Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Database Search
2.4. Main Outcomes and Measures
2.5. Data Extraction
2.6. Quality Assessment
2.7. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Effect of CM Intake on Glycemic Control Parameters
3.4. Subgroup Analysis
3.5. Quality Assessment and Publication Bias
3.6. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, J.A.d.; Souza, E.C.F.d.; Echazú Böschemeier, A.G.; Costa, C.C.M.d.; Bezerra, H.S.; Feitosa, E.E.L.C. Diagnosis of diabetes mellitus and living with a chronic condition: Participatory study. BMC Public Health 2018, 18, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.idf.org/news/240:diabetes-now-affects-one-in-10-adults-worldwide.html (accessed on 12 December 2021).
- Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc. Pharmacol. 2013, 58, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Rudkowska, I. Functional foods for health: Focus on diabetes. Maturitas 2009, 62, 263–269. [Google Scholar] [CrossRef]
- Birdee, G.S.; Yeh, G. Complementary and Alternative Medicine Therapies for Diabetes: A Clinical Review. Clin. Diabetes 2010, 28, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Radwan, H.; Hasan, H.; Hamadeh, R.; Hashim, M.; AbdulWahid, Z.; Hassanzadeh Gerashi, M.; Al Hilali, M.; Naja, F. Complementary and alternative medicine use among patients with type 2 diabetes living in the United Arab Emirates. BMC Complement. Med. Ther. 2020, 20, 216. [Google Scholar] [CrossRef]
- Fabian, E.; Töscher, S.; Elmadfa, I.; Pieber, T.R. Use of complementary and alternative medicine supplements in patients with diabetes mellitus. Ann. Nutr. Metab. 2011, 58, 101–108. [Google Scholar] [CrossRef]
- Chang, H.y.; Wallis, M.; Tiralongo, E. Use of complementary and alternative medicine among people living with diabetes: Literature review. J. Adv. Nurs. 2007, 58, 307–319. [Google Scholar] [CrossRef]
- Al-Haj, O.A.; Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Shamsia, S. Nutritional and therapeutic properties of camel and human milks. Int. J. Genet. Mol. Biol. 2009, 1, 52–58. [Google Scholar]
- Antony, P.; Vijayan, R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- El-Agamy, E.I. Bioactive components in camel milk. Bioact. Compon. Milk Dairy Prod. 2009, 107, 159–192. [Google Scholar]
- Faris, M.E.; Ghazzawi, H. Health-Improving and Disease-Preventing Potential of Camel Milk Against Chronic Diseases and Autism: Camel Milk and Chronic Diseases. In Handbook of Research on Health and Environmental Benefits of Camel Products; Omar Amin, A., Bernard, F., Rajendra Prasad, A., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 155–184. [Google Scholar] [CrossRef]
- Amr, A.M.; Takruri, H.R.; Shomaf, M.S.; Alhaj, O.A.; Al-Islam, M.E.; Faris, E.; Abdel-Rahman, W.M. Fermented camel (Camelus dromedarius) and bovine milk attenuate azoxymethane-induced colonic aberrant crypt foci in Fischer 344 rats. Pak. J. Nutr. 2018, 17, 179–189. [Google Scholar] [CrossRef]
- Alavi, F.; Salami, M.; Emam-Djomeh, Z.; Mohammadian, M. Chapter 36—Nutraceutical Properties of Camel Milk. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 451–468. [Google Scholar] [CrossRef]
- Mihic, T.; Rainkie, D.; Wilby, K.J.; Pawluk, S.A. The therapeutic effects of camel milk: A systematic review of animal and human trials. J. Evid.-Based Complement. Altern. Med. 2016, 21, NP110–NP126. [Google Scholar] [CrossRef]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Kumar, D.; Verma, A.K.; Chatli, M.K.; Singh, R.; Kumar, P.; Mehta, N.; Malav, O.P. Camel milk: Alternative milk for human consumption and its health benefits. Nutr. Food Sci. 2016, 46, 217–227. [Google Scholar] [CrossRef]
- Mohammadabadi, T. The unique effects of camel milk as adjunctive super food on the health. World J. Pharm. Sci. 2021, 9, 97–106. [Google Scholar]
- Muthukumaran, M.S.; Mudgil, P.; Baba, W.N.; Ayoub, M.A.; Maqsood, S. A comprehensive review on health benefits, nutritional composition, and processed products of camel milk. Food Rev. Int. 2022, 1–37. [Google Scholar] [CrossRef]
- Rajendra Prasad, A.; Ritvik, A.; Faris, M.E.; Ghazzawi, H.A. Potential Anti-Diabetic Effect of Camel Milk. In Handbook of Research on Health and Environmental Benefits of Camel Products; Omar Amin, A., Bernard, F., Rajendra Prasad, A., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 185–196. [Google Scholar] [CrossRef]
- Agrawal, R.; Budania, S.; Sharma, P.; Gupta, R.; Kochar, D.; Panwar, R.; Sahani, M. Zero prevalence of diabetes in camel milk consuming Raica community of north-west Rajasthan, India. Diabetes Res. Clin. Pract. 2007, 76, 290–296. [Google Scholar] [CrossRef]
- Mirmiran, P.; Ejtahed, H.-S.; Angoorani, P.; Eslami, F.; Azizi, F. Camel Milk Has Beneficial Effects on Diabetes Mellitus: A Systematic Review. Int. J. Endocrinol. Metab. 2017, 15, e42150. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuinness, L.A.; Higgins, J.P. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.; Hedges, L.; Valentine, J. Chapter 12, Effect sizes for continuous data. In The Handbook of Research Synthesis and Meta-analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 221–235. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Ioannidis, J.P.A.; Terrin, N.; Schmid, C.H.; Olkin, I. The case of the misleading funnel plot. BMJ 2006, 333, 597–600. [Google Scholar] [CrossRef] [Green Version]
- Duval, S.; Tweedie, R. A Nonparametric “Trim and Fill” Method of Accounting for Publication Bias in Meta-Analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Agrawal, R.; Beniwal, R.; Sharma, S.; Kochar, D.; Tuteja, F.; Ghorui, S.; Sahani, M. Effect of raw camel milk in type 1 diabetic patients: 1 year randomised study. J. Camel Pract. Res. 2005, 12, 27. [Google Scholar]
- Agrawal, R.; Jain, S.; Shah, S.; Chopra, A.; Agarwal, V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. Eur. J. Clin. Nutr. 2011, 65, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Sharma, P.; Gafoorunissa, S.J.; Ibrahim, S.A.; Shah, B.; Shukla, D.; Kaur, T. Effect of camel milk on glucose metabolism in adults with normal glucose tolerance and type 2 diabetes in Raica community: A crossover study. Acta Biomed. 2011, 82, 181–186. [Google Scholar]
- Agrawal, R.; Swami, S.; Beniwal, R.; Kochar, D.; Sahani, M.; Tuteja, F.; Ghouri, S. Effect of camel milk on glycemic control, risk factors and diabetes quality of life in type-1 diabetes: A randomized prospective controlled study. J. Camel Pract. Res. 2003, 10, 45–50. [Google Scholar]
- Ejtahed, H.S.; Naslaji, A.N.; Mirmiran, P.; Yeganeh, M.Z.; Hedayati, M.; Azizi, F.; Movahedi, A.M. Effect of camel milk on blood sugar and lipid profile of patients with type 2 diabetes: A pilot clinical trial. Int. J. Endocrinol. Metab. 2015, 13, e21160. [Google Scholar] [CrossRef] [Green Version]
- Fallah, Z.; Ejtahed, H.-S.; Mirmiran, P.; Naslaji, A.N.; Movahedi, A.M.; Azizi, F. Effect of camel milk on glycaemic control and lipid profile of patients with type 2 diabetes: Randomised controlled clinical trial. Int. Dairy J. 2020, 101, 104568. [Google Scholar] [CrossRef]
- Fallah, Z.; Feizi, A.; Hashemipour, M.; Kelishadi, R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. J. Res. Med. Sci. 2018, 23, 32. [Google Scholar]
- El-Sayed, M.; Al-Shoeibi, Z.; El-Ghany, A.; Atef, Z. Effects of camels milk as a vehicle for insulin on glycaemic control and lipid profile in Type 1 diabetics. Am. J. Biochem. Biotechnol. 2011, 7, 179–189. [Google Scholar]
- Abdalla, K.; Fadlalla, A. Effects of Sudanese Dromedary’s Camel Raw Milk on Insulin Doses and Carbohydrate Metabolism in Type 1 Diabetic Patients. J. Biomol. Res. 2018, 7, 2. [Google Scholar] [CrossRef]
- Margdarinejad, M.; Sanagoo, A.; Zadeh, F.M.; Amirkhanloo, S.; Eshghinia, S.; Jouybari, L. Effect of camel milk in comparison with cow milk on blood glucose and lipid profile in patients with type 2 diabetes: A randomized clinical trial. J. Nurs. Midwifery Sci. 2021, 8, 15. [Google Scholar]
- Mohamad, R.H.; Zekry, Z.K.; Al-Mehdar, H.A.; Salama, O.; El-Shaieb, S.E.; El-Basmy, A.A.; Al-said, M.G.A.M.; Sharawy, S.M. Camel milk as an adjuvant therapy for the treatment of type 1 diabetes: Verification of a traditional ethnomedical practice. J. Med. Food 2009, 12, 461–465. [Google Scholar] [CrossRef]
- Mostafa, O.A.; Al-Musa, H.M. Effect of camel’s milk intake on control of diabetes: A randomized controlled trial. Med. J. Cairo Univ. 2014, 82, 53–59. [Google Scholar]
- Shareha, A.M.; Abujnah, Y.S.; Gnan, S.O.; Elhririg, M.A. Effect of raw camel milk on type 2 diabetic patients. Libyan J. Agric. 2016, 21, 74–85. [Google Scholar]
- Wang, S.; Liang, J.; Song, N.; Shao, W.; Heng, H. Effect of raw camel milk in type 2 diabetes animal models and patients: Ten months randomised study. J. Camel Pract. Res. 2009, 16, 107–113. [Google Scholar]
- Sboui, A.; Djegham, M.; Khorchani, T.; Hammadi, M.; Barhoumi, K.; Belhadj, O. Effect of camel milk on blood glucose, cholesterol and total proteins variations in alloxan-induced diabetic dogs. Int. J. Diabetes Metab. 2010, 18, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Sboui, A.; Khorchani, T.; Djegham, M.; Agrebi, A.; Elhatmi, H.; Belhadj, O. Anti-diabetic effect of camel milk in alloxan-induced diabetic dogs: A dose–response experiment. J. Anim. Physiol. Anim. Nutr. 2010, 94, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Zahzeh, T. Raw camel milk properties on alloxan-induced diabetic wistar rats. Rom. J. Diabetes Nutr. Metab. Dis. 2017, 24, 41–47. [Google Scholar]
- Khan, A.A.; Alzohairy, M.A.; Mohieldein, A. Antidiabetic effects of camel milk in streptozotocin-induced diabetic rats. Am J Biochem. Mol. Biol. 2013, 3, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Sahani, M.; Agarwal, R.; Tuteja, F.; Aminudeen, A.; Singh, R.; Sena, D. Hypoglycemic activity of camel milk in straptozotocin induced hyperglycemia in rats. Indian J. Anim. Sci. 2005, 75, 12. [Google Scholar]
- Agrawal, R.; Kochar, D.; Sahani, M.; Tuteja, F.; Ghorui, S. Hypoglycemic activity of camel milk in streptozotocin-induced diabetic rats. Int. J. Diab. Dev. Ctries. 2004, 24, 47–49. [Google Scholar]
- Usman, M.; Ali, M.; Qureshi, A.; Ateeq, M.; Nisa, F. Short term effect of dose-dependent camel milk in Alloxan induced diabetes in female albino rats. JAPS J. Anim. Plant Sci. 2018, 28, 1292–1300. [Google Scholar]
- Korish, A. The antidiabetic action of camel milk in experimental type 2 diabetes mellitus: An overview on the changes in incretin hormones, insulin resistance, and inflammatory cytokines. Horm. Metab. Res. 2014, 46, 404–411. [Google Scholar] [CrossRef]
- Korish, A.A.; Abdel Gader, A.G.; Korashy, H.M.; Al-Drees, A.M.; Alhaider, A.A.; Arafah, M.M. Camel milk attenuates the biochemical and morphological features of diabetic nephropathy: Inhibition of Smad1 and collagen type IV synthesis. Chem.-Biol. Interact. 2015, 229, 100–108. [Google Scholar] [CrossRef]
- Hussain, H.; Wattoo, F.H.; Wattoo, M.H.S.; Gulfraz, M.; Masud, T.; Shah, I.; Ali, S.; Alavi, S.E. Camel milk as an alternative treatment regimen for diabetes therapy. Food Sci. Nutr. 2021, 9, 1347–1356. [Google Scholar] [CrossRef]
- Malik, A.; Al-Senaidy, A.; Skrzypczak-Jankun, E.; Jankun, J. A study of the anti-diabetic agents of camel milk. Int. J. Mol. Med. 2012, 30, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, M.A.; Palakkott, A.R.; Ashraf, A.; Iratni, R. The molecular basis of the anti-diabetic properties of camel milk. Diabetes Res. Clin. Pract. 2018, 146, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Aqib, A.I.; Fakhar-e-Alam Kulyar, M.; Ashfaq, K.; Bhutta, Z.A.; Shoaib, M.; Ahmed, R. Camel milk insuline: Pathophysiological and molecular repository. Trends Food Sci. Technol. 2019, 88, 497–504. [Google Scholar] [CrossRef]
- Shori, A.B. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo studies. J. Food Drug Anal. 2015, 23, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadabadi, T. Camel Milk; A Superfood as a Treatment for Diabetes. EC Nutr. 2019, 14, 922–933. [Google Scholar]
- Agrawal, R.; Swami, S.; Beniwal, R.; Kochar, D.; Sahani, M.; Tuteja, F.; Ghorui, S. Effect of camel milk on glycemic control, lipid profile and diabetes quality of life in type 1 diabetes: A randomised prospective controlled cross over study. Indian J. Anim. Sci. 2003, 73, 1105–1110. [Google Scholar]
- Agrawal, R.; Beniwal, R.; Kochar, D.; Tuteja, F.; Ghorui, S.; Sahani, M.; Sharma, S. Camel milk as an adjunct to insulin therapy improves long-term glycemic control and reduction in doses of insulin in patients with type-1 diabetes A 1-year randomized controlled trial. Diabetes Res. Clin. Pract. 2005, 68, 176–177. [Google Scholar] [CrossRef]
- Agrawal, R.P.; Saran, S.; Sharma, P.; Gupta, R.P.; Kochar, D.K.; Sahani, M.S. Effect of camel milk on residual beta-cell function in recent onset type 1 diabetes. Diabetes Res. Clin. Pract. 2007, 77, 494–495. [Google Scholar] [CrossRef]
- Almohmadi, W.; Allen, J. Glucose Regulatory Hormones in Camel, Cow, Goat, and Human Milk (P06-034-19). Curr. Dev. Nutr. 2019, 3, 6–34. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, A.O.; Ismael, M.A.; Al-Hosaini, K.; Rame, C.; Al-Senaidy, A.M.; Dupont, J.; Ayoub, M.A. Differential Effects of Camel Milk on Insulin Receptor Signaling—Toward Understanding the Insulin-Like Properties of Camel Milk. Front. Endocrinol. 2016, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.A.; Nassan, M.A.; Saleh, O.M.; Soliman, M.M. Protective effect of camel milk as anti-diabetic supplement: Biochemical, molecular and immunohistochemical study. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Abou Khalil, N.S.; Abou-Elhamd, A.S.; Wasfy, S.I.A.; El Mileegy, I.M.H.; Hamed, M.Y.; Ageely, H.M. Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats. J. Diabetes Res. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, B.; Ata, A.; Anil Kumar, N.V.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Tsouh Fokou, P.V.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005, 26, 19. [Google Scholar] [PubMed]
- Richardson, T.; Kerr, D. Skin-related complications of insulin therapy. Am. J. Clin. Dermatol. 2003, 4, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.R.; Isono, H.; Miyata, T. Potential antioxidant bioactive peptides from camel milk proteins. Anim. Nutr. 2018, 4, 273–280. [Google Scholar] [CrossRef]
- Deacon, C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali Redha, A.; Valizadenia, H.; Siddiqui, S.A.; Maqsood, S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem. 2022, 373, 131444. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J. Funct. Foods 2017, 34, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem. 2019, 279, 70–79. [Google Scholar] [CrossRef]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.A.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Ayyash, M.; Al-Dhaheri, A.S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. J. Dairy Sci. 2018, 101, 900–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, W.N.; Mudgil, P.; Kamal, H.; Kilari, B.P.; Gan, C.-Y.; Maqsood, S. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J. Dairy Sci. 2021, 104, 1364–1377. [Google Scholar] [CrossRef] [PubMed]
- Layer, P.; Zinsmeister, A.R.; DiMagno, E.P. Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 1986, 91, 41–48. [Google Scholar] [CrossRef]
- Ayyash, M.; Al-Nuaimi, A.K.; Al-Mahadin, S.; Liu, S.-Q. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chem. 2018, 239, 588–597. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Almazrouei, N.; Galiwango, E.; Esposito, G.; Hunashal, Y.; Hamed, F.; Najjar, Z. Exopolysaccharide produced by the potential probiotic Lactococcus garvieae C47: Structural characteristics, rheological properties, bioactivities and impact on fermented camel milk. Food Chem. 2020, 333, 127418. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Al-Dhaheri, A.S.; Al-Hemeiri, R.; Kizhakkayil, J.; Al-Nabulsi, A.; Abushelaibi, A.; Shah, N.P.; Ayyash, M. Health-promoting benefits of low-fat akawi cheese made by exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk. J. Dairy Sci. 2017, 100, 7771–7779. [Google Scholar] [CrossRef]
- Elagamy, E.I. Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: A comparison with cows’ and buffalo milk proteins. Food Chem. 2000, 68, 227–232. [Google Scholar] [CrossRef]
- Solanki, D.; Hati, S. Fermented camel milk: A Review on its bio-functional properties. Emir. J. Food Agric. 2018, 268–274. [Google Scholar]
Search Strategy Item | Search Strategy Details |
---|---|
String of keywords | “Camel milk” OR “dromedary camel milk” OR “Arabian camel milk” AND “diabetes” OR “diabetes mellitus” OR “type 1 diabetes” OR “T1DM” OR “type 2 diabetes” OR “T2DM” OR “juvenile diabetes” OR “adulthood diabetes” AND “insulin” OR “glycemic control” OR “glucose homeostasis” OR “glucose” OR “glycosylated/glycated hemoglobin” OR “HbA1c” OR “Fasting blood glucose” OR “FBG” OR Postprandial blood glucose” OR “PBG”. |
Searched databases | Google Scholar, PubMed/MEDLINE, EBSCOhost, CINAHL, ScienceDirect, Cochrane, ProQuest Medical, Web of Science, and Scopus databases |
Inclusion criteria | P (People): All patients with diabetes (T1DM, T2DM), including males/females, >18 years age group, from unspecified ethnic/racial backgrounds. I (Intervention/exposure): Intake of camel milk (CM), in any form (fresh, dried/reconstituted, fermented/cultured) for any time duration. C (Comparison): Comparing consumers with non-consumers of CM, routine or usual diabetes care. O (Outcome): Effect size of consuming CM on glycemic control in patients with diabetes, fasting blood glucose (FBG), postprandial blood glucose (PBG), glycosylated hemoglobin (HbA1c), fasting serum insulin (FI), insulin resistance (expressed in terms of HOMA-IR), insulin dose (ID), serum insulin antibody (IA), and C-peptide (CP) S (study type): Original research, experimental/randomized controlled trial (RCT) study is eligible for inclusion. |
Exclusion criteria | P (People): Healthy, non-diabetic people, studies exclusively on children with diabetes, athletes, pregnant, lactating, patients with other comorbidities I (Intervention/exposure): Non-CM. C (Comparison): Non-diabetes comparator. O (Outcome): Outcomes not described in sufficient numerical details for the glycemic control measures (using curves, graphs without numerical presentations). S (study type): Editorials, paper abstracts, case reports, commentaries, expert opinions, letters to the editor, reviews, conference abstracts or proceedings; non-peer-reviewed and unpublished data. |
Moderators for meta-regression | Continuous, including the age of patients, time duration of CM intake (days/weeks/months) Dichotomous, including sex (male/female) and type of diabetes (T1DM, T2DM), duration of intake (more than 6 months, equal or less than 6 months). |
Time filter | None applied (search from inception) |
Language filter | English language only |
Hand-searched target journals | Foods, Nutrients, International Dairy Journal, BMC Complementary Medicine and Therapies |
Authors, Publication Year | Country/City | Sample Size n (%Male) | Mean Age/Age Range (Year) | Study Design | Tested Glucose Homeostasis Parameters | Type of Diabetes (Type 1; Type 2) | Type of CM (Fresh or Pasteurized/Fermented) | Quantity of CM Consumed (mL/day) by CM Group | Duration of Intervention (>6 Months, ≤6 Months) | Parameters of the CM Group | Parameters of the Control Group | Results (CM Group Consumption Compared with Control) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before Treatment | After Treatment | Before Treatment | After Treatment | |||||||||||
Margdarinejad et al., 2021 [41] | Iran (Gorgan) | 49 (44.9) | Age: >18 | Randomized, case-control clinical trial | FBG, HbA1c | T2DM | Fresh | 500 | 60 days (<6 months) | FBG: 163.08 ± 73.81 HbA1c: 7.56 ± 1.60 | FBG: 155.25 ± 51.95 HbA1c: (5.82 ± 0.94 | FBG: 135.84 ± 54.49 HbA1c: 7.48 ± 1.61 | FBG: 152.28 ± 53.31 HbA1c: 8.06 ± 1.79 |
|
Fallah et al., 2020 [37] | Iran (Tehran) | 36 (36.11) | Age range: 30–70 | Randomized parallel-group clinical trial | FBG, FI, ID, HbA1c, HOMA-IR | T2DM | Fresh | 500 | 90 days (<6 months) | FBG: 169.3 ± 78.9 FI: 3.8 ± 2.8 ID: 31 ± 22 HbA1c: 12.7 ± 2.6 HOMA-IR: 1.7 ± 2 | FBG: 148.4 ± 59.5 FI: 3.3 ± 0.4 ID: 26 ± 16.7 HbA1c: 9.4 ± 0.3 HOMA-IR: 1.2 ± 0.2 | FBG: 143.2 ± 56.5 FI: 4.5 ± 4.1 ID: 43 ± 22.4 HbA1c: 11.2 ± 3.3 HOMA-IR: 2 ± 2.8 | FBG: 152 ± 51.4 FI: 2.9 ± 0.4 ID: 43 ± 23.1 HbA1c: 9.5 ± 0.3 HOMA-IR: 1.2 ± 0.2 |
|
Fallah et al., 2018 [38] | Iran | 24 (42) | Age Range: 11–18; Mean: 13.77 | Randomized, double-blind, crossover, controlled clinical trial | FBG, FI, HOMA-IR | Pre-diabetes | Fermented | 250 | 112 days (<6 months) | FBG: 89.83 ± 7.14 FI: 2.82 ± 1.31 HOMA-IR: 3.78 ± 1.85 | FBG: 94.66 ± 8.03 FI: 3.12 ± 0.66 HOMA-IR: 4.32 ± 0.83 | FBG: 89.21 ± 8.64 FI: 2.57 ± 1.34 HOMA-IR: 3.34 ± 1.69 | FBG: 89.96 ± 6.10 FI: 2.97 ± 1.30 HOMA-IR: 3.94 ± 1.66 |
|
Abdalla and Fadlalla, 2018 [40] | Sudan | 30 (26.67) | Age range: 8–19 | Randomized, open case-control, parallel | FBG, PBG, ID, HbA1c | T1DM | Fresh | 500 | 365 days (>6 months) | FBG: 286 ± 108 PBG: 264 ± 136 ID: 75.8 ± 25.5 HbA1c: 7.3 ± 2.9 | FBG: 95 ± 22 PBG: 93.5 ± 17.5 ID: 42.75 ± 22.5 HbA1c: 4.6 ± 1.5 | FBG: 335.5 ± 158.5 PBG: 334.5 ± 149.5 ID: 56.5 ± 32.5 HbA1c: 8.15 ± 0.85 | FBG: 94.5 ± 15.5 PBG: 93.5 ± 14.5 ID: 74 ± 41 HbA1c: 5.75 ± 0.75 |
|
Shareha et al., 2016 [44] | Libya (Tripoli) | 43 (100) | Age range: 40–65 | Randomized as study | FBG, HbA1c | T2DM | Fresh | 500 | 90 days (<6 months) | FBG: 193.86 ± 5.29 HbA1c: 8.11 ± 0.50 | FBG: 168.52 ± 3.88 HbA1c: 7.04 ± 0.07 | FBG: 202.18 ± 3.67 HbA1c: 8.05 ± 0.57 | FBG: 193.18 ± 3.12 HbA1c: 7.73 ± 0.10 |
|
Ejtahed et al., 2015 [36] | Iran (Tehran) | 20 (30) | Age range: 20–70 | Randomized single-blinded controlled clinical trial | FBG, FI, HOMA-IR | T2DM | Pasteurized | 500 | 60 days (<6 months) | FBG: 168.84 ± 50.94 FI: 10.77 ± 13.20 HOMA-IR: 3.4 ± 2.9 | FBG: 169.92 ± 45.90 FI: 14.01 ± 13.31 HOMA-IR: 4.7 ± 3.6 | FBG: 145 ± 43 FI: 10.30 ± 6.60 HOMA-IR: 3.0 ± 2.4 | FBG: 161 ± 58 FI: 11.69 ± 6.25 HOMA-IR: 4.0 ± 2.3 |
|
Mostafa and Al-Musa, 2014 [43] | Saudi Arabia (Abha City) | 250 (52.80) | Mean age: 38 | Randomized, non-blinded, control trial | FBG, PBG, HbA1c | T1 and T2 DM | Pasteurized | 250 mL (twice a week) | 183 days (≤6 months) | T1DM: FBG: 211.67 ± 94.68 PBG: 198.61 ± 91.48 HbA1c: 8.55 ± 1.11 T2DM: FBG: 152.36 ± 38.50 PBG: 130.50 ± 32.37 HbA1c: 8.16 ± 0.82 | T1DM: FBG: 211.00 ± 94.36 PBG: 192.54 ± 91.48 HbA1c: 8.36 ± 1.01 T2DM: FBG: 152.50 ± 37.59 PBG: 132.90 ± 33.44 HbA1c: 7.81 ± 0.84 | T1DM: FBG: 209 ± 97.27 PBG: 207.22 ± 99.01 HbA1c: 8.99 ± 1.26 T2DM: FBG: 151.77 ± 41.35 PBG: 151.30 ± 36.77 HbA1c: 8.15 ± 0.86 | T1DM: FBG: 208.61 ± 96.04 PBG: 211.39 ± 97.76 HbA1c: 9.01 ± 1.26 T2DM: FBG: 152.95 ± 40.95 PBG: 153.07 ± 38.22 HbA1c: 8.12 ± 0.86 |
|
Agrawal et al., 2011a [33] | India (Bikaner) | 24 (70.8) | Age range: 14–16 | A randomized, open clinical, parallel, controlled trial | FBG, FI, ID, HbA1c, IA, CP | T1DM | Fresh | 500 | 730 days (>6 months) | FBG: 118.58 ± 19 FI: 18.66 ± 2.81 ID: 32.50 ± 9.99 HbA1c: 7.81 ± 1.39 IA: 19.48 ± 4.22 CP: 0.16 ± 0.08 | FBG: 93.16 ± 17.06 FI: 19.05 ± 2.55 ID: 17.50 ± 12.09 HbA1c: 5.44 ± 0.81 IA: 18.76 ± 2.89 CP: 0.21 ± 0.1 | FBG: (120.75 ± 17.29 FI: 18.96 ± 3.02 ID: 32.75 ± 11.79 HbA1c: 7.54 ± 1.38 IA: 19.84 ± 3.21 CP: 0.13 ± 0.06 | FBG: 122 ± 25.35 FI: 20.84 ± 3.69 ID: 34 ± 10.92 HbA1c: 6.83 ± 1.46 IA: 18.96 ± 2.11 CP: 0.14 ± 0.09 |
|
Agrawal et al., 2011b [33] | India (Raica, Non-Raica community) | 28 (89) | Age range: 44–54 | A crossover study | FBG, FI, HbA1c, PBG, HOMA-IR, CP | T2DM | Fresh | 500 | 90 days (<6 months) | FBG: 184 ± 19 FI: 13 ± 1 HbA1c: 8.4 ± 0.6 PBG: 269 ± 29 HOMA-IR: 6 ± 1 CP: 3.1 ± 0.3 | FBG: 161 ± 11 FI: 11 ± 1 HbA1c: 7.3 ± 0.7 PBG: 214 ± 16 HOMA-IR: 5 ± 1 CP: 3.0 ± 0.3 | FBG: 86 ± 2 FI: 7 ± 2 HbA1c: 4.9 ± 0.2 PBG: 106 ± 8 HOMA-IR: 1.7 ± 0.5 CP: 1.8 ± 0.2 | FBG: 100 ± 3 FI: 10 ± 4 HbA1c: 4.6 ± 0.2 PBG: 97 ± 4 HOMA-IR: 2.5 ± 1.1 CP: 2.5 ± 1.1 |
|
El-Sayed et al., 2011 [39] | Yemen | 45 (66.7) | Age range: 19–20 | Randomized study | FBG, HbA1c, PBG, ID | T1DM | Fresh | 500 | 90 day (<6 months) | Group B: FBG: 199.46 ± 4 HbA1c: 9.7 ± 0.39 PBG: 345.6 ± 6.3 ID: 55.1 ± 1.4 | Group B: FBG: 155.13 ± 3.5 HbA1c: 7.28 ± 0.23 PBG: 239.2 ± 5.5 ID: 36.2 ± 1.22 | FBG: 195.6 ± 2.01 HbA1c: 9.39 ± 0.39 PBG: 339.6 ± 10 ID: 50 ± 0.64 | FBG: 173.4 ± 1.66 HbA1c: 9.27 ± 0.36 PBG: 299.1 ± 8.9 ID: 45.46 ± 0.9 |
|
Mohamad et al., 2009 [42] | Egypt (Cairo) | 54 (70.4) | Age range: 17–20 | Randomized controlled | FBG, FI, ID, HbA1c, IA, CP | T1DM | Fresh | 500 | 122 days (<6 months) | FBG: 229.9 ± 7.2 FI: 1.83 ± 1.51 ID: 40.83 ± 6.95 HbA1c: 9.459 ± 2.10 IA: 27.92 ± 5.45 CP: 0.22 ± 0.61 | FBG: 98.9 ± 16.2 FI: (5.0 ± 1.32 ID: 23 ± 4.05 HbA1c: 7.16 ± 1.84 IA: 20.92 ± 5.45 CP: 2.3 ± 0.51 | FBG: 228.2 ± 17.7 FI: 1.75 ± 0.62 ID: 40.83 ± 6.95 HbA1c: 9.59 ± 2.05 IA: 28.20 ± 7.69 CP: 0.24 ± 0.6 | FBG: 227.2 ± 17.7 FI: 1.8 ± 0.45 ID: 48.1 ± 6.95 HbA1c: 9.59 ± 2.05 IA: 26.20 ± 7.69 CP: 0.28 ± 0.6 |
|
Wang et al., 2009 [45] | China (Beijing) | 12 (83.33) | Age range: 49–50 | Randomized control trial | FBG, FI | T2DM | Fresh | 500 | 304 days (>6 months) | FBG: 123 ± 19.8 FI: 19.76 ± 2.3 | FBG: 94.2 ± 14.3 FI: 6.21 ± 0.56 | FBG: 125 ± 18.5 FI: 19.45 ± 2.2 | FBG 103 ± 16.7: FI: 7.89 ± 0.67 |
|
Agrawal et al., 2005 [32] | India (Bikaner) | 24 (83.3) | Age range: 13–15 | Randomized study | FBG, FI, ID, HbA1c, IA, CP | T1DM | Fresh | 500 | 365 days (>6 months) | FBG: 119 ± 19 FI: 6.91 ± 2.13 ID: 32 ± 12 HbA1c: 7.80 ± 1.38 IA: 22.92 ± 5.45 CP: 0.18 ± 0.04 | FBG: 95.42 ± 15.70 FI: 18.17 ± 7.12 ID: 17.83 ± 12.40 HbA1c: 6 ± 0.96 IA: 21.84 ± 7.34 CP: 0.24 ± 0.07 | FBG: 121 ± 17.3 FI: 7.73 ± 2.42 ID: 33 ± 11 HbA1c: 7.54 ± 1.38 IA: 22.2 ± 7.69 CP: 0.22 ± 0.03 | FBG: 105.25 ± 14.50 FI: 19.54 ± 0.43 ID: 30.16 ± 8.45 HbA1c: 7.63 ± 1.03 IA: 19.70 ± 8.40 CP: 0.21 ±0.06 |
|
Agrawal et al., 2003 [35] | India (Bikaner) | 24 (83.3) | Age range: 19–20 | Randomized, open case-control, parallel | FBG, FI, ID, HbA1c, CP | T1DM | Fresh 1 | 500 | 90 days (<6 months) | FBG: 115.16 FI: 16.79 ID: 41.16 HbA1c: 9.54 CP: 1.26 | FBG: 100 FI: 16.94 ID: 30 HbA1c: 9.08 CP: 2.22 | FBG: 117.16 FI: 16.37 ID: 40 HbA1c: 9.51 CP: 1.24 | FBG: 118.16 FI: 16.31 ID: 38.5 HbA1c: 9.48 CP: 2.28 |
|
Subgroup | Number of Studies | Number of Participants | Effect Estimate [Mean Difference, 95% CI] | I2 | p-Value |
---|---|---|---|---|---|
Fasting blood glucose levels (mg/dL) | |||||
Type of diabetes | |||||
Type 2 diabetes | 8 | 400 | −15.62 [−26.71, −4.54] | 66% | 0.006 |
Type 1 diabetes | 7 | 217 | −27.20 [−73.97, 19.57] | 99% | 0.25 |
Duration of intervention | |||||
>6 months | 4 | 547 | −13.26 [−27.38, 0.85] | 71% | 0.07 |
≤6 months | 11 | 94 | −29.57 [−61.30, 2.15] | 99% | 0.07 |
Type of CM | |||||
Pasteurized/Fermented | 4 | 294 | 1.87 [−2.46, 6.20] | 0% | 0.40 |
Fresh | 11 | 347 | −30.12 [−61.55, 1.32] | 98% | 0.06 |
HbA1c (%) | |||||
Type of diabetes | |||||
Type 2 diabetes | 5 | 368 | −1.27 [−2.53, 0.00] | 91% | 0.05 |
Type 1 diabetes | 7 | 217 | −1.21 [−2.24,−0.19] | 92% | 0.02 |
Type of CM | |||||
Pasteurized/Fermented | 2 | 250 | −0.31 [−0.45,−0.18] | 0.0% | 0.00001 |
Fresh | 10 | 335 | −1.50 [−2.26,−0.74] | 85% | 0.0001 |
Duration of intervention | |||||
>6 months | 3 | 82 | −1.36 [−2.19,−0.53] | 71% | 0.001 |
≤6 months | 9 | 503 | −1.21 [−2.18,−0.23] | 95% | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlKurd, R.; Hanash, N.; Khalid, N.; Abdelrahim, D.N.; Khan, M.A.B.; Mahrous, L.; Radwan, H.; Naja, F.; Madkour, M.; Obaideen, K.; et al. Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 1245. https://doi.org/10.3390/nu14061245
AlKurd R, Hanash N, Khalid N, Abdelrahim DN, Khan MAB, Mahrous L, Radwan H, Naja F, Madkour M, Obaideen K, et al. Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2022; 14(6):1245. https://doi.org/10.3390/nu14061245
Chicago/Turabian StyleAlKurd, Refat, Nivine Hanash, Narmin Khalid, Dana N. Abdelrahim, Moien A. B. Khan, Lana Mahrous, Hadia Radwan, Farah Naja, Mohamed Madkour, Khaled Obaideen, and et al. 2022. "Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Nutrients 14, no. 6: 1245. https://doi.org/10.3390/nu14061245
APA StyleAlKurd, R., Hanash, N., Khalid, N., Abdelrahim, D. N., Khan, M. A. B., Mahrous, L., Radwan, H., Naja, F., Madkour, M., Obaideen, K., Abu Shihab, K., & Faris, M. (2022). Effect of Camel Milk on Glucose Homeostasis in Patients with Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 14(6), 1245. https://doi.org/10.3390/nu14061245