Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Anthropometrics, Fat Distribution and Compartments
2.3. Blood Sampling
2.4. Serum Lipid Analysis
2.5. Non-Cholesterol Sterol Analysis
2.6. Statistics Analyses
3. Results
3.1. Clinical Characteristics of Study Participants
3.2. Effect of Weight Loss
3.3. Associations between Anthropometrics, Fat Distribution and Fat Compartments with Cholesterol Absorption and Synthesis Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Despres, J.P.; Moorjani, S.; Lupien, P.J.; Tremblay, A.; Nadeau, A.; Bouchard, C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990, 10, 497–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.A.; Connell, J.M. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Mashnafi, S.; Plat, J.; Mensink, R.P.; Baumgartner, S. Non-Cholesterol Sterol Concentrations as Biomarkers for Cholesterol Absorption and Synthesis in Different Metabolic Disorders: A Systematic Review. Nutrients 2019, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.A.; Tilvis, R.S.; Kesaniemi, Y.A. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am. J. Epidemiol. 1990, 131, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.A.; Gylling, H.; Nissinen, M.J. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 765–769. [Google Scholar] [CrossRef]
- Simonen, P.; Gylling, H.; Howard, A.N.; Miettinen, T.A. Introducing a new component of the metabolic syndrome: Low cholesterol absorption. Am. J. Clin. Nutr. 2000, 72, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Simonen, P.; Gylling, H.; Miettinen, T.A. Acute effects of weight reduction on cholesterol metabolism in obese type 2 diabetes. Clin. Chim. Acta 2002, 316, 55–61. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F.; Gan, S.K.; Ooi, E.M.; Barrett, P.H. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care 2010, 33, 1134–1139. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.C.; Watts, G.F.; Ng, T.W.; Yamashita, S.; Barrett, P.H. Effect of weight loss on markers of triglyceride-rich lipoprotein metabolism in the metabolic syndrome. Eur. J. Clin. Investig. 2008, 38, 743–751. [Google Scholar] [CrossRef]
- Richard, C.; Couture, P.; Desroches, S.; Benjannet, S.; Seidah, N.G.; Lichtenstein, A.H.; Lamarche, B. Effect of the Mediterranean diet with and without weight loss on surrogate markers of cholesterol homeostasis in men with the metabolic syndrome. Br. J. Nutr. 2012, 107, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocr. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Joris, P.J.; Plat, J.; Kusters, Y.H.; Houben, A.J.; Stehouwer, C.D.; Schalkwijk, C.G.; Mensink, R.P. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: A randomized controlled trial in abdominally obese men. Am. J. Clin. Nutr. 2017, 105, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Becker, D.; Clark, L.T.; Cooper, R.S.; Denke, M.A.; Howard, W.J.; Hunninghake, D.B.; Illingworth, R.; Luepker, R.V.; McBride, P.; et al. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Kusters, Y.H.; Schalkwijk, C.G.; Houben, A.J.; Kooi, M.E.; Lindeboom, L.; Op't Roodt, J.; Joris, P.J.; Plat, J.; Mensink, R.P.; Barrett, E.J.; et al. Independent tissue contributors to obesity-associated insulin resistance. JCI Insight 2017, 2, e89695. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Mackay, D.S.; Jones, P.J.; Myrie, S.B.; Plat, J.; Lutjohann, D. Methodological considerations for the harmonization of non-cholesterol sterol bio-analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 957, 116–122. [Google Scholar] [CrossRef]
- Riches, F.M.; Watts, G.F.; Hua, J.; Stewart, G.R.; Naoumova, R.P.; Barrett, P.H. Reduction in visceral adipose tissue is associated with improvement in apolipoprotein B-100 metabolism in obese men. J. Clin. Endocrinol. Metab. 1999, 84, 2854–2861. [Google Scholar] [CrossRef]
- Ostlund, R.E., Jr. Phytosterols in human nutrition. Annu. Rev. Nutr. 2002, 22, 533–549. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Tilvis, R.S.; Kesaniemi, Y.A. Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men. Metabolism 1989, 38, 136–140. [Google Scholar] [CrossRef]
- Despres, J.P. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Fox, C.S.; Hickson, D.; Bidulescu, A.; Carr, J.J.; Taylor, H.A. Fatty liver, abdominal visceral fat, and cardiometabolic risk factors: The Jackson Heart Study. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2715–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeli, K.; Taghibiglou, C.; Van Iderstine, S.C.; Lewis, G.F. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc. Med. 2001, 11, 170–176. [Google Scholar] [CrossRef]
- Tobin, K.A.; Ulven, S.M.; Schuster, G.U.; Steineger, H.H.; Andresen, S.M.; Gustafsson, J.A.; Nebb, H.I. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J. Biol. Chem. 2002, 277, 10691–10697. [Google Scholar] [CrossRef] [Green Version]
- Alphonse, P.A.; Jones, P.J. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2016, 51, 519–536. [Google Scholar] [CrossRef]
- Quintao, E.; Grundy, S.M.; Ahrens, E.H., Jr. Effects of dietary cholesterol on the regulation of total body cholesterol in man. J. Lipid Res. 1971, 12, 233–247. [Google Scholar] [CrossRef]
- Santosa, S.; Varady, K.A.; AbuMweis, S.; Jones, P.J. Physiological and therapeutic factors affecting cholesterol metabolism: Does a reciprocal relationship between cholesterol absorption and synthesis really exist? Life Sci. 2007, 80, 505–514. [Google Scholar] [CrossRef]
- Simonen, M.; Mannisto, V.; Leppanen, J.; Kaminska, D.; Karja, V.; Venesmaa, S.; Kakela, P.; Kuusisto, J.; Gylling, H.; Laakso, M.; et al. Desmosterol in human nonalcoholic steatohepatitis. Hepatology 2013, 58, 976–982. [Google Scholar] [CrossRef]
- Plat, J.; Hendrikx, T.; Bieghs, V.; Jeurissen, M.L.; Walenbergh, S.M.; van Gorp, P.J.; De Smet, E.; Konings, M.; Vreugdenhil, A.C.; Guichot, Y.D.; et al. Protective role of plant sterol and stanol esters in liver inflammation: Insights from mice and humans. PLoS ONE 2014, 9, e110758. [Google Scholar] [CrossRef] [PubMed]
Normal-Weight Group (n = 25) | Weight-Loss Group 1 (n = 23) | Non-Weight-Loss Group 1 (n = 26) | ||||
---|---|---|---|---|---|---|
Baseline 1,2 | Baseline | After 8 Weeks | Baseline | After 8 Weeks | Treatment Effect 3 | |
Age (year) | 53.7 (25.0–61.6) | 52.4 (46.8–61.7) | 52.0 (45.4–61.1) | |||
Body weight (kg) | 74.9 ± 8.3 ### | 98.2 ± 8.1 | 88.2 ± 7.6 | 95.9 ± 8.9 | 96.4 ± 9.2 | −10.3 (−11.4, −9.2) *** |
BMI (kg/m2) | 23.3 ± 1.8 ### | 30.2 ± 1.5 | 27.1 ± 1.3 | 29.9 ± 2.5 | 30.0 ± 2.5 | −3.1 (−3.4, −2.8) *** |
Waist circumference (cm) | 84.9 ± 6.3 ### | 106.8 ± 3.4 | 95.9 ± 4.2 | 106.2 ± 3.8 | 106.3 ± 4.2 | −11.0 (−12.1,−9.9) *** |
Hip circumference (cm) | 96.6 ± 4.2 | 108.1 ± 4.4 | 102.3 ± 4.0 | 107.2 ± 5.9 | 107.2 ± 6.4 | −5.8 (−6.5, −5.0) *** |
Waist to hip ratio | 0.88 ± 0.05 | 0.99 ± 0.03 | 0.94 ± 0.04 | 0.99 ± 0.05 | 0.99 ± 0.05 | −0.05 (−0.06, −0.04) *** |
Visceral fat (L) 4 | 0.89 ± 0.42 | 2.17 ± 0.64 | 1.44 ± 0.51 | 2.53 ± 0.75 | 2.62 ± 0.85 | −0.85 (−1.0, −0.67) *** |
Subcutaneous fat (L) 4 | 1.45 ± 0.51 | 3.23 ± 0.64 | 2.44 ± 0.54 | 2.92 ± 0.81 | 2.98 ± 0.81 | −0.81 (−0.93, −0.69) *** |
Intrahepatic lipid (%) 4,5 | 3.43 (3.14–3.69) | 4.21 (3.59–6.53) | 3.54 (3.08–4.19) | 5.34 (4.33–8.31) | 6.31 (4.56–9.45) | −0.18 (−0.25, −0.12) *** |
LDL-cholesterol (mmol/L) | 2.80 ± 0.71 ### | 3.67 ± 1.03 | 3.04 ± 0.88 | 3.70 ± 0.89 | 3.48 ± 0.77 | −0.51 (−0.76, −0.25) *** |
HDL-cholesterol (mmol/L) | 1.26 ± 0.27 # | 1.14 ± 0.16 | 1.13 ± 0.21 | 1.09 ± 0.24 | 1.11 ± 0.26 | −0.02 (−0.11, 0.06) |
Triglycerides (mmol/L) | 1.01 ± 0.48 ### | 1.63 ± 0.87 | 1.19 ± 0.54 | 1.87 ± 0.77 | 1.92 ± 0.79 | −0.60 (−0.89, −0.30) *** |
Total cholesterol (mmol/L) Ɨ | 4.02 ± 0.69 ### | 4.89 ± 0.99 | 4.15 ± 0.86 | 5.03 ± 0.78 | 4.87 ± 0.67 | −0.62 (−0.90, −0.35) *** |
Campesterol (µmol/mmol cholesterol) | 2.39 ± 1.02 ## | 1.70 ± 0.56 | 1.54 ± 0.38 ## | 1.74 ± 0.64 | 1.83 ± 0.61 | −0.25 (−0.43, −0.07) ** |
Sitosterol (µmol/mmol cholesterol) | 1.55 ± 0.70 ## | 1.08 ± 0.27 | 1.06 ± 0.19 # | 1.12 ± 0.40 | 1.13 ± 0.35 | −0.03 (−0.12, 0.04) |
Cholestanol (µmol/mmol cholesterol) | 1.53 ± 0.27 ### | 1.27 ± 0.21 | 1.45 ± 0.24 | 1.27 ± 0.27 | 1.27 ± 0.27 | 0.18 (0.19, 0.25) *** |
Lathosterol (µmol/mmol cholesterol) | 1.13 ± 0.46 ## | 1.47 ± 0.26 | 1.19 ± 0.24 | 1.46 ± 0.39 | 1.59 ± 0.49 | −0.39 (−0.55, −0.24) *** |
Cholesterol Absorption | Cholesterol Synthesis | |||||||
---|---|---|---|---|---|---|---|---|
ΔCholestanol | ΔCampesterol | ΔSitosterol | ΔLathosterol | |||||
B | 95% CIs | B | 95% CI | B | 95% CI | B | 95% CI | |
ΔBW | −0.047 | (−0.068, −0.025) *** | 0.063 | (−0.004, 0.130) | 0.030 | (0.001, 0.058) * | 0.011 | (−0.039, 0.060) |
ΔBMI | −0.149 | (−0.223, −0.074) *** | 0.203 | (−0.020, 0.427) | 0.087 | (−0.010, 0.184) | 0.044 | (−0.119, 0.207) |
ΔWaist | −0.036 | (−0.069, −0.002) ** | 0.020 | (−0.069, 0.109) | 0.009 | (−0.029, 0.048) | 0.027 | (−0.032, 0.086) |
ΔHip | −0.043 | (−0.085, 0.000) * | 0.070 | (−0.037, 0.177) | 0.029 | (−0.018, 0.075) | 0.005 | (−0.070, 0.081) |
ΔWaist:Hip | −1.329 | (−5.557, 2.899) | −2.827 | (−13.046, 7.391) | −0.999 | (−5.437, 3.438) | 3.867 | (−2.900, 10.634) |
ΔVF | −0.246 | (−0.422, −0.069) ** | 0.083 | (−0.418, 0.585) | −0.032 | (−0.250, 0.185) | 0.074 | (−0.266, 0.414) |
ΔSF | −0.066 | (−0.362, 0.229) | −0.194 | (−0.906, 0.517) | −0.049 | (−0.359, 0.260) | 0.101 | (−0.383, 0.585) |
ΔIHL † | 0.252 | (−0.252, 0.755) | 0.376 | (−0.857, 1.609) | 0.314 | (−0.206, 0.834) | −0.280 | (−1.115, 0.555) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashnafi, S.; Plat, J.; Mensink, R.P.; Joris, P.J.; Kusters, Y.H.A.M.; Houben, A.J.H.M.; Stehouwer, C.D.A.; Schalkwijk, C.G.; Baumgartner, S. Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men. Nutrients 2022, 14, 1546. https://doi.org/10.3390/nu14081546
Mashnafi S, Plat J, Mensink RP, Joris PJ, Kusters YHAM, Houben AJHM, Stehouwer CDA, Schalkwijk CG, Baumgartner S. Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men. Nutrients. 2022; 14(8):1546. https://doi.org/10.3390/nu14081546
Chicago/Turabian StyleMashnafi, Sultan, Jogchum Plat, Ronald P. Mensink, Peter J. Joris, Yvo H. A. M. Kusters, Alfons J. H. M. Houben, Coen D. A. Stehouwer, Casper G. Schalkwijk, and Sabine Baumgartner. 2022. "Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men" Nutrients 14, no. 8: 1546. https://doi.org/10.3390/nu14081546
APA StyleMashnafi, S., Plat, J., Mensink, R. P., Joris, P. J., Kusters, Y. H. A. M., Houben, A. J. H. M., Stehouwer, C. D. A., Schalkwijk, C. G., & Baumgartner, S. (2022). Effects of Diet-Induced Weight Loss on Plasma Markers for Cholesterol Absorption and Synthesis: Secondary Analysis of a Randomized Trial in Abdominally Obese Men. Nutrients, 14(8), 1546. https://doi.org/10.3390/nu14081546