; Nevill, M.E.; Lakomy, H.K.; Boobis, L.H. Power Output and Muscle Metabolism During and Following Recovery from 10 and 20 S of Maximal Sprint Exercise in Humans. Acta Physiol. Scand. 1998, 163, 261–272. [Google Scholar] [CrossRef]
- Dawson, B.; Goodman, C.; Lawrence, S.; Preen, D.; Polglaze, T.; Fitzsimons, M.; Fournier, P. Muscle Phosphocreatine Repletion Following Single and Repeated Short Sprint Efforts. Scand. J. Med. Sci. Sports 1997, 7, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Lakomy, H.K. Effects of Previous Dynamic Arm Exercise on Power Output During Repeated Maximal Sprint Cycling. J. Sports Sci. 1994, 12, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Villanueva, A.; Edge, J.; Suriano, R.; Hamer, P.; Bishop, D. The Recovery of Repeated-Sprint Exercise Is Associated with Pcr Resynthesis, While Muscle Ph and Emg Amplitude Remain Depressed. PLoS ONE 2012, 7, e51977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.; Edge, J.; Thomas, C.; Mercier, J. Effects of High-Intensity Training on Muscle Lactate Transporters and Postexercise Recovery of Muscle Lactate and Hydrogen Ions in Women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R1991–R1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, S.C.; Slade, J.M.; Meyer, R.A. Short-Term High-Intensity Interval Training Improves Phosphocreatine Recovery Kinetics Following Moderate-Intensity Exercise in Humans. Appl. Physiol. Nutr. Metab. 2008, 33, 1124–1131. [Google Scholar] [CrossRef]
- Johansen, L.; Quistorff, B. 31p-Mrs Characterization of Sprint and Endurance Trained Athletes. Int. J. Sports Med. 2003, 24, 183–189. [Google Scholar] [CrossRef]
- Scribbans, T.D.; Edgett, B.A.; Vorobej, K.; Mitchell, A.S.; Joanisse, S.D.; Matusiak, J.B.; Parise, G.; Quadrilatero, J.; Gurd, B.J. Fibre-Specific Responses to Endurance and Low Volume High Intensity Interval Training: Striking Similarities in Acute and Chronic Adaptation. PLoS ONE 2014, 9, e98119. [Google Scholar] [CrossRef]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Stathis, C.G.; Febbraio, M.A.; Carey, M.F.; Snow, R.J. Influence of Sprint Training on Human Skeletal Muscle Purine Nucleotide Metabolism. J. Appl. Physiol. 1994, 76, 1802–1809. [Google Scholar] [CrossRef]
- Zieliński, J.; Slominska, E.M.; Król-Zielińska, M.; Krasiński, Z.; Kusy, K. Purine Metabolism in Sprint- vs. Endurance-Trained Athletes Aged 20–90 Years. Sci. Rep. 2019, 9, 12075. [Google Scholar] [CrossRef]
- Van Loon, L.J.; Oosterlaar, A.M.; Hartgens, F.; Hesselink, M.K.; Snow, R.J.; Wagenmakers, A.J. Effects of Creatine Loading and Prolonged Creatine Supplementation on Body Composition, Fuel Selection, Sprint and Endurance Performance in Humans. Clin. Sci. 2003, 104, 153–162. [Google Scholar] [CrossRef]
- Snow, R.J.; McKenna, M.J.; Selig, S.E.; Kemp, J.; Stathis, C.G.; Zhao, S. Effect of Creatine Supplementation on Sprint Exercise Performance and Muscle Metabolism. J. Appl. Physiol. 1998, 84, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Söderlund, K.; Hultman, E. Elevation of Creatine in Resting and Exercised Muscle of Normal Subjects by Creatine Supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhaff, P.L.; Casey, A.; Short, A.H.; Harris, R.; Soderlund, K.; Hultman, E. Influence of Oral Creatine Supplementation of Muscle Torque During Repeated Bouts of Maximal Voluntary Exercise in Man. Clin. Sci. 1993, 84, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsom, P.D.; Ekblom, B.; Söerlund, K.; Sjödln, B.; Hultman, E. Creatine Supplementation and Dynamic High-Intensity Intermittent Exercise. Scand. J. Med. Sci. Sports 1993, 3, 143–149. [Google Scholar] [CrossRef]
- Aaserud, R.; Gramvik, P.; Olsen, S.R.; Jensen, J. Creatine Supplementation Delays Onset of Fatigue During Repeated Bouts of Sprint Running. Scand. J. Med. Sci. Sports 1998, 8, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Padilla, S.; Ibanez, J.; Izquierdo, M.; Gorostiaga, E. Creatine Supplementation and Sprint Performance in Soccer Players. Med. Sci. Sports Exerc. 2000, 32, 518–525. [Google Scholar] [CrossRef]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine Supplementation with Specific View to Exercise/Sports Performance: An Update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- McConell, G.K.; Shinewell, J.; Stephens, T.J.; Stathis, C.G.; Canny, B.J.; Snow, R.J. Creatine Supplementation Reduces Muscle Inosine Monophosphate During Endurance Exercise in Humans. Med. Sci. Sports Exerc. 2005, 37, 2054–2061. [Google Scholar] [CrossRef]
- Havenetidis, K.; Matsouka, O.; Cooke, C.B.; Theodorou, A. The Use of Varying Creatine Regimens on Sprint Cycling. J. Sports Sci. Med. 2003, 2, 88–97. [Google Scholar]
- Okudan, N.; Gokbel, H. The Effects of Creatine Supplementation on Performance During the Repeated Bouts of Supramaximal Exercise. J. Sports Med. Phys. Fitness 2005, 45, 507–511. [Google Scholar] [PubMed]
- Crisafulli, D.L.; Buddhadev, H.H.; Brilla, L.R.; Chalmers, G.R.; Suprak, D.N.; San Juan, J.G. Creatine-Electrolyte Supplementation Improves Repeated Sprint Cycling Performance: A Double Blind Randomized Control Study. J. Int. Soc. Sports Nutr. 2018, 15, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegenfuss, T.N.; Rogers, M.; Lowery, L.; Mullins, N.; Mendel, R.; Antonio, J.; Lemon, P. Effect of Creatine Loading on Anaerobic Performance and Skeletal Muscle Volume in Ncaa Division I Athletes. Nutrition 2002, 18, 397–402. [Google Scholar] [CrossRef]
- Cottrell, G.T.; Coast, J.R.; Herb, R.A. Effect of Recovery Interval on Multiple-Bout Sprint Cycling Performance after Acute Creatine Supplementation. J. Strength Cond. Res. 2002, 16, 109–116. [Google Scholar]
- Vandebuerie, F.; Vanden Eynde, B.; Vandenberghe, K.; Hespel, P. Effect of Creatine Loading on Endurance Capacity and Sprint Power in Cyclists. Int. J. Sports Med. 1998, 19, 490–495. [Google Scholar] [CrossRef]
- Wang, C.C.; Fang, C.C.; Lee, Y.H.; Yang, M.T.; Chan, K.H. Effects of 4-Week Creatine Supplementation Combined with Complex Training on Muscle Damage and Sport Performance. Nutrients 2018, 10, 1640. [Google Scholar] [CrossRef] [Green Version]
- Zajac, A.; Golas, A.; Chycki, J.; Halz, M.; Michalczyk, M.M. The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (Rast) in Elite Soccer Players. Nutrients 2020, 12, 2961. [Google Scholar] [CrossRef]
- Skare, O.C.; Skadberg, Ø; Wisnes, A.R. Creatine Supplementation Improves Sprint Performance in Male Sprinters. Scand. J. Med. Sci. Sports 2001, 11, 96–102. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; González-Jurado, J.A.; Martínez, C.; Nakamura, F.Y.; Peñailillo, L.; Meylan, C.M.; Caniuqueo, A.; Cañas-Jamet, R.; Moran, J.; Alonso-Martínez, A.M.; et al. Effects of Plyometric Training and Creatine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players. J. Sci. Med. Sport 2016, 19, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.J.; Noble, B.J. Perception of Physical Exertion: Methods, Mediators, and Applications. Exerc. Sport Sci. Rev. 1997, 25, 407–452. [Google Scholar] [CrossRef]
- Lakomy, H.K.A. The Use of a Non-Motorized Treadmill for Analysing Sprint Performance. Ergonomics 1987, 30, 627–637. [Google Scholar] [CrossRef]
- Dill, D.B.; Costill, D.L. Calculation of Percentage Changes in Volumes of Blood, Plasma, and Red Cells in Dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routlege: New York, NY, USA, 1988. [Google Scholar]
- Cornish, S.M.; Chilibeck, P.D.; Burke, D.G. The Effect of Creatine Monohydrate Supplementation on Sprint Skating in Ice-Hockey Players. J. Sports Med. Phys. Fitness 2006, 46, 90–98. [Google Scholar] [PubMed]
- Casey, A.; Constantin-Teodosiu, D.; Howell, S.; Hultman, E.; Greenhaff, P.L. Creatine Ingestion Favorably Affects Performance and Muscle Metabolism During Maximal Exercise in Humans. Am. J. Physiol. 1996, 271, E31–E37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrebrune, M.C.; Nevill, M.E.; Donaldson, F.J.; Cosford, D.J. The Effects of Oral Creatine Supplementation on Performance in Single and Repeated Sprint Swimming. J. Sports Sci. 1998, 16, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Linossier, M.T.; Denis, C.; Dormois, D.; Geyssant, A.; Lacour, J.R. Ergometric and Metabolic Adaptation to a 5-S Sprint Training Programme. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 67, 408–414. [Google Scholar] [CrossRef]
- Sargeant, A.J.; Dolan, P. Effect of Prior Exercise on Maximal Short-Term Power Output in Humans. J. Appl. Physiol. 1987, 63, 1475–1480. [Google Scholar] [CrossRef]
- Hultman, E.; Greenhaff, P.L.; Ren, J.M.; Söderlund, K. Energy Metabolism and Fatigue During Intense Muscle Contraction. Biochem. Soc. Trans. 1991, 19, 347–353. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Flanagan, T.R.; Snow, R.J.; Zhao, S.; Carey, M.F. Effect of Creatine Supplementation on Intramuscular Tcr, Metabolism and Performance During Intermittent, Supramaximal Exercise in Humans. Acta Physiol. Scand. 1995, 155, 387–395. [Google Scholar] [CrossRef]
- Sahlin, K. High-Energy Phosphates and Muscle Energetics. In Principles of Exercise Biochemistry; Poortmans, J.R., Ed.; Karger: Basel, Switzerland, 2004; pp. 87–107. [Google Scholar]
- Greenhaff, P.L.; Bodin, K.; Soderlund, K.; Hultman, E. Effect of Oral Creatine Supplementation on Skeletal Muscle Phosphocreatine Resynthesis. Am. J. Physiol. 1994, 266, E725–E730. [Google Scholar] [CrossRef]
- Balsom, P.D.; Söderlund, K.; Sjödin, B.; Ekblom, B. Skeletal Muscle Metabolism During Short Duration High-Intensity Exercise: Influence of Creatine Supplementation. Acta Physiol. Scand. 1995, 154, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ceddia, R.B.; Sweeney, G. Creatine Supplementation Increases Glucose Oxidation and Ampk Phosphorylation and Reduces Lactate Production in L6 Rat Skeletal Muscle Cells. J. Physiol. 2004, 555, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Constantin-Teodosiu, D.; Howell, S.; Hultman, E.; Greenhaff, P.L. Metabolic Response of Type I and II Muscle Fibers During Repeated Bouts of Maximal Exercise in Humans. Am. J. Physiol. 1996, 271, E38–E43. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J. Physiology of Training. In Science and Soccer; Reilly, T., Williams, M.A., Eds.; Routledge: London, UK, 2003; pp. 55–66. [Google Scholar]
- Jones, A.M.; Carter, H.; Pringle, J.S.; Campbell, I.T. Effect of Creatine Supplementation on Oxygen Uptake Kinetics During Submaximal Cycle Exercise. J. Appl. Physiol. 2002, 92, 2571–2577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrotuik, D.G.; Game, A.B.; Gillies, E.M.; Bell, G.J. Effects of Creatine Monohydrate Supplementation During Combined Strength and High Intensity Rowing Training on Performance. Can. J. Appl. Physiol. 2001, 26, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Hickner, R.C.; Dyck, D.J.; Sklar, J.; Hatley, H.; Byrd, P. Effect of 28 Days of Creatine Ingestion on Muscle Metabolism and Performance of a Simulated Cycling Road Race. J. Int. Soc. Sports Nutr. 2010, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Mutch, B.J.; Banister, E.W. Ammonia Metabolism in Exercise and Fatigue: A Review. Med. Sci. Sports Exerc. 1983, 15, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; MacLean, D.A. Ammonia and Amino Acid Metabolism in Human Skeletal Muscle During Exercise. Can. J. Physiol. Pharmacol. 1992, 70, 132–141. [Google Scholar] [CrossRef]
- Sahlin, K.; Katz, A. Purine Nucleotide Metabolism. In Principles of Exercise Biochemistry; Poortmans, J., Ed.; Karger: Basel, Switzerland, 1988; Volume 46, pp. 120–139. [Google Scholar]
- Yquel, R.J.; Arsac, L.M.; Thiaudière, E.; Canioni, P.; Manier, G. Effect of Creatine Supplementation on Phosphocreatine Resynthesis, Inorganic Phosphate Accumulation and Ph During Intermittent Maximal Exercise. J. Sports Sci. 2002, 20, 427–437. [Google Scholar] [CrossRef]
- Ziegenfuss, T.N.; Lowery, L.M.; Lemon, P.W.R. Acute Fluid Volume Changes in Men During Three Days of Creatine Supplementation. J. Exerc. Physiol. Online 1998, 1, 1–9. [Google Scholar]
- Murphy, R.M.; Stephenson, D.G.; Lamb, G.D. Effect of Creatine on Contractile Force and Sensitivity in Mechanically Skinned Single Fibers from Rat Skeletal Muscle. Am. J. Physiol. Cell Physiol. 2004, 287, C1589–C1595. [Google Scholar] [CrossRef] [PubMed]
- Ellery, S.J.; Walker, D.W.; Dickinson, H. Creatine for Women: A Review of the Relationship between Creatine and the Reproductive Cycle and Female-Specific Benefits of Creatine Therapy. Amino Acids 2016, 48, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
La (mmol/L) | ||||
---|---|---|---|---|
Placebo | Creatine | |||
PRE | POST | PRE | POST | |
Rest | 1.2 ± 0.4 | 1.0 ± 0.2 | 1.1 ± 0.3 | 1.1 ± 0.2 |
Stage 1 | 2.3 ± 0.8 | 2.3 ± 0.9 | 2.5 ± 1.1 | 2.7 ± 0.8 |
Stage 2 | 2.7 ± 0.9 | 2.8 ± 1.2 | 3.2 ± 1.3 | 3.5 ± 1.1 |
Stage 3 | 4.2 ± 1.4 | 4.2 ± 1.9 | 5.0 ± 2.2 | 5.4 ± 2.1 |
Stage 4 | 7.0 ± 2.3 | 6.7 ± 2.7 | 8.3 ± 3.1 | 9.1 ± 3.0 |
La (mmol/L) | pH | PVC (%) | |||||
---|---|---|---|---|---|---|---|
Placebo | Creatine | Placebo | Creatine | Placebo | Creatine | ||
PRE | Rest | 0.8 ± 0.2 | 0.9 ± 0.3 | 7.37 ± 0.02 | 7.37 ± 0.02 | ||
1 min | 13.4 ± 2.6 | 14.8 ± 1.8 | 7.05 ± 0.08 | 6.95 ± 0.07 | −12.9 ± 3.3 | −16.2 ± 3.7 | |
5 min | 15.2 ± 2.8 | 17.1 ± 1.7 | 7.06 ± 0.07 | 6.98 ± 0.05 | −10.4 ± 3.5 | −13.8 ± 3.3 | |
10 min | 15.4 ± 3.1 | 17 ± 1.8 | 7.08 ± 0.09 | 6.99 ± 0.06 | −8.5 ± 3.1 | −11.7 ± 3.5 | |
POST | Rest | 1.2 ± 0.9 | 0.8 ± 0.3 | 7.36 ± 0.05 | 7.39 ± 0.04 | ||
1 min | 14.5 ± 2.6 | 15.4 ± 2.1 | 7.04 ± 0.11 | 6.98 ± 0.08 | −14.6 ± 7.2 | −13.3 ± 4 | |
5 min | 15.5 ± 2.6 | 17.6 ± 1.5 | 7.07 ± 0.1 | 7.0 ± 0.06 | −11.4 ± 8.1 | −11.2 ± 4.2 | |
10 min | 15.2 ± 3.2 | 17.7 ± 2 | 7.09 ± 0.11 | 7.01 ± 0.06 | −9.5 ± 7.5 | −9.1 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanis, G.C.; Nevill, M.E.; Aphamis, G.; Stavrinou, P.S.; Jenkins, D.G.; Giannaki, C.D.; Lakomy, H.K.A.; Williams, C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients 2022, 14, 1140. https://doi.org/10.3390/nu14061140
Bogdanis GC, Nevill ME, Aphamis G, Stavrinou PS, Jenkins DG, Giannaki CD, Lakomy HKA, Williams C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients. 2022; 14(6):1140. https://doi.org/10.3390/nu14061140
Chicago/Turabian StyleBogdanis, Gregory C., Mary E. Nevill, George Aphamis, Pinelopi S. Stavrinou, David G. Jenkins, Christoforos D. Giannaki, Henryk K. A. Lakomy, and Clyde Williams. 2022. "Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting" Nutrients 14, no. 6: 1140. https://doi.org/10.3390/nu14061140
APA StyleBogdanis, G. C., Nevill, M. E., Aphamis, G., Stavrinou, P. S., Jenkins, D. G., Giannaki, C. D., Lakomy, H. K. A., & Williams, C. (2022). Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients, 14(6), 1140. https://doi.org/10.3390/nu14061140