Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Food Consumption and Compatibility with Food-Based Dietary Guidelines
2.3. Nutrient Intake and Evaluation of Adequacy Relative to Reference Values
2.4. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Food Consumption by Gender, SES Groups and Urbanisation
3.3. Food Consumption in Relation to Food-Based Dietary Guidelines
3.4. Nutrient Intake Differences and Intake Adequacy Evaluation Based on RI
3.4.1. Education
3.4.2. Income
3.4.3. Urbanisation Level
3.5. Nutrient Intake Differences and Adequacy Evaluation Based on the AR Cut-Point Method
3.5.1. Education
3.5.2. Income
3.5.3. Urbanisation Level
3.5.4. Case Vitamin C
3.6. Nutrient Sources of the Different Population Groups Studied
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- GBD 2017 Risk Factor Collaborators. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Pietinen, P.; Männistö, S.; Valsta, L.M.; Sarlio-Lahteenkorva, S. Nutrition Policy in Finland. Public Health Nutr. 2010, 13, 901–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raulio, S.; Erlund, I.; Männistö, S.; Sarlio-Lahteenkorva, S.; Sundvall, J.; Tapanainen, H.; Vartiainen, E.; Virtanen, S.M. Successful Nutrition Policy: Improvement of Vitamin D Intake and Status in Finnish Adults over the Last Decade. Eur. J. Public Health 2017, 27, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, G.; Prättälä, R. Disparities in Food Habits—Review of Research in 15 European Countries; Publications of the National Public Health Institute B24/1999: Helsinki, Finland, 1999.
- Rippin, H.L.; Hutchinson, J.; Greenwood, D.C.; Jewell, J.; Breda, J.J.; Martin, A.; Rippin, D.M.; Schindler, K.; Rust, P.; Fagt, S.; et al. Inequalities in Education and National Income Are Associated with Poorer Diet: Pooled Analysis of Individual Participant Data across 12 European Countries. PLoS ONE 2020, 15, e0232447. [Google Scholar] [CrossRef]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D.; et al. Global, Regional and National Sodium Intakes in 1990 and 2010: A Systematic Analysis of 24 H Urinary Sodium Excretion and Dietary Surveys Worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Afshin, A.; Yakoob, M.Y.; Singh, G.M.; Rehm, C.D.; Khatibzadeh, S.; Micha, R.; Shi, P.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Impact of Nonoptimal Intakes of Saturated, Polyunsaturated, and Trans Fat on Global Burdens of Coronary Heart Disease. J. Am. Heart Assoc. 2016, 5, 2891. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Guidance on the EU Menu Methodology. EFSA J. 2014, 12, 3944. [Google Scholar] [CrossRef] [Green Version]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Andrews, K.G.; Engell, R.E.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional and National Consumption of Major Food Groups in 1990 and 2010: A Systematic Analysis including 266 Country-Specific Nutrition Surveys Worldwide. BMJ Open 2015, 5, e008705. [Google Scholar] [CrossRef] [Green Version]
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. 2019, 10, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmon, N.; Drewnowski, A. Does Social Class Predict Diet Quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novakovic, R.; Cavelaars, A.; Geelen, A.; Nikolic, M.; Altaba, I.I.; Vinas, B.R.; Ngo, J.; Golsorkhi, M.; Medina, M.W.; Brzozowska, A.; et al. Socio-Economic Determinants of Micronutrient Intake and Status in Europe: A Systematic Review. Public Health Nutr. 2014, 17, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Kaljonen, M.; Kortetmäki, T.; Tribaldos, T.; Huttunen, S.; Karttunen, K.; Maluf, R.S.; Niemi, J.; Saarinen, M.; Salminen, J.; Vaalavuo, M.; et al. Justice in Transitions: Widening Considerations of Justice in Dietary Transition. Environ. Innov. Soc. Transit. 2021, 40, 474–485. [Google Scholar] [CrossRef]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef]
- Bock, A.K.; Bontoux, L.; Rudkin, J. Concepts for a Sustainable EU Food System, EUR 30894 EN; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Ocké, M.; de Boer, E.; Brants, H.; van der Laan, J.; Niekerk, M.; van Rossum, C.; Temme, L.; Freisling, H.; Nicolas, G.; Casagrande, C.; et al. PANCAKE—Pilot Study for the Assessment of Nutrient Intake and Food Consumption among Kids in Europe. EFSA Support. Publ. 2012, 9, 339E. Available online: www.efsa.europa.eu/publications (accessed on 14 February 2022). [CrossRef]
- Ambrus, Á; Horváth, Z.; Farkas, Z.; Cseh, J.; Petrova, S.; Dimitrov, P.; Duleva, V.; Rangelova, L.; ChikovaIscener, E.; Ovaskainen, M.; et al. Pilot Study in the View of a Pan-European Dietary Survey—Adolescents, Adults and Elderly. EFSA Support. Publ. 2013, 10, 508E. Available online: http://www.efsa.europa.eu/en/supporting/pub/508e.htm (accessed on 14 February 2022).
- Gavrieli, A.; Naska, A.; Berry, R.; Roe, M.; Harvey, L.; Finglas, P.; Glibetic, M.; Gurinovic, M.; Trichopoulou, A. Dietary Monitoring Tools for Risk Assessment. EFSA Support. Publ. 2014, 11, 607E. Available online: www.efsa.europa.eu/publications (accessed on 14 February 2022). [CrossRef] [Green Version]
- Dekkers, A.L.; Verkaik-Kloosterman, J.; van Rossum, C.T.; Ocke, M.C. SPADE, a New Statistical Program to Estimate Habitual Dietary Intake from Multiple Food Sources and Dietary Supplements. J. Nutr. 2014, 144, 2083–2091. [Google Scholar] [CrossRef] [Green Version]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A New Statistical Method for Estimating the Usual Intake of Episodically Consumed Foods with Application to Their Distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souverein, O.W.; Dekkers, A.L.; Geelen, A.; Haubrock, J.; de Vries, J.H.; Ocke, M.C.; Harttig, U.; Boeing, H.; van‘t Veer, P.; EFCOVAL Consortium. Comparing Four Methods to Estimate Usual Intake Distributions. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012. Integrating Nutrition and Physical Activity; Norden, Nord 2014:002; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- National Nutrition Council of Finland. Terveyttä Ruoasta: Suomalaiset Ravitsemussuositukset 2014; Valtion Ravitsemusneuvottelukunta: Helsinki, Finland, 2014. (In Finnish) [Google Scholar]
- Prättälä, R.; Paalanen, L.; Grinberga, D.; Helasoja, V.; Kasmel, A.; Petkeviciene, J. Gender Differences in the Consumption of Meat, Fruit and Vegetables are Similar in Finland and the Baltic Countries. Eur. J. Public Health 2007, 17, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Valsta, L.; Kaartinen, N.; Tapanainen, H.; Männistö, S.; Sääksjärvi, K. Nutrition in Finland—The National FinDiet 2017 Survey; Report 12/2018; Finnish Institute for Health and Welfare (THL): Helsinki, Finland, 2018; (In Finnish, Abstract and Table and Chart Titles in English).
- Ministry of Social Affairs and Health. National Action Plan to Reduce Health Inequalities 2008–2011; 2008:16; Publications of the Ministry of Social Affairs and Health: Helsinki, Finland, 2008; (In Finnish, Abstract in English).
- Rotko, T.; Kauppinen, T.; Mustonen, N.; Linnanmäki, E. National Action Plan to Reduce Health Inequalities 2008–2011, Final Report; Report 41; National Institute for Health and Welfare (THL): Helsinki, Finland, 2012; (In Finnish, Abstract in English).
- Jokela, S.; Kilpeläinen, K.; Parikka, S.; Sares-Jäske, L.; Koskela, T.; Lumme, S.; Martelin, T.; Koponen, P.; Koskinen, S.; Rotko, T. Health Inequalities in Finland—Proposal for the Development of a Health Inequality Monitoring System in Finland; Report 5/2021; Finnish Institute for Health and Welfare (THL): Helsinki, Finland, 2021; (In Finnish, Abstract in English).
- Roos, E.; Talala, K.; Laaksonen, M.; Helakorpi, S.; Rahkonen, O.; Uutela, A.; Prättälä, R. Trends of Socioeconomic Differences in Daily Vegetable Consumption, 1979–2002. Eur. J. Clin. Nutr. 2008, 62, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Lallukka, T.; Pitkäniemi, J.; Rahkonen, O.; Roos, E.; Laaksonen, M.; Lahelma, E. The Association of Income with Fresh Fruit and Vegetable Consumption at Different Levels of Education. Eur. J. Clin. Nutr. 2010, 64, 324–327. [Google Scholar] [CrossRef]
- Ovaskainen, M.L.; Paturi, M.; Tapanainen, H.; Harald, K. Educational Differences in the Diet of Finnish Adults and the Associations between Education and the Determinants and Facilitators of Dietary Fat Quality. Public Health Nutr. 2010, 13, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Petkeviciene, J.; Klumbiene, J.; Prattala, R.; Paalanen, L.; Pudule, I.; Kasmel, A. Educational Variations in the Consumption of Foods Containing Fat in Finland and the Baltic Countries. Public Health Nutr. 2007, 10, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Puolakka, E.; Pahkala, K.; Laitinen, T.T.; Magnussen, C.G.; Hutri-Kahonen, N.; Männistö, S.; Palve, K.S.; Tammelin, T.; Tossavainen, P.; Jokinen, E.; et al. Childhood Socioeconomic Status and Lifetime Health Behaviors: The Young Finns Study. Int. J. Cardiol. 2018, 258, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Paalanen, L.; Prättälä, R.; Palosuo, H.; Laatikainen, T. Socio-Economic Differences in the Consumption of Vegetables, Fruit and Berries in Russian and Finnish Karelia: 1992–2007. Eur. J. Public Health 2011, 21, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Männistö, S.; Ovaskainen, M.; Valsta, L. The National Findiet 2002 Study; National Public Health Institute: Helsinki, Finland, 2003; (In Finnish, Summary in English).
- Paturi, M.; Tapanainen, H.; Reinivuo, H.; Pietinen, P. The National FINDIET 2007 Survey; B23/2008; Publications of the National Public Health Institute: Helsinki, Finland, 2008; (In Finnish, Abstract in English).
- Helldán, A.; Kosola, M.; Ovaskainen, M.; Raulio, S.; Tapanainen, H.; Virtanen, S. The National FINDIET 2012 Survey; National Institute for Health and Welfare (THL): Helsinki, Finland, 2013; (In Finnish, Abstract in English).
- Irala-Estevez, J.D.; Groth, M.; Johansson, L.; Oltersdorf, U.; Prattala, R.; Martinez-Gonzalez, M.A. A Systematic Review of Socio-Economic Differences in Food Habits in Europe: Consumption of Fruit and Vegetables. Eur. J. Clin. Nutr. 2000, 54, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, M.; Glibetic, M.; Gurinovic, M.; Milesevic, J.; Khokhar, S.; Chillo, S.; Abaravicius, J.A.; Bordoni, A.; Capozzi, F. Identifying Critical Nutrient Intake in Groups at Risk of Poverty in Europe: The CHANCE Project Approach. Nutrients 2014, 6, 1374–1393. [Google Scholar] [CrossRef] [PubMed]
- De Mestral, C.; Mayen, A.L.; Petrovic, D.; Marques-Vidal, P.; Bochud, M.; Stringhini, S. Socioeconomic Determinants of Sodium Intake in Adult Populations of High-Income Countries: A Systematic Review and Meta-Analysis. Am. J. Public Health 2017, 107, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Similä, M.; Taskinen, O.; Männistö, S.; Lahti-Koski, M.; Karvonen, M.; Laatikainen, T.; Valsta, T. Maps on Health Promoting Diet, Obesity and Serum Cholesterol in Finland; B20/2005; Publications of the National Public Health Institute: Helsinki, Finland, 2005. (In Finnish)
- Sares-Jäske, L.; Valsta, L.; Haario, P.; Martelin, T. Population Group Differences in Subjective Importance of Meat in Diet and Red and Processed Meat Consumption. Appetite 2022, 169, 105836. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Jensen, H.H.; Batres-Marquez, S.P.; Chen, C.F. Sociodemographic, Knowledge, and Attitudinal Factors Related to Meat Consumption in the United States. J. Am. Diet. Assoc. 2005, 105, 1266–1274. [Google Scholar] [CrossRef]
- Martin, J.C.; Moran, L.J.; Teede, H.J.; Ranasinha, S.; Lombard, C.B.; Harrison, C.L. Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age. Nutrients 2017, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Steenbergen, E.; Krijger, A.; Verkaik-Kloosterman, J.; Elstgeest, L.E.M.; Ter Borg, S.; Joosten, K.F.M.; van Rossum, C.T.M. Evaluation of Nutrient Intake and Food Consumption among Dutch Toddlers. Nutrients 2021, 13, 1531. [Google Scholar] [CrossRef]
- Kaartinen, N.; Tapanainen, H.; Reinivuo, H.; Pakkala, H.; Aalto, S.; Raulio, S.; Männistö, S.; Korhonen, T.; Virtanen, S.; Borodlin, K.; et al. The Finnish National Dietary Survey in Adults and Elderly (FinDiet 2017). EFSA Support. Publ. 2020, 17, 1914E. [Google Scholar] [CrossRef]
- Roos, E.; Ovaskainen, M.; Raulio, S.; Pietikäinen, M.; Sulander, T.; Prättälä, R. Dietary habits. In Trends in Socioeconomic Health Differences 1980–2005; Palosuo, H., Koskinen, S., Lahelma, E., Kostiainen, E., Prättälä, R., Martelin, T., Ostamo, A., Keskimäki, I., Sihto, M., Linnanmäki, E., Eds.; 2009:9; Publications of the Ministry of Social Affairs and Health: Helsinki, Finland, 2009. [Google Scholar]
- Raulio, S.; Tapanainen, H.; Männistö, S.; Valsta, L.; Kuusipalo, H.; Vartiainen, E.; Virtanen, S. Ravitsemuksessa Eroja Koulutusryhmien Välillä—Finravinto-Tutkimuksen Tuloksia. Tutkimuksesta Tiiviisti 26; Finnish Institute for Health and Welfare: Helsinki, Finland, 2016. (In Finnish)
- Borodulin, K.; Sääksjärvi, K. FinHealth 2017 Study—Methods; Report 17/2019; Finnish Institute for Health and Welfare: Helsinki, Finland, 2019.
- Heistaro, S. Methodology Report: Health 2000 Survey; National Public Health Institute: Helsinki, Finland, 2008.
- Reinivuo, H.; Hirvonen, T.; Ovaskainen, M.L.; Korhonen, T.; Valsta, L.M. Dietary Survey Methodology of FINDIET 2007 with a Risk Assessment Perspective. Public Health Nutr. 2010, 13, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Finnish Institute for Health and Welfare. National Food Composition Database FINELI®, Release 19. Available online: https://fineli.fi/fineli/en/index? (accessed on 14 February 2022).
- Finnish Institute for Health and Welfare. FinHealth 2017 Questionnaires. Available online: https://thl.fi/en/web/thlfi-en/research-and-expertwork/population-studies/national-finhealthstudy/questionnaires/finhealth2017 (accessed on 14 February 2022).
- OECD Project on Income Distribution and Poverty. What Are Equivalence Scales? Available online: https://www.oecd.org/economy/growth/OECD-Note-EquivalenceScales.pdf (accessed on 14 February 2022).
- Saarinen, M.; Kaljonen, M.; Niemi, J.; Antikainen, R.; Hakala, K.; Hartikainen, H.; Heikkinen, J.; Joensuu, K.; Lehtonen, H.; Mattila, T.; et al. Effects of Dietary Change and Policy Mix Supporting the Change: End Report of the FoodMin Project; Publications of the Government’s Analysis, Assessment and Research Activities: Helsinki, Finland, 2019; p. 47, (In Finnish, Abstract in English).
- Härkänen, T.; Karvanen, J.; Tolonen, H.; Lehtonen, R.; Djerf, K.; Juntunen, S.; Koskinen, S. Systematic Handling of Missing Data in Complex Study Designs: Experiences from the Health 2000 and 2011 Surveys. J. Appl. Stat. 2016, 43, 2772–2790. [Google Scholar] [CrossRef] [Green Version]
- Hengeveld, L.M.; Boer, J.M.A.; Gaudreau, P.; Heymans, M.W.; Jagger, C.; Mendonca, N.; Ocke, M.C.; Presse, N.; Sette, S.; Simonsick, E.M.; et al. Prevalence of Protein Intake below Recommended in Community-Dwelling Older Adults: A Meta-Analysis across Cohorts from the PROMISS Consortium. J. Cachexia Sarcopenia Muscle 2020, 11, 1212–1222. [Google Scholar] [CrossRef]
- Rippin, H.L.; Hutchinson, J.; Jewell, J.; Breda, J.J.; Cade, J.E. Adult Nutrient Intakes from Current National Dietary Surveys of European Populations. Nutrients 2017, 9, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itkonen, S.T.; Andersen, R.; Bjork, A.K.; Brugard Konde, A.; Eneroth, H.; Erkkola, M.; Holvik, K.; Madar, A.A.; Meyer, H.E.; Tetens, I.; et al. Vitamin D Status and Current Policies to Achieve Adequate Vitamin D Intake in the Nordic Countries. Scand. J. Public Health 2021, 49, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Raulio, S.; Tapanainen, H.; Valsta, L.; Jääskeläinen, T.; Virtanen, S.; Erlund, I. Vitamin D Intake and Serum Levels in the Finnish Adult Population—Results from the National FinDiet 2017 Survey. Finn. Med. J. 2021, 76, 2578–2584, (In Finnish, Abstract in English). [Google Scholar]
- Nyström, H.F.; Brantsaeter, A.L.; Erlund, I.; Gunnarsdottir, I.; Hulthen, L.; Laurberg, P.; Mattisson, I.; Rasmussen, L.B.; Virtanen, S.; Meltzer, H.M. Iodine Status in the Nordic Countries-Past and Present. Food Nutr. Res. 2016, 60, 31969. [Google Scholar] [CrossRef]
- Hirvonen, T.; Männistö, S.; Roos, E.; Pietinen, P. Increasing Prevalence of Underreporting Does Not Necessarily Distort Dietary Surveys. Eur. J. Clin. Nutr. 1997, 51, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grech, A.; Hasick, M.; Gemming, L.; Rangan, A. Energy Misreporting Is More Prevalent for Those of Lower Socio-Economic Status and Is Associated with Lower Reported Intake of Discretionary Foods. Br. J. Nutr. 2021, 125, 1291–1298. [Google Scholar] [CrossRef]
- Cohen, A.K.; Rai, M.; Rehkopf, D.H.; Abrams, B. Educational attainment and obesity: A systematic review. Obes. Rev. 2013, 14, 989–1005. [Google Scholar] [CrossRef] [Green Version]
- Kaljonen, M.; Peltola, T.; Kettunen, M.; Salo, M.; Furman, E. Vegs to School—Experimentative Research for Sustainability Transition. Alue Ympäristö (In Finnish, Abstract in English). 2018, 47, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Kaljonen, M.; Peltola, T.; Salo, M.; Furman, E. Attentive, Speculative Experimental Research for Sustainability Transitions: An Exploration in Sustainable Eating. J. Clean. Prod. 2019, 206C, 365–373. [Google Scholar] [CrossRef]
- Kortetmäki, T.; Pudas, T.; Saralahti, I. School Meals 2030—How to Halve the Climate Impact; School Meals 2030 Experiment. 2021. Available online: https://www.aka.fi/globalassets/3-stn/1-strateginen-tutkimus/tiedon-kayttajalle/politiikkasuositukset/politiikkasuositukset/21_03_school_meals_2030.pdf (accessed on 14 February 2022).
Men | Women | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | Mean Age, Years | % Under-Reporters | % BMI ≥30 kg/m2 | n | % | Mean Age, Years | % Under-Reporters | % BMI ≥30 kg/m2 | |
Education | ||||||||||
Low | 259 | 33 | 50.7 | 26 | 26 | 269 | 31 | 50.3 | 29 | 33 |
Middle | 258 | 33 | 50.1 | 30 | 23 | 305 | 35 | 51.7 | 30 | 26 |
High | 256 | 33 | 54.0 | 24 | 22 | 285 | 33 | 52.7 | 15 | 22 |
Missing | 7 | 1 | 16 | 2 | ||||||
Income | ||||||||||
Lowest Qrt | 200 | 26 | 45.4 | 26 | 28 | 187 | 21 | 45.5 | 33 | 28 |
Middle (2.–3. Qrt) | 389 | 50 | 54.8 | 27 | 22 | 419 | 48 | 54.7 | 25 | 31 |
Highest Qrt | 175 | 22 | 51.6 | 26 | 22 | 235 | 27 | 50.6 | 15 | 18 |
Missing | 16 | 2 | 34 | 4 | ||||||
Urbanisation level | ||||||||||
Urban | 451 | 58 | 50.1 | 29 | 22 | 535 | 61 | 50.6 | 24 | 24 |
Semi-urban | 207 | 27 | 53.3 | 26 | 26 | 192 | 22 | 52.7 | 28 | 28 |
Rural | 122 | 16 | 54.9 | 19 | 29 | 147 | 17 | 53.8 | 25 | 40 |
Missing | 0 | 0 | 1 | 0 | ||||||
All | 780 | 100 | 51.7 | 27 | 24 | 875 | 100 | 51.6 | 25 | 27 |
Education | Income | Urbanisation Level | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low (1) | Middle (2) | High (3) | General Test | Pair-Wise Comparison | Lowest Qrt (1) | Middle (2.–3. Qrt) (2) | Highest Qrt (3) | General Test | Pair-Wise Comparison | Urban (1) | Semi-Urban (2) | Rural (3) | General Test | Pair-Wise Comparison | ||||||||||
Food Group | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | Sign. Diff. 1 | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | Sign. Diff. 1 | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | Sign. Diff. 1 |
Men | ||||||||||||||||||||||||
Veg. and fruit | 289 | 265–314 | 283 | 257–310 | 371 | 340–402 | <0.001 | 1, 2 < 3 | 280 | 246–313 | 313 | 289–337 | 360 | 329–391 | <0.001 | 1, 2 < 3 | 327 | 304–349 | 298 | 267–329 | 271 | 229–312 | 0.001 | 1 > 2, 3 |
Potatoes | 89 | 79–99 | 86 | 76–95 | 79 | 68–89 | NS | NS | 84 | 73–95 | 91 | 82–100 | 71 | 60–83 | 0.040 | 2 > 3 | 80 | 72–87 | 85 | 77–93 | 107 | 91–124 | 0.021 | 1 < 3 |
Legumes | 8 | 5–10 | 13 | 7–20 | 16 | 10–22 | NS | 2 | 14 | 7–21 | 12 | 8–15 | 12 | 8–16 | NS | 2 | 15 | 11–20 | 8 | 5–11 | 7 | 4–10 | NS | 2 |
Nuts and seeds | 5 | 3–6 | 8 | 5–10 | 9 | 6–11 | <0.001 | 2 | 7 | 4–10 | 6 | 5–7 | 8 | 5–11 | 0.001 | 2 | 8 | 6–10 | 6 | 4–8 | 4 | 2–5 | 0.017 | 2 |
Red and proc. Meat | 146 | 131–161 | 149 | 136–163 | 117 | 102–131 | <0.001 | 1, 2 > 3 | 141 | 124–158 | 135 | 125–145 | 144 | 125–163 | NS | NS | 133 | 122–144 | 150 | 133–167 | 139 | 119–160 | 0.007 | 1 < 2 |
Beef | 27 | 21–33 | 41 | 32–51 | 31 | 23–39 | 0.008 | 2 | 37 | 27–47 | 28 | 23–34 | 39 | 29–48 | NS | 2 | 35 | 29–42 | 33 | 26–40 | 22 | 17–28 | NS | 2 |
Pork | 42 | 32–51 | 42 | 35–50 | 24 | 18–30 | <0.001 | 2 | 43 | 32–54 | 37 | 31–43 | 28 | 20–36 | NS | 2 | 35 | 29–41 | 43 | 32–54 | 32 | 24–41 | NS | 2 |
Sausages | 40 | 32–47 | 31 | 26–37 | 35 | 25–45 | NS | 2 | 31 | 23–40 | 36 | 31–42 | 40 | 30–49 | NS | 2 | 31 | 25–36 | 41 | 32–49 | 46 | 33–59 | 0.001 | 2 |
Fish and seafood | 34 | 27–41 | 32 | 16–47 | 43 | 35–51 | 0.032 | 2 | 34 | 17–51 | 35 | 29–41 | 39 | 30–48 | 0.020 | 2 | 40 | 30–49 | 27 | 22–32 | 34 | 21–48 | NS | 2 |
Liquid milk | 407 | 358–457 | 389 | 329–450 | 342 | 301–384 | NS | NS | 444 | 385–503 | 355 | 320–389 | 358 | 301–416 | NS | NS | 361 | 320–402 | 400 | 339–462 | 444 | 376–512 | 0.016 | 1 < 3 |
Milk fats | 19 | 16–22 | 18 | 15–21 | 19 | 16–22 | NS | NS | 18 | 14–22 | 19 | 17–21 | 18 | 15–21 | NS | NS | 18 | 16–20 | 19 | 17–22 | 20 | 16–23 | NS | NS |
Cheese | 32 | 28–35 | 36 | 30–42 | 33 | 29–37 | NS | NS | 33 | 27–40 | 35 | 31–38 | 32 | 27–38 | NS | NS | 32 | 28–35 | 36 | 30–43 | 35 | 29–41 | NS | NS |
Cereals | 146 | 137–156 | 154 | 137–171 | 150 | 141–158 | NS | NS | 157 | 138–176 | 152 | 144–159 | 139 | 128–150 | 0.035 | 2 > 3 | 151 | 140–162 | 144 | 133–154 | 156 | 144–169 | NS | NS |
Women | ||||||||||||||||||||||||
Veg. and fruit | 326 | 294–357 | 394 | 365–423 | 422 | 390–453 | <0.001 | 1 < 2, 3 | 342 | 307–377 | 385 | 358–412 | 418 | 387–448 | 0.009 | 1 < 3 | 393 | 370–417 | 375 | 321–429 | 340 | 293–387 | NS | NS |
Potatoes | 64 | 57–71 | 64 | 55–73 | 58 | 52–65 | NS | NS | 61 | 51–70 | 65 | 58–72 | 58 | 51–65 | NS | NS | 59 | 53–65 | 60 | 53–67 | 76 | 66–87 | 0.004 | 1, 2 < 3 |
Legumes | 11 | 8–14 | 14 | 8–19 | 15 | 11–20 | 0.038 | 2 | 14 | 10–19 | 14 | 10–19 | 12 | 9–16 | NS | 2 | 15 | 11–19 | 11 | 6–16 | 9 | 5–12 | NS | 2 |
Nuts and seeds | 6 | 4–8 | 8 | 6–10 | 11 | 9–13 | <0.001 | 2 | 7 | 5–9 | 8 | 6–10 | 12 | 9–14 | <0.001 | 2 | 10 | 8–11 | 7 | 5–9 | 7 | 4–9 | 0.005 | 2 |
Red and proc. meat | 79 | 72–86 | 72 | 64–80 | 61 | 55–68 | <0.001 | 1, 2 > 3 | 76 | 66–85 | 71 | 66–77 | 65 | 57–73 | NS | NS | 66 | 60–71 | 78 | 70–86 | 83 | 73–94 | <0.001 | 1 < 2, 3 |
Beef | 17 | 13–22 | 21 | 17–26 | 17 | 13–21 | NS | 2 | 18 | 13–24 | 18 | 15–21 | 20 | 16–25 | NS | 2 | 19 | 16–23 | 17 | 14–21 | 17 | 14–20 | NS | 2 |
Pork | 20 | 16–24 | 19 | 15–23 | 14 | 11–18 | 0.015 | 2 | 22 | 16–28 | 18 | 15–22 | 14 | 11–17 | 0.016 | 2 | 15 | 13–18 | 21 | 16–26 | 25 | 17–33 | 0.006 | 2 |
Sausages | 20 | 16–25 | 14 | 10–17 | 13 | 10–16 | NS | 2 | 19 | 14–24 | 16 | 13–19 | 11 | 8–14 | NS | 2 | 13 | 11–16 | 20 | 13–27 | 19 | 14–25 | NS | 2 |
Fish and seafood | 24 | 19–29 | 27 | 22–32 | 34 | 28–39 | 0.011 | 2 | 22 | 17–27 | 27 | 23–31 | 35 | 29–41 | 0.003 | 2 | 30 | 26–34 | 25 | 19–30 | 23 | 16–30 | NS | 2 |
Liquid milk | 333 | 295–370 | 290 | 260–320 | 286 | 260–313 | NS | NS | 297 | 257–338 | 306 | 282–331 | 307 | 274–341 | NS | NS | 280 | 258–303 | 341 | 303–380 | 332 | 278–386 | 0.043 | 1 < 2 |
Milk fats | 12 | 11–14 | 14 | 12–15 | 14 | 12–15 | NS | NS | 11 | 9–14 | 14 | 12–15 | 14 | 12–16 | NS | NS | 13 | 11–14 | 13 | 10–15 | 16 | 13–19 | 0.001 | 1, 2 < 3 |
Cheese | 19 | 17–21 | 24 | 21–26 | 24 | 21–27 | 0.004 | 1 < 2 | 20 | 17–23 | 23 | 21–25 | 24 | 22–27 | NS | NS | 22 | 21–24 | 22 | 19–25 | 22 | 19–26 | NS | NS |
Cereals | 110 | 103–117 | 108 | 101–116 | 116 | 109–122 | NS | NS | 119 | 108–129 | 110 | 105–115 | 109 | 103–115 | 0.015 | 1 > 2, 3 | 110 | 105–116 | 114 | 109–120 | 109 | 100–119 | NS | NS |
A. Men | Reference Value | General Test | Pair-Wise Comparison | Overall Adequacy Evaluation 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | RI | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | Sign. Diff. 1 | |
Education | Low (1) | Middle (2) | High (3) | |||||||
Energy (MJ) | - | 9.4 | 9.0–9.8 | 9.5 | 8.9–10.2 | 9.5 | 9.1–9.8 | NS | NS | - |
Protein (E%) | 10–20 | 17.8 | 17.4–18.3 | 18.1 | 17.6–18.6 | 18.1 | 17.5–18.7 | NS | NS | High intake |
Total Carbohydrates (E%) | 45–60 | 44.2 | 43.2–45.2 | 42.6 | 41.7–43.5 | 43.2 | 42.1–44.4 | 0.036 | 1 > 2 | No firm conclusions can be drawn |
Fibre (g) | >35 | 21.9 | 20.7–23.2 | 21.1 | 20–22.1 | 24.4 | 23–25.8 | 0.001 | 3 > 1, 2 | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 38.0 | 37.1–38.9 | 39.3 | 38.5–40.1 | 38.6 | 37.6–39.7 | 0.036 | 1 < 2 | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 15.1 | 14.6–15.5 | 15.4 | 14.8–15.9 | 14.7 | 14.2–15.2 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 6.6 | 6.4–6.8 | 6.7 | 6.5–7 | 7.1 | 6.8–7.3 | 0.023 | 3 > 1, 2 | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.5 | 1.5–1.6 | 1.5 | 1.4–1.6 | 1.7 | 1.6–1.8 | 0.0163 | 3 > 2 | Low prevalence of inadequacy |
Salt (g) | ≤5 | 8.8 | 8.4–9.1 | 9.0 | 8.3–9.7 | 8.4 | 8–8.8 | NS | NS | High intake |
Income | Lowest Qrt (1) | Middle (2) | Highest Qrt (3) | |||||||
Energy (MJ) | - | 9.9 | 9.2–10.5 | 9.3 | 9.0–9.7 | 9.4 | 9.0–9.8 | NS | NS | - |
Protein (E%) | 10–20 | 18.0 | 17.4–18.6 | 17.6 | 17.2–18 | 18.8 | 18.1–19.5 | 0.041 | 2 < 3 | High intake |
Total Carbohydrates (E%) | 45–60 | 43.0 | 42–44 | 44.1 | 43.4–44.9 | 42.4 | 41–43.8 | NS | NS | No firm conclusions can be drawn |
Fibre (g) | >35 | 21.3 | 19.8–22.8 | 23.0 | 21.9–24.1 | 23.1 | 21.6–24.7 | 0.036 | 1 < 3 | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 39.0 | 38–39.9 | 38.2 | 37.5–39 | 38.8 | 37.6–40 | NS | NS | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 15.2 | 14.6–15.8 | 15.1 | 14.8–15.5 | 14.8 | 14.2–15.4 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 6.8 | 6.4–7.1 | 6.7 | 6.5–6.9 | 7.0 | 6.7–7.3 | NS | NS | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.5 | 1.4–1.6 | 1.5 | 1.5–1.6 | 1.6 | 1.5–1.8 | NS | NS | Low prevalence of inadequacy |
Salt (g) | ≤5 | 9.0 | 8.3–9.7 | 8.7 | 8.4–9 | 8.7 | 8.3–9.2 | NS | NS | High intake |
Urbanisation level | Urban (1) | Semi-urban (2) | Rural (3) | |||||||
Energy (MJ) | - | 9.4 | 9.0–9.8 | 9.6 | 9.1–10.0 | 9.6 | 9.1–10.0 | NS | NS | - |
Protein (E%) | 10–20 | 18.2 | 17.8–18.6 | 18.2 | 17.5–18.9 | 16.8 | 16.2–17.3 | 0.003 | 1,2 > 3 | High intake |
Total Carbohydrates (E%) | 45–60 | 43.1 | 42.2–43.9 | 43.0 | 41.9–44.2 | 45.5 | 43.5–47.6 | NS | NS | No firm conclusions can be drawn |
Fibre (g) | >35 | 22.4 | 21.4–23.4 | 22.0 | 20.5–23.5 | 23.0 | 20.9–25 | NS | NS | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 38.8 | 37.9–39.6 | 38.7 | 37.9–39.5 | 37.7 | 35.9–39.5 | NS | NS | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 14.8 | 14.4–15.3 | 15.3 | 14.8–15.7 | 15.7 | 14.8–16.6 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 7.0 | 6.7–7.2 | 6.7 | 6.5–6.9 | 6.2 | 5.8–6.6 | 0.006 | 1 > 3 | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.6 | 1.5–1.7 | 1.5 | 1.4–1.6 | 1.4 | 1.3–1.6 | 0.026 | 1 > 3 | Low prevalence of inadequacy |
Salt (g) | ≤5 | 8.7 | 8.3–9.2 | 8.8 | 8.4–9.3 | 8.7 | 8.2–9.2 | NS | NS | High intake |
B. Women | Reference value | General test | Pair-wise comparison | Overall adequacy evaluation2 | ||||||
Nutrient | RI | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-value | Sign. Diff.1 | |
Education | Low (1) | Middle (2) | High (3) | |||||||
Energy (MJ) | - | 7.1 | 6.8–7.4 | 7.2 | 6.9–7.5 | 7.9 | 7.6–8.1 | 0,0005 | 3 > 1, 2 | - |
Protein (E%) | 10–20 | 17.6 | 17.1–18.1 | 17.7 | 17.2–18.2 | 17.1 | 16.5–17.6 | NS | NS | High intake |
Total Carbohydrates (E%) | 45–60 | 44.8 | 43.8–45.8 | 44.9 | 43.9–45.9 | 44.5 | 43.6–45.4 | NS | NS | No firm conclusions can be drawn |
Fibre (g) | >25 | 18.5 | 17.5–19.6 | 20.8 | 19.7–22 | 22.2 | 21.1–23.3 | 0.000 | 3,2 > 1 | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 37.6 | 36.7–38.6 | 37.4 | 36.5–38.3 | 38.4 | 37.6–39.2 | NS | NS | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 14.6 | 14–15.2 | 14.4 | 13.9–14.9 | 14.0 | 13.6–14.4 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 6.6 | 6.3–7 | 6.7 | 6.4–7 | 7.4 | 7.1–7.7 | 0.000 | 3 > 1, 2 | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.6 | 1.5–1.7 | 1.6 | 1.5–1.7 | 1.8 | 1.7–1.9 | 0.0090 | 3 > 1, 2 | Low prevalence of inadequacy |
Salt (g) | ≤5 | 6.3 | 6.1–6.6 | 6.2 | 5.9–6.5 | 6.7 | 6.4–6.9 | NS | NS | High intake |
Iron (18–50 years) (mg) | 15 | 9.0 | 8.5–9.5 | 10.2 | 9.6–10.8 | 10.9 | 10.3–11.5 | 0.0000 | 3, 2 > 1 | No firm conclusions can be drawn |
Income | Lowest Qrt (1) | Middle (2) | Highest Qrt (3) | |||||||
Energy (MJ) | - | 7.2 | 6.8–7.6 | 7.3 | 7.1–7.6 | 7.7 | 7.4–8.0 | NS | NS | - |
Protein (E%) | 10–20 | 17.3 | 16.7–17.9 | 17.3 | 17–17.7 | 17.7 | 17.1–18.2 | NS | NS | High intake |
Total Carbohydrates (E%) | 45–60 | 45.8 | 44.6–46.9 | 45.1 | 44.3–45.8 | 43.5 | 42.3–44.6 | 0.021 | 3 < 1 | 1,2 low prevalence of inadequacy, 3 no firm conclusions can be drawn |
Fibre (g) | >25 | 20.0 | 18.7–21.3 | 20.6 | 19.5–21.6 | 21.4 | 20–22.7 | NS | NS | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 36.9 | 35.6–38.2 | 37.6 | 36.9–38.3 | 38.9 | 37.7–40 | NS | 1 < 3 | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 14.0 | 13.3–14.7 | 14.5 | 14.1–14.9 | 14.6 | 13.8–15.3 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 6.7 | 6.4–7.1 | 6.8 | 6.5–7 | 7.2 | 6.9–7.5 | 0.020 | 2 < 3 | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.6 | 1.5–1.7 | 1.7 | 1.6–1.8 | 1.8 | 1.7–1.9 | 0.031 | 1 < 3 | Low prevalence of inadequacy |
Salt (g) | ≤5 | 6.4 | 6.1–6.7 | 6.3 | 6.1–6.6 | 6.5 | 6.2–6.8 | NS | NS | High intake |
Iron (18–50 years) (mg) | 15 | 9.5 | 8.9–10.1 | 10.1 | 9.5–10.7 | 10.3 | 9.6–11.1 | NS | NS | No firm conclusions can be drawn |
Urbanisation level | Urban (1) | Semi-urban (2) | Rural (3) | |||||||
Energy (MJ) | - | 7.4 | 7.2–7.6 | 7.3 | 7.0–7.7 | 7.2 | 6.9–7.5 | NS | NS | - |
Protein (E%) | 10–20 | 17.6 | 17.2–17.9 | 17.5 | 16.9–18.1 | 17.2 | 16.6–17.7 | NS | NS | High intake |
Total Carbohydrates (E%) | 45–60 | 44.3 | 43.6–45 | 45.6 | 44.1–47.2 | 45.2 | 43.9–46.5 | NS | NS | 1 no firm conclusions can be drawn, 2,3 low prevalence of inadequacy |
Fibre (g) | >25 | 20.7 | 19.9–21.6 | 20.3 | 18.6–22 | 19.9 | 18.2–21.6 | NS | NS | No firm conclusions can be drawn |
Fat (E%) | 25–40 | 38.2 | 37.5–38.8 | 36.9 | 35.4–38.4 | 37.6 | 36.5–38.7 | NS | NS | Low prevalence of inadequacy |
Saturated f.a. (SFA) (E%) | <10 | 14.3 | 13.9–14.6 | 14.3 | 13.3–15.3 | 14.9 | 14.3–15.4 | NS | NS | High intake |
Polyunsaturated f.a. (PUFA) (E%) | 5–10 | 7.1 | 6.8–7.4 | 6.6 | 6.3–6.8 | 6.5 | 6.2–6.9 | 0.011 | 1 > 2, 3 | Low prevalence of inadequacy |
N-3 PUFA (E%) | 1 | 1.7 | 1.6–1.8 | 1.6 | 1.5–1.7 | 1.6 | 1.5–1.7 | NS | NS | Low prevalence of inadequacy |
Salt (g) | ≤5 | 6.4 | 6.2–6.6 | 6.5 | 6.2–6.8 | 6.3 | 5.9–6.6 | NS | NS | High intake |
Iron (18–50 years) (mg) | 15 | 10.2 | 9.8–10.6 | 9.8 | 8.8–10.8 | 9.1 | 8.5–9.8 | NS | NS | No firm conclusions can be drawn |
Reference Value | Low (1) | Middle (2) | High (3) | Sign. Diff. 1 | ≥90% of Population Group > AR | Overall Adequacy Evaluation 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | AR | % | 95% CI | % | 95% CI | % | 95% CI | Yes/No | ||
Men | ||||||||||
Vitamin A (µg RE) | 600 | 81 | 72–90 | 71 | 67–77 | 77 | 69–85 | NS | No | Not adequate |
Vitamin D (µg) | 7.5 | 89 | 85–95 | 86 | 79–93 | 86 | 80–92 | NS | No | Not adequate |
Vitamin E (mg) | 6 | 96 | 94–99 | 96 | 95–98 | 99 | 97–100 | NS | Yes | Adequate |
Vitamin B1 (mg) | 1.2 | 65 | 59–72 | 65 | 59–72 | 64 | 58–70 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.4 | 85 | 80–89 | 82 | 78–87 | 80 | 76–85 | NS | No | Not adequate |
Folate (µg) | 200 | 65 | 59–71 | 67 | 61–75 | 80 | 73–87 | 3 > 1 | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 100–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 60 | 70 | 63–77 | 72 | 66–80 | 82 | 76–88 | NS | No | Not adequate |
Calcium (mg) | 500 | 97 | 95–99 | 97 | 95–99 | 98 | 96–100 | NS | Yes | Adequate |
Iron (mg) | 7 | 95 | 92–99 | 93 | 90–97 | 95 | 93–98 | NS | Yes | Adequate |
Iodine (µg) | 100 | 100 | 99–100 | 99 | 98–100 | 100 | 99–100 | NS | Yes | Adequate |
Zinc (mg) | 6 | 99 | 98–100 | 99 | 98–100 | 99 | 98–100 | NS | Yes | Adequate |
Women | ||||||||||
Vitamin A (µg RE) | 500 | 84 | 74–94 | 86 | 80–93 | 89 | 82–100 | NS | No | Not adequate3 |
Vitamin D (µg) | 7.5 | 69 | 63–77 | 70 | 63–78 | 69 | 63–75 | NS | No | Not adequate |
Vitamin E (mg) | 5 | 97 | 94–99 | 96 | 94–99 | 100 | 99–100 | 3 > 2 | Yes | Adequate |
Vitamin B1 (mg) | 0.9 | 72 | 66–77 | 76 | 70–83 | 79 | 73–86 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.1 | 90 | 86–95 | 91 | 88–95 | 91 | 88–95 | NS | Yes | Adequate |
Folate (µg) | 200 | 45 | 38–52 | 60 | 55–67 | 74 | 68–81 | 2 > 1, 3 > 1, 2 | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 100–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 50 | 88 | 82–93 | 94 | 91–98 | 96 | 94–99 | 3 > 1 | No (1), Yes (2, 3) | 1 not adequate, 2,3 adequate |
Calcium (mg) | 500 | 96 | 94–99 | 98 | 97–100 | 98 | 97–99 | NS | Yes | Adequate |
Iron (51–74 years) (mg) | 6 | 98 | 94–100 | 94 | 91–98 | 96 | 93–100 | NS | Yes | Adequate |
Iodine (µg) | 100 | 99 | 97–100 | 99 | 98–100 | 99 | 98–100 | NS | Yes | Adequate |
Zinc (mg) | 5 | 100 | 99–100 | 100 | 99–100 | 99 | 98–100 | NS | Yes | Adequate |
Reference Value | Lowest Qrt (1) | Middle (2.–3. Qrt) (2) | Highest Qrt (3) | Sign. Diff. 1 | ≥90% of Population Group > AR | Overall Adequacy Evaluation 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | AR | % | 95% CI | % | 95% CI | % | 95% CI | Yes/No | ||
Men | ||||||||||
Vitamin A (µg RE) | 600 | 77 | 69–88 | 72 | 67–80 | 81 | 74–90 | NS | No | Not adequate |
Vitamin D (µg) | 7.5 | 88 | 80–94 | 83 | 77–89 | 90 | 84–98 | NS | Yes (3), No (1, 2) | 3 adequate, 1 and 2 not adequate |
Vitamin E (mg) | 6 | 98 | 96–99 | 96 | 94–98 | 99 | 99–100 | 3 > 2 | Yes | Adequate |
Vitamin B1 (mg) | 1.2 | 63 | 56–70 | 63 | 58–70 | 67 | 60–73 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.4 | 85 | 80–89 | 80 | 75–85 | 88 | 83–92 | NS | No | Not adequate |
Folate (µg) | 200 | 70 | 62–77 | 67 | 62–74 | 85 | 76–92 | 3 > 2 | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 100–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 60 | 72 | 65–79 | 70 | 65–75 | 93 | 87–98 | 3 > 1, 2 | Yes (3), No (1, 2) | 3 adequate, 1,2 not adequate |
Calcium (mg) | 500 | 98 | 96–99 | 97 | 95–99 | 97 | 95–99 | NS | Yes | Adequate |
Iron (mg) | 7 | 94 | 90–98 | 95 | 92–97 | 97 | 95–99 | NS | Yes | Adequate |
Iodine (µg) | 100 | 99 | 99–100 | 100 | 99–100 | 100 | 99–100 | NS | Yes | Adequate |
Zinc (mg) | 6 | 99 | 98–100 | 99 | 98–100 | 99 | 99–100 | NS | Yes | Adequate |
Women | ||||||||||
Vitamin A (µg RE) | 500 | 88 | 80–100 | 89 | 83–96 | 85 | 78–94 | NS | No | Not adequate |
Vitamin D (µg) | 7.5 | 64 | 58–73 | 71 | 64–78 | 69 | 61–80 | NS | No | Not adequate |
Vitamin E (mg) | 5 | 96 | 94–99 | 97 | 95–99 | 100 | 99–100 | 3 > 2 | Yes | Adequate |
Vitamin B1 (mg) | 0.9 | 72 | 65–81 | 76 | 70–81 | 78 | 72–86 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.1 | 87 | 82–92 | 92 | 88–95 | 95 | 93–98 | 3 > 1 | No (1), Yes (2, 3) | 1 not adequate, 2,3 adequate |
Folate (µg) | 200 | 51 | 45–60 | 57 | 52–62 | 78 | 71–87 | 3 > 1, 2 | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 100–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 50 | 91 | 86–97 | 93 | 89–96 | 95 | 93–98 | NS | Yes | Adequate |
Calcium (mg) | 500 | 95 | 92–99 | 98 | 96–99 | 99 | 98–100 | NS | Yes | Adequate |
Iron (51–74 years) (mg) | 6 | 94 | 90–99 | 94 | 91–97 | 99 | 98–100 | 3 > 2 | Yes | Adequate |
Iodine (µg) | 100 | 99 | 97–100 | 98 | 96–99 | 100 | 99–100 | 3 > 2 | Yes | Adequate |
Zinc (mg) | 5 | 99 | 98–100 | 100 | 99–100 | 100 | 100–100 | NS | Yes | Adequate |
Reference Value | Urban (1) | Semi-Urban (2) | Rural (3) | Sign. Diff. 1 | ≥90% of Population Group > AR | Overall Adequacy Evaluation 2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | AR | % | 95% CI | % | 95% CI | % | 95% CI | Yes/No | ||
Men | ||||||||||
Vitamin A (µg RE) | 600 | 74 | 68–79 | 83 | 70–97 | 72 | 66–79 | NS | No | Not adequate |
Vitamin D (µg) | 7.5 | 86 | 80–91 | 87 | 81–93 | 86 | 80–93 | NS | No | Not adequate |
Vitamin E (mg) | 6 | 98 | 96–99 | 95 | 93–98 | 96 | 94–100 | NS | Yes | Adequate |
Vitamin B1 (mg) | 1.2 | 59 | 53–64 | 67 | 61–75 | 65 | 60–74 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.4 | 81 | 77–86 | 82 | 77–87 | 86 | 81–95 | NS | No | Not adequate |
Folate (µg) | 200 | 73 | 67–78 | 62 | 56–69 | 68 | 62–77 | NS | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 100–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 60 | 78 | 72–83 | 67 | 59–74 | 68 | 63–77 | NS | No | Not adequate |
Calcium (mg) | 500 | 97 | 95–98 | 97 | 95–99 | 99 | 99–100 | 3 > 1 | Yes | Adequate |
Iron (mg) | 7 | 94 | 91–96 | 97 | 94–100 | 92 | 88–97 | NS | Yes | Adequate |
Iodine (µg) | 100 | 99 | 99–100 | 100 | 99–100 | 100 | 100–100 | NS | Yes | Adequate |
Zinc (mg) | 6 | 99 | 98–100 | 99 | 98–100 | 100 | 99–100 | NS | Yes | Adequate |
Women | ||||||||||
Vitamin A (µg RE) | 500 | 86 | 81–92 | 86 | 77–96 | 84 | 72–96 | NS | No | Not adequate |
Vitamin D (µg) | 7.5 | 67 | 61–74 | 66 | 61–73 | 72 | 64–80 | NS | No | Not adequate |
Vitamin E (mg) | 5 | 98 | 96–99 | 98 | 96–100 | 96 | 93–98 | NS | Yes | Adequate |
Vitamin B1 (mg) | 0.9 | 75 | 70–81 | 71 | 65–77 | 76 | 68–83 | NS | No | Not adequate |
Vitamin B2 (mg) | 1.1 | 90 | 87–94 | 94 | 90–97 | 87 | 84–91 | NS | Yes (1, 2), No (3) | 1, 2 adequate, 3 not adequate |
Folate (µg) | 200 | 65 | 61–71 | 56 | 49–64 | 44 | 38–49 | 3 < 1, 2 | No | Not adequate |
Vitamin B12 (µg) | 1.4 | 100 | 100–100 | 100 | 99–100 | 100 | 100–100 | NS | Yes | Adequate |
Vitamin C (mg) | 50 | 95 | 93–98 | 89 | 85–94 | 88 | 84–93 | NS | Yes (1), No (2, 3) | 1 adequate, 2, 3 not adequate |
Calcium (mg) | 500 | 98 | 97–99 | 98 | 97–99 | 94 | 92–97 | 3 < 1, 2 | Yes | Adequate |
Iron (51–74 years) (mg) | 6 | 95 | 92–99 | 94 | 90–98 | 98 | 96–100 | NS | Yes | Adequate |
Iodine (µg) | 100 | 99 | 97–100 | 99 | 98–100 | 99 | 97–100 | NS | Yes | Adequate |
Zinc (mg) | 5 | 100 | 99–100 | 99 | 99–100 | 100 | 100–100 | NS | Yes | Adequate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valsta, L.M.; Tapanainen, H.; Kortetmäki, T.; Sares-Jäske, L.; Paalanen, L.; Kaartinen, N.E.; Haario, P.; Kaljonen, M. Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults. Nutrients 2022, 14, 1347. https://doi.org/10.3390/nu14071347
Valsta LM, Tapanainen H, Kortetmäki T, Sares-Jäske L, Paalanen L, Kaartinen NE, Haario P, Kaljonen M. Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults. Nutrients. 2022; 14(7):1347. https://doi.org/10.3390/nu14071347
Chicago/Turabian StyleValsta, Liisa M., Heli Tapanainen, Teea Kortetmäki, Laura Sares-Jäske, Laura Paalanen, Niina E. Kaartinen, Peppi Haario, and Minna Kaljonen. 2022. "Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults" Nutrients 14, no. 7: 1347. https://doi.org/10.3390/nu14071347
APA StyleValsta, L. M., Tapanainen, H., Kortetmäki, T., Sares-Jäske, L., Paalanen, L., Kaartinen, N. E., Haario, P., & Kaljonen, M. (2022). Disparities in Nutritional Adequacy of Diets between Different Socioeconomic Groups of Finnish Adults. Nutrients, 14(7), 1347. https://doi.org/10.3390/nu14071347