Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease
Abstract
:1. Introduction
2. Food Pyramid
3. A Diet to Prevent Alzheimer’s Disease
Mediterranean Diet
4. Food Products with Beneficial/Adverse Effects on Health
4.1. Advanced Glycation End Products (AGEs)
4.2. Fatty Acids
4.3. Milk and Dairy Products
4.4. Alcohol
5. Functions of L-Carnitine in the Brain
6. Lifestyle, Physical Exercise and Mental Activity in the Prevention of AD
6.1. Physical Activity
6.2. Mental Activity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strafella, C.; Caputo, V.; Galota, M.R.; Zampatti, S.; Marella, G.; Mauriello, S.; Cascella, R.; Giardina, E. Application of precision medicine in neurodegenerative diseases. Front. Neurol. 2018, 9, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, C.; Bates, T.E.; Butterfield, D.A.; Calafato, S.; Cornelius, C.; De Lorenzo, A.; Dinkova Kostova, A.T.; Calabrese, V. Natural antioxidants in Alzheimer’s disease. Expert Opin. Investig. Drugs 2007, 16, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Poddar, J.; Pradhan, M.; Ganguly, G.; Chakrabarti, S. Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J. Chem. Neuroanat. 2019, 95, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Wilczyńska, K.; Waszkiewicz, N. Diagnostic utility of selected serum dementia biomarkers: Amyloid β-40, amyloid β-42, tau protein, and YKL-40: A Review. J. Clin. Med. 2020, 9, 3452. [Google Scholar] [CrossRef] [PubMed]
- Kaźmierczak, A.; Adamczyk, A.; Benigna-Strosznajder, J. The role of extracellular α-synuclein in molecular mechanisms of cell heath. Post. Hig. Med. Dosw. 2013, 67, 1047–1057. [Google Scholar] [CrossRef]
- Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006296. [Google Scholar] [CrossRef]
- Dean, D.C., III; Jerskey, B.A.; Chen, K.; Protas, H.; Thiyyagura, P.; Roontiva, A.; O’Muircheartaigh, J.; Dirks, H.; Waskiewicz, N.; Lehman, K.; et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: A cross-sectional imaging study. JAMA Neurol. 2014, 71, 11–22. [Google Scholar] [CrossRef]
- Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [Green Version]
- Engelborghs, S.; Gilles, C.; Ivanoiu, A.; Vandewoude, M. Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease. Acta Clin. Belg. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Moore, K.; Hughes, C.F.; Ward, M.; Hoey, L.; McNulty, H. Diet, nutrition and the ageing brain: Current evidence and new directions. Proc. Nur. Soc. 2018, 77, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Soininen, H.; Solomon, A.; Visser, P.J.; Hendrix, S.B.; Blennow, K.; Kivipelto, M.; Hartmann, T. LipiDiDiet clinical study group. 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer’s disease. Alzheimers Dement. 2021, 17, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.K. Natural or plant products for the treatment of neurological disorders: Current knowledge. Curr. Drug Metab. 2018, 19, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.F.; Hung, J.; Squire, M.; Anderson, M.; Castro, M.; Babu, J.R.; Al-Nakkash, L.; Broderick, T.L.; Plochocki, J.H. Exercise and resveratrol increase fracture resistance in the 3xTg-AD mouse model of Alzheimer’s disease. BMC Complement. Altern. Med. 2019, 19, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kępka, A.; Chojnowska, S.; Okungbowa, O.E.; Zwierz, K. The role of carnitine in the perinatal period. Dev. Period Med. 2014, 18, 417–425. [Google Scholar]
- Kępka, A.; Ochocińska, A.; Chojnowska, S.; Borzym-Kluczyk, M.; Skorupa, E.; Knaś, M.; Waszkiewicz, N. Potential Role of L-carnitine in autism spectrum disorder. J. Clin. Med. 2021, 10, 1202. [Google Scholar] [CrossRef]
- Kępka, A.; Ochocinska, A.; Borzym-Kluczyk, M.; Skorupa, E.; Stasiewicz-Jarocka, B.; Chojnowska, S.; Waszkiewicz, N. Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients 2020, 12, 1987. [Google Scholar] [CrossRef]
- Traina, G. The neurobiology of acetyl-L-carnitine. Front. Biosci. 2016, 21, 1314–1329. [Google Scholar] [CrossRef] [Green Version]
- Onofrj, M.; Ciccocioppo, F.; Varanese, S.; di Muzio, A.; Calvani, M.; Chiechio, S.; Osio, M.; Thomas, A. Acetyl-L-carnitine: From a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev. Neurother. 2013, 13, 925–936. [Google Scholar] [CrossRef]
- White, H.L.; Scates, P.W. Acetyl-L-carnitine as a precursor of acetylcholine. Neurochem. Res. 1990, 15, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.B.; Siegel, G.J. Effect of PPF and ALCAR on the induction of NGF- and p75-mRNA and on APP processing in Tg2576 brain. Neurochem. Int. 2003, 43, 225–233. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, Z.; Zhao, N.; Liu, D.; Guo, Z.Y.; Tan, L.; Hu, J.; Wang, Q.; Wang, J.Z.; Zhu, L.Q. Acetyl-L-carnitine attenuates homocysteine-induced Alzheimer-like histopathological and behavioral abnormalities. Rejuvenation Res. 2011, 14, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Carta, A.; Caruso, G.; Benedetti, N.; Iannuccelli, M. The action of acetyl-L-carnitine in neurodegeneration and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1992, 663, 483–486. [Google Scholar] [CrossRef]
- Juliet, P.A.; Balasubramaniam, D.; Balasubramaniam, N.; Panneerselvam, C. Carnitine: A neuromodulator in aged rats. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, R.J.; Boots, E.A.; Lindheimer, J.B.; Stegner, A.J.; Van Riper, S.; Edwards, D.F.; Gallagher, C.L.; Carlsson, C.M.; Rowley, H.A.; Bendlin, B.B.; et al. Fitness, independent of physical activity is associated with cerebral blood flow in adults at risk for Alzheimer’s disease. Brain Imaging Behav. 2020, 14, 1154–1163. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; Frisardi, V.; Seripa, D.; Logroscino, G.; Imbimbo, B.P.; Pilotto, A. Diet and Alzheimer’s disease risk factors or prevention: The current evidence. Expert Rev. Neurother. 2011, 11, 677–708. [Google Scholar] [CrossRef]
- Mamcarz, A.; Podolec, P. Alcohol in the prevention of cardiovascular diseases—facts and myths (in Polish). Forum Medycyny Rodzinnej 2007, 1, 255–263. [Google Scholar]
- Galbete, C.; Kröger, J.; Jannasch, F.; Iqbal, K.; Schwingshackl, L.; Schwedhelm, C.; Weikert, C.; Boeing, H.; Schulze, M.B. Nordic diet, mediterranean diet, and the risk of chronic diseases: The EPIC-Potsdam study. BMC Med. 2018, 16, 99. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology 2019, 15, e212–e223. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and Alzheimer’s disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, R.D.; White, L.R.; Ross, G.W.; Masaki, K.H.; Curb, J.D.; Petrovitch, H. Walking and dementia in physically capable elderly men. JAMA 2004, 292, 1447–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solfrizzi, V.; Frisardi, V.; Seripa, D.; Logroscino, G.; Imbimbo, B.P.; D’Onofrio, G.; Addante, F.; Sancarlo, D.; Cascavilla, L.; Pilotto, A.; et al. Mediterranean diet in predementia and dementia syndromes. Curr. Alzheimer Res. 2011, 8, 520–542. [Google Scholar] [CrossRef] [PubMed]
- Tolppanen, A.M.; Solomon, A.; Kulmala, J.; Kåreholt, I.; Ngandu, T.; Rusanen, M.; Laatikainen, T.; Soininen, H.; Kivipelto, M. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 2015, 11, 434.e6–443.e6. [Google Scholar] [CrossRef] [PubMed]
- Perrone, L.; Grant, W.B. Observational and ecological studies of dietary advanced glycation end products in national diets and Alzheimer’s disease incidence and prevalence. J. Alzheimers Dis. 2015, 45, 965–979. [Google Scholar] [CrossRef]
- Lubitz, I.; Ricny, J.; Atrakchi-Baranes, D.; Shemesh, C.; Kravitz, E.; Liraz-Zaltsman, S.; Maksin-Matveev, A.; Cooper, I.; Leibowitz, A.; Uribarri, J.; et al. High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Aβ deposition in an Alzheimer mouse model. Aging Cell 2016, 15, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Yusufov, M.; Weyandt, L.L.; Piryatinsky, I. Alzheimer’s disease and diet: A systematic review. Int. J. Neurosci. 2017, 127, 161–175. [Google Scholar] [CrossRef]
- Dochniak, M.; Ekiert, K. Nutrition in prevention and treatment of Alzheimer’s and Parkinson’s diseases (in Polish). Nurs. Public Health 2015, 5, 199–208. [Google Scholar]
- Abbatecola, A.M.; Russo, M.; Barbieri, M. Dietary patterns and cognition in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 10–13. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abate, G.; Marziano, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Nutrition and AGE-ing: Focusing on Alzheimer’s disease. Oxid. Med. Cell Longev. 2017, 2017, 7039816. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Shimogaito, N.; Wu, X.; Kikuchi, S.; Yamagishi, S.; Takeuchi, M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2006, 21, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, J.; Du, Y.; Lee, C.A.; Kern, T.S. Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Mol. Vis. 2011, 17, 3156–3165. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Buckinx, F.; Aubertin-Leheudre, M. Nutrition to prevent or treat cognitive Impairment in older adults: A GRADE recommendation. J. Prev. Alzheimers Dis. 2021, 8, 110–116. [Google Scholar] [CrossRef]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernández-Pérez, C.; Martín-Sánchez, F.J. Effect of milk and other dairy products on the risk of frailty, sarcopenia, and cognitive performance decline in the elderly: A systematic review. Adv. Nutr. 2019, 10 (Suppl. 2), S105–S119. [Google Scholar] [CrossRef]
- Lee, J.; Fu, Z.; Chung, M.; Jang, D.J.; Lee, H.J. Role of milk and dairy intake in cognitive function in older adults: A systematic review and meta-analysis. Nutr. J. 2018, 17, 82. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Jagarlapoodi, S.; Khan, H.; Belwal, T.; Cichelli, A. relationship of wine consumption with Alzheimer’s disease. Nutrients 2020, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, C.A.; Yannakoulia, M.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Arampatzi, X.; Bougea, A.; Labropoulos, I.; Scarmeas, N. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS ONE 2017, 12, e0182048. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Yang, Q.; Joshi, R.B.; Liu, Y.; Akbar, M.; Song, B.J.; Zhou, S.; Wang, X. Role of alcohol drinking in Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2020, 21, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruitenberg, A.; van Swieten, J.C.; Witteman, J.C.M.; Mehta, K.M.; van Duijn, C.M.; Hofman, A.; Breteler, M.M.B. Alcohol consumption and risk of dementia: The Rotterdam Study. Lancet 2002, 359, 281–286. [Google Scholar] [CrossRef]
- Luchsinger, J.A.; Tang, M.X.; Siddiqui, M.; Shea, S.; Mayeux, R. Alcohol intake and risk of dementia. J. Am. Geriatr. Soc. 2004, 52, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2005, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Mack, H.A.; Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am. J. Geriatr. Psychiatry 2009, 17, 542–555. [Google Scholar] [CrossRef]
- Waszkiewicz, N.; Zalewska-Szajda, B.; Chojnowska, S.; Szajda, S.D.; Zalewska, A.; Konarzewska, B.; Szulc, A.; Wojtulewska-Supron, A.; Kępka, A.; Knaś, M.; et al. The salivary β-HEX A% index as an excellent marker of periodontitis in smoking alcohol-dependent persons. Dis. Markers 2013, 35, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Waszkiewicz, N.; Szajda, S.D.; Konarzewska, B.; Szulc, A.; Kepka, A.; Zwierz, K. Underappreciated role of binge drinking in the risk of lung cancer. Eur. J. Public Health 2010, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Kępka, A.; Szajda, S.D.; Waszkiewicz, N.; Płudowski, P.; Chojnowska, S.; Rudy, M.; Szulc, A.; Ładny, J.R.; Zwierz, K. Carnitine: Function, metabolism and value in hepatic failure during chronic alcohol intoxication. Post. Hig. Med. Dosw. 2011, 65, 645–653. [Google Scholar] [CrossRef]
- Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [Google Scholar] [CrossRef]
- Virmani, A.; Binienda, Z. Role of carnitine esters in brain neuropathology. Mol. Aspects Med. 2004, 25, 533–549. [Google Scholar] [CrossRef]
- Ferreira, G.C.; McKenna, M.C. L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017, 42, 1661–1675. [Google Scholar] [CrossRef] [PubMed]
- Ribas, G.S.; Vargas, C.R.; Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2014, 533, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Aureli, T.; Di Cocco, M.E.; Puccetti, C.; Ricciolini, R.; Scalibastri, M.; Miccheli, A.; Manetti, C.; Conti, F. Acetyl-L-carnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res. 1998, 796, 75–81. [Google Scholar] [CrossRef]
- Sergi, G.; Pizzato, S.; Piovesan, F.; Trevisan, C.; Veronese, N.; Manzato, E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res. 2018, 30, 133–138. [Google Scholar] [CrossRef]
- Smeland, O.B.; Meisingset, T.W.; Borges, K.; Sonnewald, U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem. Int. 2012, 61, 100–107. [Google Scholar] [CrossRef]
- Epis, R.; Marcello, E.; Gardoni, F.; Longhi, A.; Calvani, M.; Iannuccelli, M.; Cattabeni, F.; Canonico, P.L.; Di Luca, M. Modulatory effect of acetyl-L-carnitine on amyloid precursor protein metabolism in hippocampal neurons. Eur. J. Pharmacol. 2008, 597, 51–56. [Google Scholar] [CrossRef]
- Nałęcz, K.A.; Miecz, D.; Berezowski, V.; Cecchelli, R. Carnitine: Transport and physiological functions in the brain. Mol. Aspects Med. 2004, 25, 551–567. [Google Scholar] [CrossRef]
- Bak, S.W.; Choi, H.; Park, H.H.; Lee, K.Y.; Lee, Y.J.; Yoon, M.Y.; Koh, S.H. Neuroprotective effects of acetyl-L-carnitine against oxygen-glucose deprivation-induced neural stem cell death. Mol. Neurobiol. 2016, 53, 6644–6652. [Google Scholar] [CrossRef]
- Respondek, M.; Buszman, E. Regulation of neurogenesis: Factors affecting of new neurons formation in adult mammals brain (in Polish). Post. Hig. Med. Dosw. 2015, 69, 1451–1461. [Google Scholar]
- Cristofano, A.; Sapere, N.; La Marca, G.; Angiolillo, A.; Vitale, M.; Corbi, G.; Scapagnini, G.; Intrieri, M.; Russo, C.; Corso, G.; et al. Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia. PLoS ONE 2016, 11, e0155694. [Google Scholar] [CrossRef] [Green Version]
- Head, K.A. Peripheral neuropathy: Pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 2006, 11, 294–329. [Google Scholar] [PubMed]
- Suchy, J.; Chan, A.; Shea, T.B. Dietary supplementation with a combination of alpha-lipoic acid, acetyl-L-carnitine, glycerophosphocholine, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr. Res. 2009, 29, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Ravagna, A.; Colombrita, C.; Scapagnini, G.; Guagliano, E.; Calvani, M.; Butterfield, D.A.; Giuffrida Stella, A.M. Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. J. Neurosci. Res. 2005, 79, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Lin, R.; Wei, Y.; Yang, A. Effects of creative expression therapy for older adults with mild cognitive impairment at risk of Alzheimer’s disease: A randomized controlled clinical trial. Clin. Interv. Aging 2018, 13, 1313–1320. [Google Scholar] [CrossRef] [Green Version]
- Corsi, M.; Di Raimo, T.; Di Lorenzo, C.; Rapp-Ricciardi, M.; Archer, T.; Ricci, S.; Businaro, R. Cognitive disability in Alzheimer’s disease and its management. Clin. Ter. 2016, 167, e123. [Google Scholar]
- Balouch, S.; Rifaat, E.; Chen, H.L.; Tabet, N. Social networks and loneliness in people with Alzheimer’s dementia. Int. J. Geriatr. Psychiatry 2019, 34, 666–673. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Cotman, C.W.; Engesser-Cesar, C. Exercise enhances and protects brain function. Exerc. Sport Sci. Rev. 2002, 30, 75–79. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Laurin, D.; Verreault, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Paillard-Borg, S.; Fratiglioni, L.; Xu, W.; Winblad, B.; Wang, H.X. An active lifestyle postpones dementia onset by more than one year in very old adults. J. Alzheimers Dis. 2012, 31, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Abellan van Kan, G.; Vellas, B. Physical activity and Alzheimer’s disease: From prevention to therapeutic per¬spectives. J. Am. Med. Dir. Assoc. 2008, 9, 390–405. [Google Scholar] [CrossRef] [PubMed]
- Law, L.L.; Rol, R.N.; Schultz, S.A.; Dougherty, R.J.; Edwards, D.F.; Koscik, R.L.; Gallagher, C.L.; Carlsson, C.M.; Bendlin, B.B.; Zetterberg, H.; et al. Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer’s disease. Alzheimers Dement. 2018, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Rossi Dare, L.; Garcia, A.; Alves, N.; Ventura Dias, D.; de Souza, M.A.; Mello-Carpes, P.B. Physical and cognitive training are able to prevent recognition memory deficits related to amyloid beta neurotoxicity. Behav. Brain Res. 2019, 365, 190–197. [Google Scholar] [CrossRef]
- Jahangiri, Z.; Gholamnezhad, Z.; Hosseini, M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab. Brain Dis. 2019, 34, 21–37. [Google Scholar] [CrossRef]
- Yu, F.; Lin, F.V.; Salisbury, D.L.; Shah, K.N.; Chow, L.; Vock, D.; Nelson, N.W.; Porsteinsson, A.P.; Clifford, J., Jr. Efficacy and mechanisms of combined aerobic exercise and cognitive training in mild cognitive impairment: Study protocol of the ACT trial. Trials 2018, 19, 700. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.; Chen, D.; Chen, N. Physical activity alleviates cognitive dysfunction of Alzheimer’s disease through regulating the mTOR signaling pathway. Int. J. Mol. Sci. 2019, 20, 1591. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.; Mangialasche, F.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multidomain interventions to prevent cognitive impairment, Alzheimer’s Disease, and dementia: From FINGER to World-Wide FINGERS. J. Prev. Alzheimers Dis. 2020, 7, 29–36. [Google Scholar] [CrossRef]
- Kim, S.; McMaster, M.; Torres, S.; Cox, K.L.; Lautenschlager, N.; Rebok, G.W.; Pond, D.; D’Este, C.; McRae, I.; Cherbuin, N.; et al. Protocol for a pragmatic randomised controlled trial of body brain life-general practice and a lifestyle modification programme to decrease dementia risk exposure in a primary care setting. BMJ Open 2018, 8, e019329. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Stephen, R.; Ngandu, T.; Liu, Y.; Peltonen, M.; Antikainen, R.; Kemppainen, N.; Laatikainen, T.; Lötjönen, J.; Rinne, J.; Strandberg, T.; et al. FINGER Study Group. Change in CAIDE dementia risk score and neuroimaging biomarkers during a 2-year multidomain lifestyle randomized controlled trial: Results of a post-hoc subgroup analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Wesselman, L.M.; Hooghiemstra, A.M.; Schoonmade, L.J.; de Wit, M.C.; van der Flier, W.M.; Sikkes, S.A. Web-based multidomain lifestyle programs for brain health: Comprehensive overview and meta-analysis. JMIR Ment. Health 2019, 6, e12104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMaster, M.; Kim, S.; Clare, L.; Torres, S.J.; D’Este, C.; Anstey, K.J. Body, brain, life for cognitive decline (BBL-CD): Protocol for a multidomain dementia risk reduction randomized controlled trial for subjective cognitive decline and mild cognitive impairment. Clin. Interv. Aging 2018, 13, 2397–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nousia, A.; Siokas, V.; Aretouli, E.; Messinis, L.; Aloizou, A.M.; Martzoukou, M.; Karala, M.; Koumpoulis, C.; Nasios, G.; Dardiotis, E. Beneficial effect of multidomain cognitive training on the neuropsychological performance of patients with early-stage Alzheimer’s disease. Neural Plast. 2018, 2018, 2845176. [Google Scholar] [CrossRef] [Green Version]
- Heger, I.; Deckers, K.; van Boxtel, M.; de Vugt, M.; Hajema, K.; Verhey, F.; Köhler, S. Dementia awareness and risk perception in middle-aged and older individuals: Baseline results of the MijnBreincoach survey on the association between lifestyle and brain health. BMC Public Health 2019, 19, 678. [Google Scholar] [CrossRef]
Order Pyramid | Food Group | Recommended | Avoid | Comments |
---|---|---|---|---|
1. | Physical exercise | Minimum 30–45 min/day. |
Limit your sedentary lifestyle. | Cycling, swimming, walking, gardening, walking up the stairs and housework. |
2. | Fluids |
Water (non-carbonated, mineral medium or highly mineralised), tea, coffee, fresh fruit and vegetable juice. |
Limit drinking boiled or sparkling water, limit the consumption of sweetened drinks and flavoured waters. |
Drink water (about 1.5–2 L/day). Provide water regularly, in small portions throughout the day. A glass of water should be drunk immediately after waking up. Drink water between meals (1 glass at least 15 min before meals and 15 min after meals). Pure mineral water should be the main source of hydration. |
3. |
Vegetables and fruit | Preferably raw or briefly cooked. |
Limit the sugar and sweets from the diet (replace them with fruit and nuts, pumpkin seeds, sunflower). | Minimum 400 g of vegetables and fruit divided into 5 portions (one portion = one cup). They should constitute a minimum of 50% of the daily portion of food (one portion may be a glass of freshly squeezed juice). Remember the right proportions: vegetables should make up the majority, about three-quarters, and fruits —one-quarter. Important variety. |
4. |
Grain products |
Whole-grain food products (whole grain brown rice, whole-wheat noodles and cereal groats including buckwheat and barley). |
Do not consume highly processed products. |
At least half of all cereals consumed should be whole grains. Dietary fibre regulates the functioning of the digestive tract, facilitates the maintenance of normal body weight, prevents constipation and the formation of colon cancer, reduces the content of cholesterol in the blood. |
5. |
Milk and milk products | Milk (with up to 2% fat), yogurt, kefir, buttermilk and partly cottage cheese. |
Avoid ready-made, flavoured dairy products with additional flavour ingredients (sugar, aromas and dyes). | Minimum 2 glasses/day (or other dairy drinks) and partially with cheese, e.g., 1 cup (200 mL) of kefir / yogurt, or 280–400 g semi-skimmed cheese, or 1 slice (30 g) of yellow cheese. The rennet cheeses should be consumed less often (due to their higher fat and higher energy content). |
6. |
Meat and meat products | Fish (salmon, tuna, herring, mackerel, cod), poultry, lean meat (ham, sirloin, fillet, pork loin). |
Limit meat consumption (especially red and processed meat products to 0.5 kg/week). Avoid eating meat preparations —they contain a large amount of salt, phosphates, nitrites, water, dyes, aromas, flavour enhancers, sugar, starch, soy protein and other additives with a relatively low meat content. |
Meat substitutes, rich in protein, are eggs, legumes (beans, lentils, peas, soybeans); it is worth eating them 1-2 times a week. The meat should be processed as little as possible, preferably cooked, stewed without frying or baked in foil or ovenproof dish. |
7. | Vegetable oils | Oils: olive, canola, soybean, sunflower, peanut and other vegetable oils and margarines without trans fatty acids. | Animal fats. |
Replace animal fats with vegetable oils, nuts and seeds. Consume in small amounts and preferably in raw form, as an addition to salads or other dishes. For short-term frying, use rapeseed oil or olive oil. Deep frying: saturated and monounsaturated fats (lard, clarified butter, coconut oil). |
8. | Herbs | Fresh and dried. | Prepared spice mixtures. |
Use herbs/spices such as rosemary, oregano, thyme, basil, turmeric, garlic, ginger and cinnamon on a daily basis. Herbs and other natural spices improve taste and have valuable ingredients, including antioxidant properties. |
9. | Salt (NaCl) |
The salt substitutes—potassium or magnesium salt. Natural spices and herbs instead of salt | Limit the addition of salt to food, to consumption during cooking and preparation. |
Salt (including products, e.g., bread, sausages, cheese, salty snacks and salting-out) should be consumed in an amount of not more than 5 g/day (approximately a flat teaspoon). Use rock and iodised salt. Limit the consumption of foods containing large amounts of sodium: meats, canned meat and fish; rennet and blue cheese; silage; smoked products; marinated vegetables; soups and powdered sauces; spice mixtures; broth cubes; salty snacks (chips, sticks, pretzels, crackers, peanuts). |
10. | Sugar | Can be replaced by fruit and nuts, brown sugar (unrefined), natural sweeteners, i.e., stevia, xylitol, maple and date syrup, honey. |
Limit the consumption of white sugar, synthetic sweeteners, sweets. | Limit to 10% of total energy: less than 10% of 2000 kcal = 200 kcal = equivalent to 10 teaspoons of sugar (50 g). Keep your intake of sugar, sweeteners, added sugars and naturally occurring sugars in fruit juices and honey in moderation. |
11. | Alcohol | Beer/non-alcoholic beer, wine. |
Allowed in moderate amounts. Reducing heavy alcohol use may be an effective dementia prevention strategy. | There are no precisely formulated clinical recommendations for alcohol consumtion. People choosing alcoholic beverages must do it with caution and moderation. |
Course of Action | Effect of Action | Author, Year, Ref. |
---|---|---|
Neuroprotective, neurotrophic, neuromodulatory effect |
| Ribas et al., 2014, [62]; Respondek et al., 2015, [69]; Zhou et al., 2011, [23]; Virmani & Binienda, 2004, [60]; Ferreira & McKenna, 2017, [61]; Traina, 2016, [19]; Epis et al., 2008, [66]; Sergi et al., 2018, [64]; Bak et al., 2016, [68]; Nałęcz et al., 2004, [67]; Bak et al., 2016, [68] |
Participation in the regulation of the energy metabolism of the brain |
| Jones et al., 2010, [59]; Aureli et al., 1998, [63]; Ferreira & McKenna, 2017, [61]; Traina, 2016, [19] |
Antioxidative, anti-inflammatory effects and other metabolic functions |
| Juliet et al., 2003, [25]; Ribas et al., 2014, [62]; Traina, 2016, [19]; Ferreira & McKenna, 2017, [61]; Calabrese et al., 2005, [73] |
Participation in the metabolic processes of fatty acids |
| Jones et al., 2010, [59]; Virmani & Binienda, 2004, [60]; Ferreira & McKenna, 2017, [61]; Traina, 2016, [19] |
Influence on the level and activity of proteins (receptors) and neurotransmitters |
| Wite & Scates, 1990, [21]; Virmani & Binienda, 2004, [60]; Ferreira & McKenna, 2017, [61]; Sergi et al., 2018, [64]; Smeland et al., 2012, [65]; Chauhan et al., 2003, [22]; Calvani et al., 1992, [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kępka, A.; Ochocińska, A.; Borzym-Kluczyk, M.; Chojnowska, S.; Skorupa, E.; Przychodzeń, M.; Waszkiewicz, N. Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients 2022, 14, 1534. https://doi.org/10.3390/nu14081534
Kępka A, Ochocińska A, Borzym-Kluczyk M, Chojnowska S, Skorupa E, Przychodzeń M, Waszkiewicz N. Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients. 2022; 14(8):1534. https://doi.org/10.3390/nu14081534
Chicago/Turabian StyleKępka, Alina, Agnieszka Ochocińska, Małgorzata Borzym-Kluczyk, Sylwia Chojnowska, Ewa Skorupa, Małgorzata Przychodzeń, and Napoleon Waszkiewicz. 2022. "Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease" Nutrients 14, no. 8: 1534. https://doi.org/10.3390/nu14081534
APA StyleKępka, A., Ochocińska, A., Borzym-Kluczyk, M., Chojnowska, S., Skorupa, E., Przychodzeń, M., & Waszkiewicz, N. (2022). Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients, 14(8), 1534. https://doi.org/10.3390/nu14081534