Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
The Solutions Preparation
2.2. Assessment of the Effect on Human Prostate Cancer Cells Proliferation and Iability/Apoptosis
2.2.1. Cell Culture
2.2.2. Proliferation Studies
2.2.3. Fluorescent Imaging
2.3. Anti-Genotoxicity Assessment
2.3.1. Umu-Test
2.3.2. Metabolic Activation
2.3.3. Determination of Anti-Genotoxicity by the Umu Test
2.4. Statistical Analysis
3. Results
3.1. Proliferation of LNCaP Cells
3.2. Viability/Apoptosis of LNCaP Cells
3.3. Anti-Genotoxicity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef]
- Kimura, T.; Egawa, S. Epidemiology of prostate cancer in Asian countries. Int. J. Urol. 2018, 25, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.M.; Mucci, L.A. Diet and Lifestyle in Prostate Cancer. In Prostate Cancer: Cellular and Genetic Mechanisms of Disease Development and Progression; Dehm, S.M., Tindall, D.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar] [CrossRef]
- Kimura, T.; Sato, S.; Takahashi, H.; Egawa, S. Global Trends of Latent Prostate Cancer in Autopsy Studies. Cancers 2021, 13, 359. [Google Scholar] [CrossRef] [PubMed]
- Applegate, C.C.; Rowles, J.L.; Ranard, K.M.; Jeon, S.; Erdman, J.W. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2018, 10, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.M.; Yang, W.; Bosland, M.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms. J. Steroid Biochem. Mol. Biol. 2014, 140, 116–132. [Google Scholar] [CrossRef] [Green Version]
- Lepri, S.R.; Luiz, R.C.; Zanelatto, L.C.; da Silva, P.B.; Sartori, D.; Ribeiro, L.R.; Mantovani, M.S. Chemoprotective activity of the isoflavones, genistein and daidzein on mutagenicity induced by direct and indirect mutagens in cultured HTC cells. Cytotechnology 2013, 65, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, L.C.; Franklin, R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, H.G.; Schwartz, G.G. A Prospective Study of Total and Ionized Serum Calcium and Fatal Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hemelrijck, M.; Hermans, R.; Michaelsson, K.; Melvin, J.; Garmo, H.; Hammar, N.; Jungner, I.; Walldius, G.; Holmberg, L. Serum calcium and incident and fatal prostate cancer in the Swedish AMORIS study. Cancer Causes Control 2012, 23, 1349–1358. [Google Scholar] [CrossRef]
- Salem, S.; Hosseini, M.; Allameh, F.; Babakoohi, S.; Mehrsai, A.; Pourmand, G. Serum Calcium Concentration and Prostate Cancer Risk: A Multicenter Study. Nutr. Cancer 2013, 65, 961–968. [Google Scholar] [CrossRef]
- Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef]
- Sapota, A.; Daragó, A.; Taczalski, J.; Kilanowicz, A. Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 2009, 22, 1041. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Dwivedi, S.; Dhakad, U.; Murthy, R.C.; Choubey, V.K.; Goel, A.; Sankhwar, S.N. Status and Interrelationship of Zinc, Copper, Iron, Calcium and Selenium in Prostate Cancer. Indian J. Clin. Biochem. 2016, 31, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, P.; Liang, J.Y.; Li, T.L.; Guan, Z.X.; Zou, J.; Franklin, R.; Costello, L.C. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 2000, 4, 31–36. [Google Scholar] [PubMed]
- Liang, J.Y.; Liu, Y.Y.; Zou, J.; Franklin, R.B.; Costello, L.C.; Feng, P. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 1999, 40, 200–207. [Google Scholar] [CrossRef] [Green Version]
- To, P.K.; Do, M.-H.; Cho, Y.-S.; Kwon, S.-Y.; Kim, M.S.; Jung, C. Zinc Inhibits Expression of Androgen Receptor to Suppress Growth of Prostate Cancer Cells. Int. J. Mol. Sci. 2018, 19, 3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebsch, C.M.; Penna, F.J., 3rd; Copeland, P.R. Selenoprotein expression is regulated at multiple levels in prostate cells. Cell Res. 2006, 16, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Oberley, T.D. Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 2001, 61, 7071–7078. [Google Scholar]
- Xiang, N.; Zhao, R.; Zhong, W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother. Pharmacol. 2009, 63, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.N.; Yin, J.J.; Shen, S.R. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu2+. J. Agric. Food Chem. 2004, 52, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.Z.; Ni, X.F.; Yu, H.N.; Wang, S.S.; Shen, S.R. Effects of astaxanthin on oxidative stress induced by Cu(2+) in prostate cells. J. Zhejiang Univ. Sci. B 2017, 18, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordini, J.; Morisi, F.; Elia, A.R.; Santambrogio, P.; Pagani, A.; Cucchiara, V.; Ghia, P.; Bellone, M.; Briganti, A.; Camaschella, C.; et al. Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clin. Cancer Res. 2020, 26, 6387–6398. [Google Scholar] [CrossRef] [PubMed]
- Bernichtein, S.; Pigat, N.; Barry Delongchamps, N.; Boutillon, F.; Verkarre, V.; Camparo, P.; Reyes-Gomez, E.; Mejean, A.; Oudard, S.M.; Lepicard, E.M.; et al. Vitamin D3 Prevents Calcium-Induced Progression of Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer Res. 2017, 77, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.; Schneider, A.; Datta, N.S.; McCauley, L.K. Extracellular Calcium as a Candidate Mediator of Prostate Cancer Skeletal Metastasis. Cancer Res. 2006, 66, 9065–9073. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Schlicht, M.; Kucynda, T.; Zhou, P.; Valyi-Nagy, K.; Kajdacsy-Balla, A. Abstract 4322: Iron increases the invasiveness of prostate cancer cells in vitro: Mechanisms and inhibition by the antioxidant ebselen. Cancer Res. 2012, 72, 4322. [Google Scholar] [CrossRef]
- Fujii, N.; Yano, S.; Takeshita, K. Selective enhancing effect of metal ions on mutagenicity. Gene Environ. 2016, 38, 21. [Google Scholar] [CrossRef] [Green Version]
- Kumi-Diaka, J.; Merchant, K.; Haces, A.; Hormann, V.; Johnson, M. Genistein-selenium combination induces growth arrest in prostate cancer cells. J. Med. Food 2010, 13, 842–850. [Google Scholar] [CrossRef]
- Zhao, R.; Xiang, N.; Domann, F.E.; Zhong, W. Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells. Nutr. Cancer 2009, 61, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Legg, R.L.; Tolman, J.R.; Lovinger, C.T.; Lephart, E.D.; Setchell, K.D.; Christensen, M.J. Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate. Reprod. Biol. Endocrinol. 2008, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolman, J.R.; Lephart, E.D.; Setchell, K.D.; Eggett, D.L.; Christensen, M.J. Timing of supplementation of selenium and isoflavones determines prostate cancer risk factor reduction in rats. Nutr. Metab. 2008, 5, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Wahala, K.; Rowland, I.R. Equol: A comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr. Cancer 2006, 54, 232–242. [Google Scholar] [CrossRef]
- Suzuki, K.; Koike, H.; Matsui, H.; Ono, Y.; Hasumi, M.; Nakazato, H.; Okugi, H.; Sekine, Y.; Oki, K.; Ito, K.; et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int. J. Cancer 2002, 99, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.C.; Klein, R.D.; Wei, Q.; Guan, Y.; Contois, J.H.; Wang, T.T.; Chang, S.; Hursting, S.D. Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol. Carcinog. 2000, 29, 92–102. [Google Scholar] [CrossRef]
- Fan, Y.-J.; Huang, N.-S.; Xia, L. Genistein synergizes with RNA interference inhibiting survivin for inducing DU-145 of prostate cancer cells to apoptosis. Cancer Lett. 2009, 284, 189–197. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Yamamura, S.; Fukuhara, S.; Yoshino, H.; Kinoshita, T.; Majid, S.; Saini, S.; Chang, I.; Tanaka, Y.; Enokida, H.; et al. Genistein Inhibits Prostate Cancer Cell Growth by Targeting miR-34a and Oncogenic HOTAIR. PLoS ONE 2013, 8, e70372. [Google Scholar] [CrossRef]
- Kiss, A.; Kowalski, J.; Melzig, M.F. Induction of neutral endopeptidase activity in PC-3 cells by an aqueous extract of Epilobium angustifolium L. and oenothein B. Phytomedicine 2006, 13, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Nakamura, S.; Oki, I.; Kato, T.; Shinagawa, H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat. Res. 1985, 147, 219–229. [Google Scholar] [CrossRef]
- Reifferscheid, G.; Heil, J.; Oda, Y.; Zahn, R.K. A microplate version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutat. Res. 1991, 253, 215–222. [Google Scholar] [CrossRef]
- ISO 13829:2000; Water Quality—Determination of the Genotoxicity of Water and Waste Water Using the umu-Test. ISO: Geneva, Switzerland, 2000.
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Gardner, C.D.; Oelrich, B.; Liu, J.P.; Feldman, D.; Franke, A.A.; Brooks, J.D. Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate 2009, 69, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raschke, M.; Wähälä, K.; Pool-Zobel, B.L. Reduced isoflavone metabolites formed by the human gut microflora suppress growth but do not affect DNA integrity of human prostate cancer cells. Br. J. Nutr. 2006, 96, 426–434. [Google Scholar] [CrossRef]
- Hedlund, T.E.; van Bokhoven, A.; Johannes, W.U.; Nordeen, S.K.; Ogden, L.G. Prostatic fluid concentrations of isoflavonoids in soy consumers are sufficient to inhibit growth of benign and malignant prostatic epithelial cells in vitro. Prostate 2006, 66, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, T.E.; Johannes, W.U.; Miller, G.J. Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate 2003, 54, 68–78. [Google Scholar] [CrossRef]
- Ishii, K.; Otsuka, T.; Iguchi, K.; Usui, S.; Yamamoto, H.; Sugimura, Y.; Yoshikawa, K.; Hayward, S.W.; Hirano, K. Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett. 2004, 207, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Fenselau, C.C.; Franklin, R.B. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J. Inorg. Biochem. 2011, 105, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Bektic, J.; Berger, A.P.; Pfeil, K.; Dobler, G.; Bartsch, G.; Klocker, H. Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor beta. Eur. Urol. 2004, 45, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Hursting, S.D.; Perkins, S.N.; Wang, T.C.; Wang, T.T. Genistein affects androgen-responsive genes through both androgen- and estrogen-induced signaling pathways. Mol. Carcinog. 2006, 45, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Itsumi, M.; Shiota, M.; Takeuchi, A.; Kashiwagi, E.; Inokuchi, J.; Tatsugami, K.; Kajioka, S.; Uchiumi, T.; Naito, S.; Eto, M.; et al. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci. 2016, 107, 1022–1028. [Google Scholar] [CrossRef]
- Davis, J.N.; Kucuk, O.; Sarkar, F.H. Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr. Cancer 1999, 35, 167–174. [Google Scholar] [CrossRef]
- Uzzo, R.G.; Leavis, P.; Hatch, W.; Gabai, V.L.; Dulin, N.; Zvartau, N.; Kolenko, V.M. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin. Cancer Res. 2002, 8, 3579–3583. [Google Scholar]
- Singh, C.K.; Chhabra, G.; Patel, A.; Chang, H.; Ahmad, N. Dietary Phytochemicals in Zinc Homeostasis: A Strategy for Prostate Cancer Management. Nutrients 2021, 13, 1867. [Google Scholar] [CrossRef]
- Yang, J.G.; Yu, H.N.; Sun, S.L.; Zhang, L.C.; He, G.Q.; Das, U.N.; Ruan, H.; Shen, S.R. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc. J. Zhejiang Univ. Sci. B 2009, 10, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, J.; Masrudin, S.S.; Alias, Z.; Muhamad, N.A. The effects of Pueraria mirifica extract, diadzein and genistein in testosterone-induced prostate hyperplasia in male Sprague Dawley rats. Mol. Biol. Rep. 2019, 46, 1855–1871. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, V.; Erkekoglu, P.; Forestier, A.; Favier, A.; Hincal, F.; Diamond, A.M.; Douki, T.; Rachidi, W. Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic. Res. 2012, 46, 105–116. [Google Scholar] [CrossRef]
- Kandas, N.O.; Randolph, C.; Bosland, M.C. Differential effects of selenium on benign and malignant prostate epithelial cells: Stimulation of LNCaP cell growth by noncytotoxic, low selenite concentrations. Nutr. Cancer 2009, 61, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Safi, R.; Nelson, E.R.; Chitneni, S.K.; Franz, K.J.; George, D.J.; Zalutsky, M.R.; McDonnell, D.P. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 2014, 74, 5819–5831. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.N.; Shen, S.R.; Xiong, Y.K. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu2+. J. Zhejiang Univ. Sci. B 2005, 6, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florencio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef]
- Chen, X.; Tang, L.-J.; Sun, Y.-N.; Qiu, P.-H.; Liang, G. Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone. J. Inorg. Biochem. 2010, 104, 379–384. [Google Scholar] [CrossRef]
- Karlíčková, J.; Macáková, K.; Říha, M.; Pinheiro, L.M.; Filipský, T.; Horňasová, V.; Hrdina, R.; Mladěnka, P. Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro. Oxidative Med. Cell. Longev. 2015, 2015, 437381. [Google Scholar] [CrossRef] [Green Version]
- Ardura, J.A.; Alvarez-Carrion, L.; Gutierrez-Rojas, I.; Alonso, V. Role of Calcium Signaling in Prostate Cancer Progression: Effects on Cancer Hallmarks and Bone Metastatic Mechanisms. Cancers 2020, 12, 1071. [Google Scholar] [CrossRef]
- Goldstein, D.A. Serum Calcium. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; pp. 677–679. Available online: https://www.ncbi.nlm.nih.gov/books/NBK250/ (accessed on 1 January 2022).
- Halthur, C.; Johansson, A.L.V.; Almquist, M.; Malm, J.; Grönberg, H.; Manjer, J.; Dickman, P.W. Serum calcium and the risk of prostate cancer. Cancer Causes Control 2009, 20, 1205–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, F.H.M.D.; Oliveira, J.S.; Sartorelli, V.O.B.; Montor, W.R. Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Front. Oncol. 2018, 8, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, C.B.; King, A.A. Genistein genotoxicity: Critical considerations of in vitro exposure dose. Toxicol. Appl. Pharmacol. 2007, 224, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, A.L.; Iwami, K.; Wätjen, W.; Kahl, R.; Degen, G.H. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol. Lett. 2004, 151, 151–162. [Google Scholar] [CrossRef]
- Schwen, R.; Jackson, R.; Proudlock, R. Genotoxicity assessment of S-equol in bacterial mutation, chromosomal aberration, and rodent bone marrow micronucleus tests. Food Chem. Toxicol. 2010, 48, 3481–3485. [Google Scholar] [CrossRef]
- Kopečná-Zapletalová, M.; Krasulová, K.; Anzenbacher, P.; Hodek, P.; Anzenbacherová, E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: Inhibition of CYP enzyme activities. Xenobiotica 2017, 47, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Dowling, S.; Regan, F.; Hughes, H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. J. Inorg. Biochem. 2010, 104, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Jazieh, A.R.; Kopp, M.; Foraida, M.; Ghouse, M.; Khalil, M.; Savidge, M.; Sethuraman, G. The use of dietary supplements by veterans with cancer. J. Altern. Complement. Med. 2004, 10, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L. Multivitamin-multimineral supplements: Who uses them? Am. J. Clin. Nutr. 2007, 85, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Velicer, C.M.; Ulrich, C.M. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. J. Clin. Oncol. 2008, 26, 665–673. [Google Scholar] [CrossRef]
Tested Mixture | +S9 | −S9 | ||
---|---|---|---|---|
G (Mean ± SD) | IR (Mean ± SD) | G (Mean ± SD) | IR (Mean ± SD) | |
Negative Control | 1.00 ± 0.07 | 1.00 ± 0.13 | 1.00 ± 0.06 | 1.00 ± 0.13 |
gen | 1.16 ± 0.17 | 0.78 ± 0.16 | 1.28 ± 0.35 | 0.75 ± 0.15 |
Zn | 1.04 ± 0.05 | 0.99 ± 0.16 | 1.09 ± 0.13 | 1.02 ± 0.24 |
Cu | 1.07 ± 0.11 | 0.93 ± 0.11 | 1.09 ± 0.12 | 0.87 ± 0.17 |
Ca | 1.09 ± 0.15 | 0.99 ± 0.12 | 1.11 ± 0.09 | 0.93 ± 0.19 |
Se | 1.09 ± 0.13 | 0.98 ± 0.15 | 1.14 ± 0.11 | 0.92 ± 0.19 |
Fe | 0.98 ± 0.10 | 0.97 ± 0.10 | 1.10 ± 0.10 | 0.90 ± 0.19 |
gen + Zn | 1.03 ± 0.15 | 1.03 ± 0.21 | 1.18 ± 0.42 | 0.80 ± 0.23 |
gen + Cu | 0.99 ± 0.11 | 1.03 ± 0.19 | 0.88 ± 0.09 | 1.01 ± 0.21 |
gen + Ca | 1.03 ± 0.08 | 1.02 ± 0.19 | 1.13 ± 0.14 | 0.86 ± 0.13 |
gen + Se | 1.04 ± 0.11 | 1.05 ± 0.14 | 1.00 ± 0.10 | 1.03 ± 0.24 |
gen + Fe | 1.06 ± 0.07 | 1.03 ± 0.13 | 1.03 ± 0.09 | 1.04 ± 0.16 |
dai | 0.94 ± 0.12 | 0.98 ± 0.13 | 1.25 ± 0.28 | 0.86 ± 0.14 |
dai + Zn | 0.92 ± 0.10 | 1.06 ± 0.18 | 1.05 ± 0.08 | 1.03 ± 0.17 |
dai + Cu | 1.00 ± 0.13 | 1.10 ± 0.13 | 1.11 ± 0.15 | 1.02 ± 0.17 |
dai + Ca | 1.02 ± 0.12 | 0.95 ± 0.11 | 1.12 ± 0.15 | 0.97 ± 0.10 |
dai + Se | 1.06 ± 0.07 | 1.02 ± 0.07 | 1.14 ± 0.11 | 1.03 ± 0.12 |
dai + Fe | 1.03 ± 0.08 | 0.99 ± 0.08 | 1.07 ± 0.11 | 0.87 ± 0.16 |
eq | 1.06 ± 0.09 | 0.84 ± 0.10 | 1.18 ± 0.33 | 0.83 ± 0.16 |
eq + Zn | 1.04 ± 0.10 | 0.91 ± 0.11 | 0.89 ± 0.14 | 1.24 ± 0.33 |
eq + Cu | 1.10 ± 0.07 | 0.90 ± 0.12 | 0.99 ± 0.14 | 1.31 ± 0.52 |
eq + Ca | 1.10 ± 0.10 | 0.92 ± 0.13 | 0.98 ± 0.07 | 1.04 ± 0.18 |
eq + Se | 1.14 ± 0.10 | 0.98 ± 0.14 | 1.07 ± 0.07 | 1.23 ± 0.30 |
eq + Fe | 1.05 ± 0.07 | 0.93 ± 0.13 | 1.02 ± 0.08 | 1.15 ± 0.50 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.06 | 1.00 ± 0.13 | |
NQO 0.25 mg/L | 0.95 ± 0.11 | 6.06 ± 1.48 | |
gen | 1.12 ± 0.24 | 4.84 ± 1.47 | 20% |
Zn | 1.01 ± 0.11 | 5.20 ± 1.44 | |
Cu | 1.00 ± 0.12 | 5.14 ± 1.41 | |
Ca | 1.11 ± 0.05 | 4.94 ± 1.28 | 18% |
Se | 1.11 ± 0.05 | 5.19 ± 1.63 | |
Fe | 1.08 ± 0.10 | 4.86 ± 1.27 | 20% |
gen + Zn | 0.98 ± 0.18 | 5.95 ± 1.24 a | |
gen + Cu | 0.85 ± 0.09 | 6.26 ± 0.84 a | |
gen + Ca | 1.01 ± 0.09 | 5.52 ± 0.58 a | |
gen + Se | 0.95 ± 0.09 | 5.98 ± 0.89 a | |
gen + Fe | 0.99 ± 0.07 | 5.50 ± 0.51 a | |
NQO 0.05 mg/L | 0.99 ± 0.10 | 2.64 ± 0.63 | |
gen | 1.01 ± 0.12 | 2.48 ± 0.58 | |
Zn | 1.01 ± 0.11 | 2.36 ± 0.46 | |
Cu | 0.98 ± 0.10 | 2.42 ± 0.61 | |
Ca | 1.13 ± 0.08 | 2.22 ± 0.54 | |
Se | 1.10 ± 0.09 | 2.39 ± 0.48 | |
Fe | 1.10 ± 0.10 | 2.24 ± 0.52 | |
gen + Zn | 0.89 ± 0.11 | 2.77 ± 0.78 | |
gen + Cu | 0.78 ± 0.06 | 3.04 ± 0.79 | |
gen + Ca | 1.00 ± 0.11 | 2.55 ± 0.45 | |
gen + Se | 0.97 ± 0.07 | 2.74 ± 0.53 | |
gen + Fe | 1.04 ± 0.09 | 2.56 ± 0.34 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.09 | 1.00 ± 0.16 | |
NQO 0.25 mg/L | 0.78 ± 0.12 | 9.92 ± 3.06 | |
Dai | 1.03 ± 0.25 | 7.92 ± 2.64 | |
dai + Zn | 0.93 ± 0.10 | 8.57 ± 2.50 | |
dai + Cu | 0.99 ± 0.14 | 9.23 ± 2.76 | |
dai + Ca | 1.06 ± 0.21 | 8.60 ± 2.87 | |
dai + Se | 1.09 ± 0.20 | 8.67 ± 2.57 | |
dai + Fe | 1.04 ± 0.20 | 8.06 ± 2.47 | - |
Eq | 0.97 ± 0.26 | 9.25 ± 4.77 | |
eq + Zn | 0.80 ± 0.16 | 10.49 ± 3.87 | |
eq + Cu | 0.84 ± 0.11 | 9.67 ± 2.86 | |
eq + Ca | 0.90 ± 0.19 | 9.64 ± 3.62 | |
eq + Se | 0.96 ± 0.15 | 9.36 ± 2.56 | |
eq + Fe | 0.90 ± 0.14 | 8.37 ± 2.58 | |
NQO 0.05 mg/L | 0.97 ± 0.15 | 2.80 ± 1.56 | |
Dai | 0.94 ± 0.16 | 2.48 ± 1.65 | |
dai + Zn | 0.86 ± 0.10 | 2.78 ± 1.87 | |
dai + Cu | 0.92 ± 0.14 | 2.70 ± 1.53 | |
dai + Ca | 1.06 ± 0.18 | 2.54 ± 1.37 | |
dai + Se | 1.12 ± 0.15 | 2.54 ± 1.36 | |
dai + Fe | 1.09 ± 0.16 | 2.36 ± 1.11 | - |
Eq | 1.06 ± 0.27 | 2.75 ± 1.63 | |
eq + Zn | 0.89 ± 0.13 | 3.25 ± 2.03 | |
eq + Cu | 0.96 ± 0.11 | 3.07 ± 1.49 | |
eq + Ca | 1.04 ± 0.08 | 2.82 ± 1.39 | |
eq + Se | 1.03 ± 0.11 | 3.17 ± 1.73 | |
eq + Fe | 0.95 ± 0.10 | 2.80 ± 1.37 |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
---|---|---|---|
Negative Control | 1.00 ± 0.07 | 1.00 ± 0.13 | |
2AA 5 mg/L | 1.02 ± 0.08 | 2.17 ± 0.39 | |
Gen | 1.21 ± 0.17 | 1.79 ± 0.25 | 17% |
Zn | 1.08 ± 0.05 | 2.20 ± 0.31 | |
Cu | 1.16 ± 0.14 | 1.60 ± 0.25 | 26% |
Ca | 1.19 ± 0.13 | 2.36 ± 0.36 | |
Se | 1.17 ± 0.12 | 2.11 ± 0.40 | |
Fe | 1.07 ± 0.07 | 1.87 ± 0.27 | 14% |
gen + Zn | 0.98 ± 0.09 | 2.06 ± 0.42 | |
gen + Cu | 0.98 ± 0.13 | 1.48 ± 0.34 a | 32% |
gen + Ca | 1.07 ± 0.13 | 2.02 ± 0.58 | |
gen + Se | 1.09 ± 0.16 | 1.96 ± 0.55 | |
gen + Fe | 1.09 ± 0.11 | 1.69 ± 0.28 | 22% |
2AA 1 mg/L | 1.00 ± 0.07 | 2.00 ± 0.53 | |
Gen | 1.16 ± 0.17 | 1.35 ± 0.23 | 32% |
Zn | 1.03 ± 0.08 | 1.77 ± 0.42 | |
Cu | 1.11 ± 0.12 | 1.34 ± 0.30 | 33% |
Ca | 1.16 ± 0.10 | 1.86 ± 0.44 | |
Se | 1.18 ± 0.10 | 1.79 ± 0.40 | |
Fe | 1.10 ± 0.06 | 1.59 ± 0.27 | 21% |
gen + Zn | 0.92 ± 0.08 | 1.89 ± 0.51 a | |
gen + Cu | 0.95 ± 0.13 | 1.26 ± 0.21 | 37% |
gen + Ca | 1.08 ± 0.14 | 1.58 ± 0.29 | 21% |
gen + Se | 1.04 ± 0.18 | 1.61 ± 0.34 a | 19% |
gen + Fe | 1.04 ± 0.13 | 1.44 ± 0.32 | 28% |
Tested Mixture | G (Mean ± SD) | IR (Mean ± SD) | %Anti-Genotox. |
Negative Control | 1.00 ± 0.08 | 1.00 ± 0.10 | |
2AA 5 mg/L | 0.86 ± 0.09 | 2.91 ± 0.54 | |
dai | 0.99 ± 0.13 | 2.36 ± 0.45 | 19% |
dai + Zn | 0.89 ± 0.14 | 2.56 ± 0.78 | |
dai + Cu | 0.94 ± 0.15 | 1.71 ± 0.28 a | 41% |
dai + Ca | 0.98 ± 0.17 | 2.81 ± 0.66 | |
dai + Se | 1.03 ± 0.15 | 2.49 ± 0.47 | |
dai + Fe | 1.00 ± 0.12 | 2.03 ± 0.36 | 30% |
eq | 1.03 ± 0.09 | 2.08 ± 0.30 | 29% |
eq + Zn | 0.96 ± 0.06 | 2.19 ± 0.38 | 25% |
eq + Cu | 1.01 ± 0.06 | 1.61 ± 0.32 b | 45% |
eq + Ca | 1.04 ± 0.12 | 2.55 ± 0.50 b | |
eq + Se | 1.08 ± 0.13 | 2.22 ± 0.40 | 24% |
eq + Fe | 0.96 ± 0.13 | 1.80 ± 0.24 b | 38% |
2AA 1 mg/L | 0.92 ± 0.10 | 2.37 ± 0.48 | |
dai | 0.92 ± 0.16 | 2.09 ± 0.45 | |
dai + Zn | 0.88 ± 0.09 | 1.93 ± 0.25 | 19% |
dai + Cu | 0.94 ± 0.14 | 1.54 ± 0.22 a | 35% |
dai + Ca | 0.99 ± 0.13 | 2.15 ± 0.32 | |
dai + Se | 1.00 ± 0.15 | 2.00 ± 0.31 | |
dai + Fe | 0.90 ± 0.15 | 1.75 ± 0.29 a | 26% |
eq | 0.99 ± 0.11 | 1.58 ± 0.18 | 34% |
eq + Zn | 0.94 ± 0.10 | 1.62 ± 0.17 | 32% |
eq + Cu | 1.03 ± 0.09 | 1.17 ± 0.14 b | 51% |
eq + Ca | 1.09 ± 0.10 | 1.76 ± 0.23 b | 26% |
eq + Se | 1.16 ± 0.10 | 1.80 ± 0.38 | 24% |
eq + Fe | 1.06 ± 0.06 | 1.51 ± 0.26 | 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławska, I.J.; Figat, R.; Kiss, A.K.; Bobrowska-Korczak, B. Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients 2022, 14, 1225. https://doi.org/10.3390/nu14061225
Stanisławska IJ, Figat R, Kiss AK, Bobrowska-Korczak B. Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients. 2022; 14(6):1225. https://doi.org/10.3390/nu14061225
Chicago/Turabian StyleStanisławska, Iwona J., Ramona Figat, Anna K. Kiss, and Barbara Bobrowska-Korczak. 2022. "Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer" Nutrients 14, no. 6: 1225. https://doi.org/10.3390/nu14061225
APA StyleStanisławska, I. J., Figat, R., Kiss, A. K., & Bobrowska-Korczak, B. (2022). Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer. Nutrients, 14(6), 1225. https://doi.org/10.3390/nu14061225