Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis
Abstract
:1. Introduction
2. Clinical Considerations
2.1. Presentation
2.2. Diagnosis
2.3. Subsequent Testing
3. Treatment
3.1. Types of PERT
3.2. Oral PERT Administration
3.3. PERT Administration for Bolus and Continuous Enteral Feeding
3.4. Considerations for Treatment Failure
3.5. PERT Complications
4. PERT Efficacy
5. PERT and Highly Effective Modulator Therapies
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Comeau, A.M.; Accurso, F.J.; White, T.B.; Campbell, P.W.; Hoffman, G.; Parad, R.B.; Wilfond, B.S.; Rosenfeld, M.; Sontag, M.K.; Massie, J.; et al. Guidelines for Implementation of Cystic Fibrosis Newborn Screening Programs: Cystic Fibrosis Foundation Workshop Report. Pediatrics 2007, 119, e495–e518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlas, A.; Rosh, J. Pediatric Gastroenterology and Liver Disease; Elsevier: Amsterdam, The Netherlands, 2016; pp. 999–1015. [Google Scholar]
- Andersen, D.H. Cystic Fibrosis of the Pancreas and its Relation to Celiac Disease. Am. J. Dis. Child. 1938, 2, 344–399. [Google Scholar] [CrossRef]
- Singh, V.K.; Schwarzenberg, S.J. Pancreatic insufficiency in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16, S70–S78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilschanski, M.; Durie, P.R. Pathology of pancreatic and intestinal disorders in cystic fibrosis. J. R. Soc. Med. 1998, 91, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Corey, M.; McLaughlin, F.J.; Williams, M.; Levison, H. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J. Clin. Epidemiol. 1988, 41, 583–591. [Google Scholar] [CrossRef]
- Yen, E.H.; Quinton, H.; Borowitz, D. Better Nutritional Status in Early Childhood Is Associated with Improved Clinical Outcomes and Survival in Patients with Cystic Fibrosis. J. Pediatrics 2013, 162, 530–535.e1. [Google Scholar] [CrossRef]
- Farrell, P.M.; Lai, H.J.; Li, Z.; Kosorok, M.R.; Laxova, A.; Green, C.G.; Collins, J.; Hoffman, G.; Laessig, R.; Rock, M.J.; et al. Evidence on Improved Outcomes with Early Diagnosis of Cystic Fibrosis Through Neonatal Screening: Enough is Enough! J. Pediatrics 2005, 147, S30–S36. [Google Scholar] [CrossRef]
- 2019 Patient Registry Annual Data Report. 2019. Available online: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2019-Patient-Registry-Annual-Data-Report.pdf (accessed on 22 January 2022).
- Leung, D.H.; Heltshe, S.L.; Borowitz, D.; Gelfond, D.; Kloster, M.; Heubi, J.E.; Stalvey, M.; Ramsey, B.W.; for the Baby Observational and Nutrition Study (BONUS) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Effects of Diagnosis by Newborn Screening for Cystic Fibrosis on Weight and Length in the First Year of Life. JAMA Pediatrics 2017, 171, 546. [Google Scholar] [CrossRef]
- Pietzak, M.M.; Thomas, D.W. Childhood Malabsorption. Pediatrics Rev. 2003, 24, 195–206. [Google Scholar] [CrossRef]
- Clark, R.; Johnson, R. Malabsorption Syndromes. Nurs. Clin. 2018, 53, 361–374. [Google Scholar] [CrossRef]
- Hoch, H.; Sontag, M.K.; Scarbro, S.; Juarez-Colunga, E.; McLean, C.; Kempe, A.; Sagel, S.D. Clinical outcomes in U.S. infants with cystic fibrosis from 2001 to 2012. Pediatric Pulmonol. 2018, 53, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Southern, K.W.; Munck, A.; Pollitt, R.; Travert, G.; Zanolla, L.; Dankert-Roelse, J.; Castellani, C.; on behalf of the ECFS CF Neonatal Screening Working Group. A survey of newborn screening for cystic fibrosis in Europe. J. Cyst. Fibros. 2007, 6, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, M.J.; Levy, H.; Zaleski, C.; Farrell, P.M. Factors accounting for a missed diagnosis of cystic fibrosis after newborn screening. Pediatric Pulmonol. 2011, 46, 1166–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, M.J.; Whitaker, V.; Gentin, N.; Junek, R.; Shalhoub, C.; Nightingale, S.; Hilton, J.; Wiley, V.; Wilcken, B.; Gaskin, K.J.; et al. Differences in Outcomes between Early and Late Diagnosis of Cystic Fibrosis in the Newborn Screening Era. J. Pediatrics 2017, 181, 137–145.e1. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Aghdassi, A.A.; Lerch, M.M.; Mayerle, J.V.; Layer, P. Tests of pancreatic exocrine function—Clinical significance in pancreatic and non-pancreatic disorders. Best Pract. Res. Clin. Gastroenterol. 2009, 23, 425–439. [Google Scholar] [CrossRef]
- Borowitz, D.; Robinson, K.A.; Rosenfeld, M.; Davis, S.D.; Sabadosa, K.A.; Spear, S.L.; Michel, S.H.; Parad, R.B.; White, T.B.; Farrell, P.M.; et al. Cystic Fibrosis Foundation Evidence-Based Guidelines for Management of Infants with Cystic Fibrosis. J. Pediatrics 2009, 155, S73–S93. [Google Scholar] [CrossRef]
- Walkowiak, J.; Lisowska, A.; Blask-Osipa, A.; Drzymala-Czyz, S.; Sobkowiak, P.; Cichy, W.; Breborowicz, A.; Herzig, K.; Radzikowski, A. Acid Steatocrit Determination Is Not Helpful In Cystic Fibrosis Patients Without or With Mild Steatorrhea. Pediatric Pulmonol. 2010, 45, 249–254. [Google Scholar] [CrossRef]
- Beharry, S.; Ellis, L.; Corey, M.; Marcon, M.; Durie, P. How useful is fecal pancreatic elastase 1 as a marker of exocrine pancreatic disease? J. Pediatrics 2002, 141, 84–90. [Google Scholar] [CrossRef]
- Stevens, T.; Conwell, D.L.; Zuccaro, G.; Lente, F.V.; Lopez, R.; Purich, E.; Fein, S. A prospective crossover study comparing secretin-stimulated endoscopic and Dreiling tube pancreatic function testing in patients evaluated for chronic pancreatitis. Gastrointest. Endosc. 2008, 67, 458–466. [Google Scholar] [CrossRef]
- O’Sullivan, B.P.; Baker, D.; Leung, K.G.; Reed, G.; Baker, S.S.; Borowitz, D. Evolution of Pancreatic Function during the First Year in Infants with Cystic Fibrosis. J. Pediatrics 2013, 162, 808–812.e1. [Google Scholar] [CrossRef]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowitz, D.S.; Grand, R.J.; Durie, P.R.; the Consensus Committee. Use of pancreatic enzyme supplements for patients with cystic fibrosis in the context of fibrosing colonopathy. J. Pediatrics 1995, 127, 681–684. [Google Scholar] [CrossRef]
- Padula, L.; Brownwell, J.; Reid, E.; Jansma, B.; Mascarenhas, M.; Sadgwar, S.; Shanley, L.; McKnight-Menci, H.; Maqbool, A. Childrens Hospital of Philadelphia Clinical Pathway for Pancreatic Enzyme Replacement Therapy (PERT) in Children with or at Risk for Exocrine Pancreatic Insufficiency (EPI). 2019. Available online: https://www.chop.edu/clinical-pathway/initiating-pancreatic-enzyme-replacement-therapy-pert-clinical-pathway (accessed on 22 March 2022).
- Stevens, J.; Wyatt, C.; Brown, P.; Patel, D.; Grujic, D.; Freedman, S.D. Absorption and Safety With Sustained Use of RELiZORB Evaluation (ASSURE) Study in Patients With Cystic Fibrosis Receiving Enteral Feeding. J. Pediatric Gastroenterol. Nutr. 2018, 67, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.; Orenstein, D.; Black, P.; Brown, P.; McCoy, K.; Stevens, J.; Grujic, D.; Clayton, R. Increased Fat Absorption From Enteral Formula Through an In-line Digestive Cartridge in Patients With Cystic Fibrosis. J. Pediatric Gastroenterol. Nutr. 2017, 65, 97–101. [Google Scholar] [CrossRef]
- Drzymala-Czyz, S.; Jonczyk-Potoczna, K.; Lisowska, A.; Stajgis, M.; Walkowiak, J. Supplementation of Ursodeoxycholic acid improves fat digestion and absorption in cystic fibrosis patients with mild liver involvement. Eur. J. Gastroenterol. Hepatol. 2016, 28, 645–649. [Google Scholar] [CrossRef]
- Youngberg, C.A.; Berardi, R.R.; Howatt, W.F.; Hyneck, M.L.; Amidon, G.L.; Meyer, J.H.; Dressman, J.B. Comparison of gastrointestinal pH in cystic fibrosis and healthy subjects. Digest. Dis. Sci. 1987, 32, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Brady, M.S.; Garson, J.L.; Krug, S.K.; Kaul, A.; Rickard, K.A.; Caffrey, H.H.; Fineberg, N.; Balistreri, W.F.; Stevens, J.C. An Enteric-Coated High-Buffered Pancrelipase Reduces Steatorrhea in Patients with Cystic Fibrosis: A Prospective, Randomized Study. J. Am. Diet. Assoc. 2006, 106, 1181–1186. [Google Scholar] [CrossRef]
- Borowitz, D.; Durie, P.R.; Clarke, L.L.; Werlin, S.L.; Taylor, C.J.; Semler, J.; Lisle, R.C.D.; Lewindon, P.; Lichtman, S.M.; Sinaasappel, M.; et al. Gastrointestinal Outcomes and Confounders in Cystic Fibrosis. J. Pediatric Gastroenterol. Nutr. 2005, 41, 273–285. [Google Scholar] [CrossRef]
- Proesmans, M.; Boeck, K.D. Omeprazole, a proton pump inhibitor, improves residual steatorrhoea in cystic fibrosis patients treated with high dose pancreatic enzymes. Eur. J. Pediatrics 2003, 162, 760–763. [Google Scholar] [CrossRef]
- Borowitz, D.; Gelfond, D.; Maguiness, K.; Heubi, J.E.; Ramsey, B. Maximal daily dose of pancreatic enzyme replacement therapy in infants with cystic fibrosis: A reconsideration. J. Cyst. Fibros. 2013, 12, 784–785. [Google Scholar] [CrossRef] [Green Version]
- FitzSimmons, S.C.; Burkhart, G.A.; Borowitz, D.; Grand, R.J.; Hammerstrom, T.; Durie, P.R.; Lloyd-Still, J.D.; Lowenfels, A.B. High-Dose Pancreatic-Enzyme Supplements and Fibrosing Colonopathy in Children with Cystic Fibrosis. N. Engl. J. Med. 1997, 336, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, D.; Konstan, M.W.; O’Rourke, A.; Cohen, M.; Hendeles, L.; Murray, F.T. Coefficients of Fat and Nitrogen Absorption in Healthy Subjects and Individuals with Cystic Fibrosis. J. Pediatric Pharmacol. Ther. 2007, 12, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Caras, S.; Boyd, D.; Zipfel, L.; Sander-Struckmeier, S. Evaluation of Stool Collections to Measure Efficacy of PERT in Subjects With Exocrine Pancreatic Insufficiency. J. Pediatric Gastroenterol. Nutr. 2011, 53, 634–640. [Google Scholar] [CrossRef] [PubMed]
- De la Iglesia-García, D.; Huang, W.; Szatmary, P.; Baston-Rey, I.; Gonzalez-Lopez, J.; Prada-Ramallal, G.; Mukherjee, R.; Nunes, Q.M.; Domínguez-Muñoz, J.E.; Sutton, R.; et al. Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: Systematic review and meta-analysis. Gut 2017, 66, 1354–1355. [Google Scholar] [CrossRef] [Green Version]
- Somaraju, U.R.R.; Solis-Moya, A. Pancreatic enzyme replacement therapy for people with cystic fibrosis. Cochrane Database Syst. Rev. 2020, 8, CD008227. [Google Scholar]
- Dave, K.; Dobra, R.; Scott, S.; Saunders, C.; Matthews, J.; Simmonds, N.J.; Davies, J.C. Entering the era of highly effective modulator therapies. Pediatric Pulmonol. 2021, 56, S79–S89. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Chilvers, M.; Higgins, M.; Tian, S.; et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2–5 years (KLIMB). J. Cyst. Fibros. 2019, 18, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.; Wainwright, C.E.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef]
Intestinal | Extra-Intestinal |
---|---|
Crohn’s disease Celiac disease Small intestinal bacterial overgrowth (SIBO) Infectious diarrhea (Giardia, Cryptosporidium) Brush border enzyme deficiencies Short bowel syndrome Acrodermatitis enteropathica | Cystic fibrosis Zollinger-Ellison syndrome Gastroparesis Chronic cholestasis Schwachman-Diamond syndrome Johanson-Blizzard syndrome Pearson syndrome Jeune syndrome Pancreatic aplasia Cholestatic liver disease |
Patient Age | Age-Based Dosing Recommendations | Focus Guidance About Administration | Titration |
---|---|---|---|
PERT for Oral Feeds—Use Enteric-Coated Formulation | |||
Premature and full-term infants, <12 months | Initiate when taking >60 mL per feed (formula/breastmilk). Starting dose: 3000 lipase units/feed Range: 1000–2500 lipase units/kg/feed Max: 10,000 lipase units/kg/day | Open capsule, sprinkle enzyme beads on a small amount of applesauce Administer at start of feed Give by mouth even if portion of feed is enteral Never give via feeding tube (clogs tube) Check infant’s mouth for retained beads and mucosal irritation Start skin barrier cream and monitor for perianal irritation | Increase by 1 capsule per dose based on clinical symptoms of malabsorption and/or poor weight gain Max dose may transiently exceed 10,000 lipase units per kg/day due to frequency of infant feedings |
Children and Adolescents | Starting dose 1–4 years 1000 lipase units/kg/meal Titrate to max 2500 lipase units/kg/meal ≥4 years 500 lipase units/kg/meal Titrate to max 2500 lipase units/kg/meal Range: 500–2500 units/kg/meal Max: 10,000 lipase units/kg/day Snack dose: Half of the meal dose | Give capsule by mouth Give by mouth even if portion of feed is enteral If unable to swallow capsule: open capsule, sprinkle enzyme beads on a small amount of applesauce Meals lasting longer than 30 min: split dose and administer halfway through meals | Increase by 1 capsule per dose based on clinical symptoms of malabsorption and/or poor weight gain. Consult CF RD or another PERT expert and dose as needed |
PERT for Tube Feeding—Bolus Feeds | |||
Enteric-Coated Enzyme | Weight based Starting dose Children: 500–1000 lipase units/kg/feed Range: 500–2500 lipase units/kg/feed Max: 10,000 lipase units/kg/day | Only use if patient is able to take enzymes by mouth Give at start of feed Give at start of feed Start at lower end of dosing range Initiate when taking ≥60 mL per feed Never crush or chew enzymes | |
Grams of fat based Typical dose: 1800–2200 lipase units/g of fat Range: 500–4000 lipase units/g of fat | Dose enzymes based on total grams of fat in the formula per RD recommendations Non-CF: start at lower end of dosing range | ||
Non-Enteric-Coated Enzyme (Viokace®) | Grams of fat based Typical dose: 1800–2200 lipase units/g of fat Range: 500–4000 lipase units/g of fat | Use ONLY if patient is unable to take enteric-coated enzymes by mouth Crush Viokace and add to formula Lipase units that come from Viokace do NOT count towards total max dose per day of 10,000 units lipase/kg/day Round to the nearest ½ tablet of Viokace. Dosage options are either 10,440 or 20,880 lipase units per tablet Non-CF: start at lower end of dosing range | |
PERT for Tube Feeding—Continuous/Overnight Feeds | |||
RELiZORBTM | Patient is ≥5 years of age Starting dose: 1 cartridge per 500 mL formula Max: 2 cartridges/24 h period Optimal rate of feed: 24–120 mL/h | Preferred method for continuous tube feeds Avoid fiber containing and blenderized formulas, can clog cartridge Minimum tube feeding rate is 24 mL/h If rate is lower than 24 mL/h, use crushed (Viokace) method below | |
Non-Enteric-Coated Enzyme (Viokace®) | Grams of fat based Typical dose: 1800–2200 lipase units/g of fat Range: 500–4000 lipase units/g of fat | Crush Viokace and add to formula Initiate when taking ≥15 mL per hour (formula/breast milk)If unable to use RELiZORB, this method provides the next best option Lipase units that come from Viokace do NOT count towards total max dose per day of 10,000 units lipase/kg/day Round to the nearest ½ tablet of Viokace. Dosage options are either 10,440 or 20,880 lipase units per tablet Non-CF: start at lower end of dosing range | |
Enteric-Coated Enzyme | Given orally only Dose based on weight or grams of fat in tube feeding formula Weight based Range: 500–2500 lipase units/kg/feed Max: 10,000 lipase units/kg/day Grams of fat based Typical dose: 1800–2200 lipase units/g of fat Range: 500–4000 lipase units/g of fat | This option is for patients >2 years on overnight feeds who can take oral enzymes when RELiZORB or Viokace are not available Use a meal dose of enzymes at start of tube feeds. Patients may need an additional half dose at the end of the feed Do not use for 24 h continuous feeds Initiate when receiving >15 mL per hour (formula/breast milk) Do not recommend enteric-coated enzymes through any enteral tube due to risk for clogging Non-CF: start at lower end of dosing range |
Enzyme Type | Considerations |
---|---|
Enteric-Coated | Capsules containing enteric-coated beads or microtablets Coating protects enzymes from gastric acid, allows activation in duodenum Administration:
|
Non-Enteric-Coated (Viokace®) | Powdered tablets Most often used for patients on tube feedings Administration:
|
Lipase Cartridge (RELiZORBTM) | Enzyme cartridge only containing enzyme lipase For patients on continuous tube feeds only Administration:
|
PERT Considerations | |
---|---|
Timing of PERT administration |
|
Type of food eaten |
|
Storage |
|
Expiration date |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freswick, P.N.; Reid, E.K.; Mascarenhas, M.R. Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis. Nutrients 2022, 14, 1341. https://doi.org/10.3390/nu14071341
Freswick PN, Reid EK, Mascarenhas MR. Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis. Nutrients. 2022; 14(7):1341. https://doi.org/10.3390/nu14071341
Chicago/Turabian StyleFreswick, Peter N., Elizabeth K. Reid, and Maria R. Mascarenhas. 2022. "Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis" Nutrients 14, no. 7: 1341. https://doi.org/10.3390/nu14071341
APA StyleFreswick, P. N., Reid, E. K., & Mascarenhas, M. R. (2022). Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis. Nutrients, 14(7), 1341. https://doi.org/10.3390/nu14071341