Determinants of Suboptimal Gestational Weight Gain among Antenatal Women Residing in the Highest Gross Domestic Product (GDP) Region of Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Data Collection and Analysis
2.3.1. Anthropometric Measurements
2.3.2. Household Food Security Questionnaires
2.3.3. Dietary Diversity Questionnaires
2.3.4. Pregnancy Physical Activity Questionnaire
3. Results
3.1. Proportions of GWG Categories
3.2. Characteristics of the Pregnant Women
3.3. Physical Activity of Pregnant Women
3.4. Determinants of GWG
4. Discussion
4.1. Proportion of Suboptimal GWG
4.2. Determinants of Suboptimal GWG
4.3. Strengths
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Institute of Medicine. Weight gain during pregnancy: Reexamining the guidelines. In The National Academies Collection: Reports Funded by National Institutes of Health; Rasmussen, K.M.Y.A., Ed.; National Academies Press: Washington, DC, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK32813/?report=classic (accessed on 20 December 2021).
- Hasan, S.M.T.; Khan, M.A.; Ahmed, T. Inadequate maternal weight gain in the third trimester increases the risk of intrauterine growth restriction in rural Bangladesh. PLoS ONE 2019, 14, e0212116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Fan, D.; Wu, S.; Chen, G.; Li, P.; Ma, H.; Ye, S.; Rao, J.; Zhang, H.; Zeng, M.; et al. The effect of gestational weight gain on perinatal outcomes among Chinese twin gestations based on Institute of Medicine guidelines. BMC Pregnancy Childbirth 2019, 19, 262. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.L.; Boyle, J.A.; Harrison, C.L.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; et al. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018, 16, 153. [Google Scholar] [CrossRef]
- Yaw, Y.H.; Shariff, Z.M.; Binti Shahdan, J. Pre-pregnancy BMI and gestational weight gain are associated with 6 months postpartum weight retention. Int. J. Public Health Clin. Sci. 2017, 4, 112–125. [Google Scholar]
- Xie, X.; Liu, J. Inadequate Weight Gain According to the Institute of Medicine 2009 Guidelines in Women with Gestational Diabetes: Frequency, Clinical Predictors, and the Association with Pregnancy Outcomes. J. Clin. Med. 2020, 9, 3343. [Google Scholar]
- Tam, C.H.T.; Ma, R.C.W.; Yuen, L.Y.; Ozaki, R.; Li, A.M.; Hou, Y.; Chan, M.H.M.; Ho, C.S.; Yang, X.; Chan, J.; et al. The impact of maternal gestational weight gain on cardiometabolic risk factors in children. Diabetologia 2018, 61, 2539–2548. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Good Maternal Nutrition: The Best Start in Life; 2016; Available online: https://www.euro.who.int/__data/assets/pdf_file/0008/313667/Good-maternal-nutrition-The-best-start-in-life.pdf (accessed on 20 December 2020).
- Hasan, S.T.; Rahman, S.; Locks, L.M.; Rahman, M.; Hore, S.K.; Saqeeb, K.N.; Khan, A.; Ahmed, T. Magnitude and determinants of inadequate third-trimester weight gain in rural Bangladesh. PLoS ONE 2018, 13, e0196190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Gallagher, A.E.; Carta, C.M.; Torres, M.E.; Moran, R.; Wilcox, S. Racial differences in gestational weight gain and pregnancy-related hypertension. Ann. Epidemiol. 2014, 24, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Deputy, N.P.; Sharma, A.J.; Kim, S.Y.; Hinkle, S.N. Prevalence and characteristics associated with gestational weight gain adequacy. Obstet. Gynecol. 2015, 125, 773–781. [Google Scholar] [CrossRef]
- Laraia, B.A.; Siega-Riz, A.M.; Gundersen, C. Household food insecurity is associated with self-reported pregravid weight status, gestational weight gain, and pregnancy complications. J. Am. Diet. Assoc. 2010, 110, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Yong, H.Y.; Shariff, Z.M.; Yusof, B.N.M.; Rejali, Z.; Bindels, J.; Tee, Y.Y.S.; van der Beek, E.M. High physical activity and high sedentary behavior increased the risk of gestational diabetes mellitus among women with excessive gestational weight gain: A prospective study. BMC Pregnancy Childbirth 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.Y.; Mohd Shariff, Z.; Koo, S.J.; Binti Sa’ari, N.S. Pre-pregnancy body mass index, height and physical activity are associated with rate of gestational weight gain among Malaysian mothers. J. Obstet. Gynaecol. Res. 2016, 42, 1094–1101. [Google Scholar] [CrossRef]
- Catalano, P.M.; Mele, L.; Landon, M.B.; Ramin, S.M.; Reddy, U.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M., Jr.; et al. Inadequate weight gain in overweight and obese pregnant women: What is the effect on fetal growth? Am. J. Obstet. Gynecol. 2014, 211, e131–e137. [Google Scholar] [CrossRef] [Green Version]
- Chee, W.F.; Si, Y.M.; Siew, C.Y. Factors Associated with Rates of Gestational Weight Gain among Pregnant Women in Batu Pahat District of Johor state, Malaysia. Malays. J. Med. Health Sci. 2019, 15, 33–39. [Google Scholar]
- Farhana, M.N.; Rohana, A.; Alina, T.T. Excessive and Inadequate Gestational Weight Gain among Malaysian Pregnant Women in Rural Area: Are There Any Associated Factors? Pak. J. Nutr. 2015, 14, 854. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics Malaysia. Report of Household Income and Basic Amenities Survey 2016. 2017. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=RUZ5REwveU1ra1hGL21JWVlPRmU2Zz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09 (accessed on 21 December 2019).
- Zin, R.H.M.; Lee, H.A.; Abdul-Rahman, S. Social Protection in Malaysia. Soc. Prot. Southeast East Asia 2002, 133. Available online: https://library.fes.de/pdf-files/iez/01443.pdf#page=119 (accessed on 31 December 2020).
- Ministry of Health. Perinatal Care Manual, 3rd ed.; Ministry of Health: Putrajaya, Malaysia, 2013. [Google Scholar]
- Ministry of Health. Management of Diabetes in Pregnancy Putrajaya, Malaysia Malaysia Health Technology Assessment Section (MaHTAS); Ministry of Health: Putrajaya, Malaysia, 2017. [Google Scholar]
- Ministry of Health. Clinical Practice Guidelines Management of Hypertension, 4th ed.; Ministry of Health: Putrajaya, Malaysia, 2013. [Google Scholar]
- He, S.; Allen, J.C.; Razali, N.S.; Win, N.M.; Zhang, J.J.; Ng, M.J.; Yeo, G.S.H.; Chern, B.S.M.; Tan, K.H. Are women in Singapore gaining weight appropriately during pregnancy: A prospective cohort study. BMC Pregnancy Childbirth 2019, 19, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demétrio, F.; Antônio de Souza Teles Santos, C.; Barbosa dos Santos, D.; Pereira-Santos, M. Food insecurity in pregnant women is associated with social determinants and nutritional outcomes: A systematic review and meta-analysis. Ciência Saúde Coletiva 2020, 25, 2663–2676. [Google Scholar] [CrossRef] [PubMed]
- Mesbah, S.F.; Sulaiman, N.; Shariff, Z.M.; Ibrahim, Z. Prevalence of Food Insecurity and Associated Factors among Free-Living Older Persons in Selangor, Malaysia. Malays. J. Nutr. 2018, 24, 349–357. [Google Scholar]
- Kennedy, G.; Ballard, T.; Dop, M.C. Guidelines for Measuring Household and Individual Dietary Diversity. Food and Agriculture Organization of the United Nations. 2011. Available online: https://www.fao.org/publications/card/en/c/5aacbe39-068f-513b-b17d-1d92959654ea/ (accessed on 12 December 2020).
- Chasan-Taber, L.; Schmidt, M.D.; Roberts, D.E.; Hosmer, D.; Markenson, G.; Freedson, P.S. Development and validation of a pregnancy physical activity questionnaire. Med. Sci. Sports Exerc. 2004, 36, 1750–1760. [Google Scholar] [CrossRef]
- Puteri-Sulwani, M.; Rohana, A.J.; Kah Leng Soo Tengku Alina, T.I.; Noor Aman, H.; Wan Suriati, W.N.; Wan Manan, W.M. Contemporary Research in Sports, Exercise and Health, Measurement and Protocols; Nova Science Publisher, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Wang, D.; Wang, M.; Darling, A.M.; Perumal, N.; Liu, E.; Danaei, G.; Fawzi, W.W. Gestational weight gain in low-income and middle-income countries: A modelling analysis using nationally representative data. BMJ Glob. Health 2020, 5, e003423. [Google Scholar] [CrossRef]
- Farhana, M.N.; Rohana, A.J.N.A.H. Gestational Weight Gain Among Malay Women with High Risk Pregnancy in Kelantan Tertiary Hospitals: A Mixed Method Study. Ph.D. Dissertation, Doctor of Public Health, Universiti Sains Malaysia, Kubang Kerian, Malaysia, 2018. [Google Scholar]
- Wang, X.; Zhang, X.; Zhou, M.; Juan, J.; Wang, X. Association of prepregnancy body mass index, rate of gestational weight gain with pregnancy outcomes in Chinese urban women. Nutr. Metab. 2019, 16, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.J.; DeRoo, L.A.; Jacobs, S.R.; Sandler, D.P. Accuracy and reliability of self-reported weight and height in the Sister Study. Public Health Nutr. 2012, 15, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Heude, B.; Thiébaugeorges, O.; Goua, V.; Forhan, A.; Kaminski, M.; Foliguet, B.; Schweitzer, M.; Magnin, G.; Charles, M.A.; The EDEN Mother–Child Cohort Study Group. Pre-pregnancy body mass index and weight gain during pregnancy: Relations with gestational diabetes and hypertension, and birth outcomes. Matern Child Health J. 2012, 16, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Xu, X.; Yan, Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS ONE 2018, 13, e0202183. [Google Scholar] [CrossRef] [Green Version]
- Nurul-Farehah, S.; Rohana, A.J.; Ravichandran, R.J.; Karalasingam, S.D.; Noraihan, N.; Mohamad Farouk, A.; Nadiah, S. Maternal Obesity and Its Associated Factors and Outcomes in Klang Valley, Malaysia: Finding from National Obstetric Registry. Malays. Fam. Physician 2021, 16, 56–67. [Google Scholar] [CrossRef]
- Hui, A.; Sevenhuysen, G.; Harvey, D.; Salamon, E. Barriers and Coping Strategies of Women with Gestational Diabetes to Follow Dietary Advice. Women Birth 2014, 27, 292–297. [Google Scholar] [CrossRef]
- Adane, A.A.; Mishra, G.D.; Tooth, L.R. Diabetes in Pregnancy and Childhood Cognitive Development: A Systematic Review. Pediatrics 2016, 137, e20154234. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics Malaysia. Household Income and Basic Amenities Survey Report; 2019. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=TU00TmRhQ1N5TUxHVWN0T2VjbXJYZz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09 (accessed on 29 December 2020).
- Mayan, S.N.A.; Nor, R.M. The Resistance of the Urban Poor in Selangor, Malaysia to Get Out of the Shackles of Poverty. Int. J. Acad. Res. Bus. Soc. Sci. 2020, 10, 602–611. [Google Scholar] [CrossRef]
- Lim, L.L. The Socioeconomic Impacts of COVID-19 in Malaysia: Policy Review and Guidance for Protecting the Most Vulnerable and Supporting Enterprises. International Labour Organization. 2020. Available online: http://ilo.org/wcmsp5/groups/public/---asia/---ro-bangkok/documents/publication/wcms_751600.pdf (accessed on 31 December 2020).
- Son, G.H.W.; Ismail, S. Are both the B40 and M40 “Poor”? Evidence from an Intergrated Income-Expenditure Analysis; 2020; Available online: http://www.krinstitute.org/assets/contentMS/img/template/editor/Views_GHSI_Are_Both_B40_M40_Poor%20(002).pdf (accessed on 29 December 2020).
- Edin, K.; Lein, L. Making Ends Meet: How Single Mothers Survive Welfare and Low-Wage Work; Russell Sage Foundation: New York, NY, USA, 1997. [Google Scholar]
- Szegda, K.; Bertone-Johnson, E.R.; Pekow, P.; Powers, S.; Markenson, G.; Dole, N.; Chasan-Taber, L. Physical activity and depressive symptoms during pregnancy among Latina women: A prospective cohort study. BMC Pregnancy Childbirth 2018, 18, 252. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health Malaysia. National Health and Morbidity Survey Maternal and Child Health; Ministry of Health: Kuala Lumpur, Malaysia, 2016. [Google Scholar]
- Neupane, B.; McDonald, S.; Beyene, J. Identifying determinants and estimating the risk of inadequate and excess gestational weight gain using a multinomial logistic regression model. Open Access Med. Stat. 2014, 5, 1–10. [Google Scholar]
Variables | Gestational Weight Gain (n, %) | |||
---|---|---|---|---|
Total (n = 475) Mean (SD), n (%) | Inadequate (n = 224) Mean (SD), n (%) | Adequate (n = 142) Mean (SD), n (%) | Excessive (n = 109) Mean (SD), n (%) | |
Age (years) | 30.2 (4.7) | 30.2 (4.7) | 29.8 (4.8) | 30.5 (4.5) |
Ethnicity | ||||
Malay | 415 (87.4) | 193 (86.2) | 125 (88.0) | 97 (89.0) |
Chinese | 22 (4.6) | 11 (4.9) | 6 (4.3) | 5 (4.6) |
Indian | 32 (6.7) | 17 (7.6) | 9 (6.3) | 6 (5.5) |
Others | 6 (1.3) | 3 (1.3) | 2 (1.4) | 1 (0.9) |
Maternal education level | ||||
Primary or less | 12 (2.5) | 8 (3.5) | 2 (1.4) | 2 (1.8) |
Secondary | 193 (40.6) | 99 (44.2) | 53 (37.3) | 41 (37.6) |
Pre-university | 145 (30.5) | 68 (30.4) | 49 (34.5) | 28 (25.7) |
Tertiary | 125 (26.3) | 49 (21.9) | 38 (26.8) | 38 (34.9) |
Maternal employment status | ||||
Unemployed | 157 (33.1) | 87 (38.8) | 42 (29.6) | 28 (25.7) |
Employed | 284 (59.8) | 121 (54.0) | 91 (64.1) | 72 (66.1) |
Stopped working due to pregnancy | 34 (7.1) | 16 (7.1) | 9 (6.3) | 9 (8.3) |
Household characteristics | ||||
Husband’s education level | 16 (3.4) | 8 (3.6) | 5 (3.5) | 3 (2.8) |
Primary or less | 245 (51.6) | 129 (57.6) | 59 (41.5) | 57 (52.3) |
Secondary | 134 (28.2) | 52 (23.2) | 53 (37.3) | 29 (26.6) |
Pre-university | 80 (16.8) | 35 (15.6) | 25 (17.6) | 20 (18.3) |
Monthly household income | ||||
Low (B40 group) | 204 (43.0) | 105 (46.9) | 62 (43.7) | 37 (33.9) |
Middle (M40 group) | 221 (46.5) | 104 (46.4) | 59 (41.5) | 58 (53.2) |
High (T20 group) | 50 (10.5) | 15 (6.7) | 21 (14.8) | 14 (12.8) |
House ownership status | ||||
No | 294 (61.9) | 143 (63.8) | 93 (65.5) | 58 (53.2) |
Yes | 181 (38.1) | 81 (36.2) | 49 (34.5) | 51 (46.8) |
Household size | ||||
1–4 | 281 (59.2) | 128 (57.1) | 87 (61.3) | 66 (60.6) |
>4 | 194 (40.8) | 96 (42.9) | 55 (38.7) | 43 (39.4) |
No. of children under care | ||||
1–4 | 469 (98.7) | 222 (99.1) | 139 (97.9) | 108 (99.1) |
>4 | 6 (1.3) | 2 (0.9) | 3 (2.1) | 1 (0.9) |
Recipient of social protection program | ||||
No | 334 (70.3) | 151 (67.4) | 107 (75.4) | 76 (69.7) |
Yes | 141 (29.7) | 73 (32.6) | 35 (24.6) | 33 (30.3) |
Household food security status | ||||
Secure | 337 (70.9) | 146 (65.2) | 110 (77.5) | 81 (74.3) |
Insecure | 138 (29.1) | 78 (34.8) | 32 (22.5) | 28 (25.7) |
Monthly food expenditure (MYR) 1 | ||||
<350 | 161 (33.9) | 71 (31.7) | 51 (35.9) | 39 (35.8) |
350–499 | 74 (15.6) | 36 (16.1) | 16 (11.3) | 22 (20.2) |
≥500 | 240 (50.5) | 117 (52.2) | 75 (52.8) | 48 (44.0) |
Women dietary diversity score | 4.74 (1.28) | 4.71 (1.36) | 4.82 (1.25) | 4.72 (1.15) |
Obstetric characteristics | ||||
Pre-pregnancy weight (kg) | 64.84 (16.38) | 64.95 (17.02) | 58.19 (13.39) | 73.27 (14.69) |
Height (m) | 1.56 (0.06) | 1.56 (0.06) | 1.57 (0.06) | 1.57 (0.06) |
Pre-pregnancy BMI (kg/m2) | ||||
Underweight | 33 (6.9) | 16 (7.1) | 16 (11.3) | 1 (0.9) |
Normal weight | 190 (40.0) | 93 (41.5) | 79 (55.6) | 18 (16.5) |
Overweight | 116 (24.4) | 50 (22.3) | 32 (22.5) | 34 (31.2) |
Obese | 136 (28.6) | 65 (29.0) | 15 (10.6) | 56 (51.4) |
Gravida | ||||
Primigravida (G1) | 155 (32.6) | 64 (28.6) | 51 (35.9) | 40 (36.7) |
Multigravida (G2–G4) | 264 (55.6) | 130 (58.0) | 80 (56.3) | 54 (49.5) |
Grandmultipara (G5>) | 56 (11.8) | 30 (13.4) | 11 (7.7) | 15 (13.8) |
Nutritional counselling | ||||
No | 81 (17.1) | 39 (17.4) | 17 (12.0) | 25 (22.9) |
Yes | 394 (82.9) | 185 (82.6) | 125 (88.0) | 84 (77.1) |
Comorbidities | ||||
Diabetes in pregnancy | ||||
Pre-existing diabetes mellitus | 13 (2.7) | 10 (4.5) | 1 (0.7) | 2 (1.8) |
Gestational diabetes mellitus | 121 (25.5) | 73 (32.6) | 24 (16.9) | 24 (22.0) |
No diabetes mellitus | 341 (71.8) | 141 (62.9) | 117 (82.4) | 83 (76.1) |
Hypertension | ||||
Pre-existing hypertension | 11 (2.3) | 5 (2.2) | 3 (2.1) | 3 (2.8) |
Hypertensive disorder in pregnancy | 6 (1.3) | 4 (1.8) | 1 (0.7) | 1 (0.9) |
No hypertension | 458 (96.4) | 215 (96.0) | 138 (97.2) | 105 (96.3) |
Anaemia | ||||
No | 287 (60.4) | 143 (63.8) | 69 (48.6) | 75 (68.8) |
Yes | 188 (39.6) | 81 (36.2) | 73 (51.4) | 34 (31.2) |
Physical Activity | Total Median (IQR) | Gestational Weight Gain Median (IQR) | ||
---|---|---|---|---|
Inadequate (n = 224) | Adequate (n = 142) | Excessive (n = 109) | ||
Total energy expenditure (MET-hr/day) | 148.26 (131.56) | 147.42 (136.55) | 148.23 (116.91) | 152.19 (152.11) |
By intensity | ||||
Sedentary | 7.35 (11.82) | 7.35 (13.43) | 7.35 (10.73) | 7.35 (10.50) |
Light | 104.75 (91.85) | 100.13 (92.70) | 106.89 (97.79) | 109.76 (85.53) |
Moderate | 28.86 (53.07) | 27.97 (49.26) | 29.48 (55.20) | 33.53 (73.76) |
Vigorous | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
By type | ||||
Household/caregiving | 73.15 (82.26) | 74.40 (89.43) | 68.69 (76.76) | 80.74 (78.09) |
Sports/exercise | 1.28 (4.22) | 1.60 (4.22) | 1.08 (4.22) | 1.60 (4.50) |
Transportation | 10.71 (21.28) | 10.71 (21.28) | 10.71 (19.74) | 15.96 (26.53) |
Inactivity | 10.72 (15.88) | 13.65 (15.79) | 7.35 (13.43) | 10.72 (24.28) |
Variables | Inadequate GWG (n = 224) | Excessive GWG (n = 109) | ||||||
---|---|---|---|---|---|---|---|---|
Regression Coefficient (b) | AdjOR (95% CI) | Wald Statistic (df) | p- Value | Regression Coefficient (b) | AdjOR (95%CI) | Wald Statistic (df) | p- Value | |
Diabetes during pregnancy | ||||||||
No | 1.00 | 1.00 | ||||||
Yes | 0.81 (0.27) | 2.24 (1.31,3.83) | 8.72 (1) | 0.003 | −0.29 (0.35) | 0.75 (0.38,1.48) | 0.70 (1) | 0.403 |
Monthly household income | ||||||||
High (T20 group) | 1.00 | 1.00 | ||||||
Middle (M40 group) | 0.84 (0.39) | 2.33 (1.09,4.96) | 4.78 (1) | 0.029 | 0.14 (0.44) | 1.14 (0.49,2.68) | 0.10 (1) | 0.755 |
Low (B40 group) | 0.80 (0.39) | 2.22 (1.07,4.72) | 4.25 (1) | 0.039 | −0.43 (0.45) | 0.65 (0.27,1.55) | 0.90 (1) | 0.343 |
Pre-pregnancy BMI | ||||||||
Normal weight | 1.00 | 1.00 | ||||||
Underweight | −0.23 (0.39) | 0.80 (0.37,1.72) | 0.34 (1) | 0.796 | −1.25 (1.07) | 0.29 (0.04,2.33) | 1.36 (1) | 0.243 |
Overweight | 0.12 (0.28) | 1.12 (0.64,1.95) | 0.17 (1) | 0.685 | 1.64 (0.37) | 5.18 (2.52,10.62) | 20.12 (1) | <0.001 |
Obese | 1.02 (0.34) | 2.77 (1.43,5.35) | 9.15 (1) | 0.002 | 2.89 (0.40) | 17.95 (8.13,39.65) | 51.03 (1) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurul-Farehah, S.; Rohana, A.J.; Hamid, N.A.; Daud, Z.; Asis, S.H.H. Determinants of Suboptimal Gestational Weight Gain among Antenatal Women Residing in the Highest Gross Domestic Product (GDP) Region of Malaysia. Nutrients 2022, 14, 1436. https://doi.org/10.3390/nu14071436
Nurul-Farehah S, Rohana AJ, Hamid NA, Daud Z, Asis SHH. Determinants of Suboptimal Gestational Weight Gain among Antenatal Women Residing in the Highest Gross Domestic Product (GDP) Region of Malaysia. Nutrients. 2022; 14(7):1436. https://doi.org/10.3390/nu14071436
Chicago/Turabian StyleNurul-Farehah, Shahrir, Abdul Jalil Rohana, Noor Aman Hamid, Zaiton Daud, and Siti Harirotul Hamrok Asis. 2022. "Determinants of Suboptimal Gestational Weight Gain among Antenatal Women Residing in the Highest Gross Domestic Product (GDP) Region of Malaysia" Nutrients 14, no. 7: 1436. https://doi.org/10.3390/nu14071436
APA StyleNurul-Farehah, S., Rohana, A. J., Hamid, N. A., Daud, Z., & Asis, S. H. H. (2022). Determinants of Suboptimal Gestational Weight Gain among Antenatal Women Residing in the Highest Gross Domestic Product (GDP) Region of Malaysia. Nutrients, 14(7), 1436. https://doi.org/10.3390/nu14071436