Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Soybean Milk Drinks
2.2.1. Preparation of Pasteurized SM and PFO-SM Drinks
2.2.2. Analysis of Nutritional Facts
2.2.3. Sensory Acceptability Test
2.2.4. Black Sesame-Soybean Milk
2.3. Clinical Study
2.3.1. Study Design and Setting
2.3.2. Subject Preparations
2.3.3. Study Interventions
2.3.4. Analysis of Blood Biomarkers
2.4. Statistical Analysis
3. Results
3.1. Pasteurized PFO-SM Drink
3.2. Sensory Acceptability Assessment
3.3. Subject Information
3.4. Effect on Hematological Parameter Levels
3.5. Effect on Serum Levels on Biochemical Markers
3.6. Effect on Phagocytotic Activity
3.7. Effects on Oxidative Stress and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.H.; Hwang, H.J.; Shin, K.O.; Jeon, W.M.; Choi, K.S. Effects of perilla oil on plasma concentrations of cardioprotective (n-3) fatty acids and lipid profiles in mice. Nutr. Res. Pract. 2013, 7, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Paradee, N.; Kanjanapothi, D.; Taesotikul, T.; Kongkarnka, S.; Prommaban, A.; Koonyosying, P.; Srichairatanakool, S. Thai Perilla frutescens fruit oil alleviates carbon tetrachloride-induced hepatotoxicities in rats. Asian Pac. J. Trop. Biomed. 2020, 10, 101–110. [Google Scholar] [CrossRef]
- Burdge, G.C. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.Y.; Kim, T.S.; Cai, J.; Kim, J.; Kim, Y.; Shin, K.; Kim, K.S.; Lee, S.P.; Kang, M.H.; Choi, E.K.; et al. Perilla oil improves blood flow through inhibition of platelet aggregation and thrombus formation. Lab. Anim. Res. 2014, 30, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowska, B.; Maślińska, M. The place of omega-3 and omega-6 acids in supplementary treatment of inflammatory joint diseases. Reumatologia 2020, 58, 34–41. [Google Scholar] [CrossRef]
- Jo, H.; Kim, M.; Lee, J.; Kim, H.; Song, Y.O. Anti-atherogenic properties of emulsified perilla oil (EPO) in apo E KO mice and plasma lipid lowering effects of rice porridge containing EPO in healthy young adults. Food Sci. Biotechnol. 2013, 22, 79–85. [Google Scholar] [CrossRef]
- Farzaneh-Far, R.; Harris, W.S.; Garg, S.; Na, B.; Whooley, M.A. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The heart and soul study. Atherosclerosis 2009, 205, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Kurowska, E.M.; Dresser, G.K.; Deutsch, L.; Vachon, D.; Khalil, W. Bioavailability of omega-3 essential fatty acids from perilla seed oil. Prostaglandins Leukot. Essent. Fat. Acids 2003, 68, 207–212. [Google Scholar] [CrossRef]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Igarashi, J.; Ohtuka, Y.; Oguchi, S.; Kaneko, K.; Yamashiro, Y. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis. Digestion 2001, 63, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Paradee, N.; Koonyosying, P.; Kusirisin, W.; Janthip, R.; Kanjanapothi, D.; Pattanapanyasat, K.; Srichairatanakool, S. Analgesic, anti-inflammatory and anti-ulcer properties of Thai Perilla frutescence fruit oil in animals. Biosci. Rep. 2021, 41, BSR20203166. [Google Scholar] [CrossRef]
- Paradee, N.; Utama-Ang, N.; Uthaipibull, C.; Porter, J.B.; Garbowski, M.W.; Srichairatanakool, S. Extracts of Thai Perilla frutescens nutlets attenuate tumour necrosis factor-alpha-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells. Biosci. Rep. 2020, 40, BSR20203166. [Google Scholar] [CrossRef]
- Paradee, N.; Howes, M.R.; Utama-Ang, N.; Chaikitwattna, A.; Hider, R.C.; Srichairatanakool, S. A chemically characterized ethanolic extract of Thai Perilla frutescens (L.) Britton fruits (nutlets) reduces oxidative stress and lipid peroxidation in human hepatoma (HuH7) cells. Phytother. Res. 2019, 33, 2064–2074. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, W.; Xu, B. Food quality improvement of soy milk made from short-time germinated soybeans. Foods 2013, 2, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, O.; Milajerdi, A.; Siadat, S.D.; Keshavarz, S.A.; Sima, A.R.; Vahedi, H.; Adibi, P.; Esmaillzadeh, A. Effects of soy milk consumption on gut microbiota, inflammatory markers, and disease severity in patients with ulcerative colitis: A study protocol for a randomized clinical trial. Trials 2020, 21, 565. [Google Scholar] [CrossRef]
- Pabich, M.; Materska, M. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Lee, S.K.; Chun, O.K. Soy isoflavones and osteoporotic bone loss: A review with an emphasis on modulation of bone remodeling. J. Med. Food 2016, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef] [PubMed]
- Kostadinovic Velickovska, S.; Catalin Mot, A.; Mitrev, S.; Gulaboski, R.; Bruhl, L.; Mirhosseini, H.; Silaghi-Dumitrescu, R.; Matthaus, B. Bioactive compounds and “in vitro” antioxidant activity of some traditional and non-traditional cold-pressed edible oils from Macedonia. J. Food Sci. Technol. 2018, 55, 1614–1623. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Winterton, P.; Leuliet, J.C.; Tissier, J.P.; Maury, V.; Semet, F.; Debreyne, P.; Berthou, M.; Chopard, F. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms. J. Dairy Sci. 2006, 89, 4475–4489. [Google Scholar] [CrossRef]
- Marinkovic, V.; Rankovic-Janevski, M.; Spasic, S.; Nikolic-Kokic, A.; Lugonja, N.; Djurovic, D.; Miletic, S.; Vrvic, M.M.; Spasojevic, I. Antioxidative activity of colostrum and human milk: Effects of pasteurization and storage. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 901–906. [Google Scholar] [CrossRef]
- Lima, H.K.; Wagner-Gillespie, M.; Perrin, M.T.; Fogleman, A.D. Bacteria and bioactivity in holder pasteurized and shelf-stable human milk products. Curr. Dev. Nutr. 2017, 1, e001438. [Google Scholar] [CrossRef]
- Lerttrakarnnon, P.; Kusirisin, W.; Koonyosying, P.; Flemming, B.; Utama-Ang, N.; Fucharoen, S.; Srichairatanakool, S. Consumption of sinlek rice drink improved red cell indices in anemic elderly subjects. Molecules 2021, 26, 6285. [Google Scholar] [CrossRef]
- Vital, R.J.; Bassinello, P.Z.; Cruz, Q.A.; Carvalho, R.N.; de Paiva, J.C.M.; Colombo, A.O. Production, quality, and acceptance of tempeh and white bean tempeh burgers. Foods 2018, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Davanco, T.; Silva, L.B.; Sampaio Kde, L.; Coy, C.S.; Vilela, M.M.; Pinto, E.A. Acceptability of an alimentary supplement of whey-protein concentrate and TGF-beta in patients with Crohn’s disease. ISRN Nutr. 2013, 2013, 947865. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gao, J. The Chinese total diet study in 1990. Part II. Nutrients. J. AOAC Int. 1993, 76, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Mongeau, R.; Brassard, R. Enzymatic-gravimetric determination in foods of dietary fiber as sum of insoluble and soluble fiber fractions: Summary of collaborative study. J. AOAC Int. 1993, 76, 923–925. [Google Scholar] [CrossRef]
- Brunt, K.; Sanders, P.; Ernste-Nota, V.; van Soest, J. Results multi-laboratory trial ISO/CD 22184-IDF/WD 244: Milk and milk products-determination of the sugar contents-high-performance anion exchange chromatography method with pulsed amperometric detection. J. AOAC Int. 2021, 104, 732–756. [Google Scholar] [CrossRef] [PubMed]
- Gilani, G.S.; Ratnayake, W.M. Trans fats: Update on health effects, methodology, and levels in processed foods. J. AOAC Int. 2009, 92, 1249. [Google Scholar] [CrossRef] [Green Version]
- Calliope, S.R.; Samman, N.C. Sodium content in commonly consumed foods and its contribution to the daily Intake. Nutrients 2019, 12, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruijsen, H.; Poitevin, E.; Brunelle, S.L. Determination of minerals and trace elements in milk, milk products, infant formula, and adult nutrition: Collaborative study 2011.14 method modification. J. AOAC Int. 2019, 102, 1845–1863. [Google Scholar] [CrossRef]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999; p. 387. [Google Scholar]
- Pattanapanyasat, K.; Sukapirom, K.; Tachavanich, K.; Kaewmoon, S. Flow cytometric quantitation of opsonophagocytosis and intracellular killing of Candida albicans using a whole blood microassay. Cytom. Part A 2007, 71A, 1027–1033. [Google Scholar] [CrossRef]
- Chaka, W.; Scharringa, J.; Verheul, A.F.; Verhoef, J.; Van Strijp, A.G.; Hoepelman, I.M. Quantitative analysis of phagocytosis and killing of Cryptococcus neoformans by human peripheral blood mononuclear cells by flow cytometry. Clin. Diagn. Lab. Immunol. 1995, 2, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Amer, J.; Goldfarb, A.; Fibach, E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur. J. Haematol. 2003, 70, 84–90. [Google Scholar] [CrossRef]
- Koonyosying, P.; Kongkarnka, S.; Uthaipibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed. Pharmacother. 2018, 108, 1694–1702. [Google Scholar] [CrossRef]
- Peskin, A.V.; Winterbourn, C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000, 293, 157–166. [Google Scholar] [CrossRef]
- Miwa, S.; Luzzatto, L.; Rosa, R.; Paglia, D.E.; Schroter, W.; De Flora, A.; Fujii, H.; Board, P.G.; Beutler, E. Recommended methods for an additional red cell enzyme (pyrimidine 5′-nucleotidase) assay and the determination of red cell adenosine-5′-triphosphate, 2,3-diphosphoglycerate and reduced glutathione. International Committee for Standardization in Haematology. Clin. Lab. Haematol. 1989, 11, 131–138. [Google Scholar]
- Chrzczanowicz, J.; Gawron, A.; Zwolinska, A.; de Graft-Johnson, J.; Krajewski, W.; Krol, M.; Markowski, J.; Kostka, T.; Nowak, D. Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity-possible application in clinical studies on dietary antioxidants. Clin. Chem. Lab. Med. 2008, 46, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xiang, X.; Huang, J.; Ma, Y.; Sun, J.; Zhu, D. Studying the evaluation model of the nutritional quality of edible vegetable oil based on dietary nutrient reference intake. ACS Omega 2021, 6, 6691–6698. [Google Scholar] [CrossRef] [PubMed]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.T.; Azmeera, T.; Karuna, M.S.L.; Prasad, R.B.N.; Womeni, H.M. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 2017, 221, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Dhibi, M.; Mechri, B.; Cheraif, I.; Hammami, M. trans-Fatty acid isomers in two sesame (Sesamum indicum L.) seed byproducts under processing. J. Agric. Food Chem. 2010, 58, 12210–12215. [Google Scholar] [CrossRef]
- Fidler, N.; Sauerwald, T.U.; Koletzko, B.; Demmelmair, H. Effects of human milk pasteurization and sterilization on available fat content and fatty acid composition. J. Pediatr. Gastroenterol. Nutr. 1998, 27, 317–322. [Google Scholar] [CrossRef]
- Fidler, N.; Sauerwald, T.U.; Demmelmair, H.; Koletzko, B. Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. Adv. Exp. Med. Biol. 2001, 501, 485–495. [Google Scholar] [CrossRef]
- Giroux, H.J.; Acteau, G.; Sabik, H.; Britten, M. Influence of dissolved gases and heat treatments on the oxidative degradation of polyunsaturated fatty acids enriched dairy beverage. J. Agric. Food Chem. 2008, 56, 5710–5716. [Google Scholar] [CrossRef]
- Alhazzaa, R.; Sinclair, A.J.; Turchini, G.M. Bioconversion of alpha-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation. PLoS ONE 2013, 8, e73719. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Manan, D.; Tapia, G.; Gormaz, J.G.; D’Espessailles, A.; Espinosa, A.; Masson, L.; Varela, P.; Valenzuela, A.; Valenzuela, R. Bioconversion of alpha-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with alpha-linolenic acid-rich oils. Food Funct. 2012, 3, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Jiang, Y.; Fischer, S.M. Prostaglandin E3 metabolism and cancer. Cancer Lett. 2014, 348, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambra, V.; Echeverria, F.; Valenzuela, A.; Chouinard-Watkins, R.; Valenzuela, R. Docosahexaenoic and arachidonic acids as neuroprotective nutrients throughout the life cycle. Nutrients 2021, 13, 986. [Google Scholar] [CrossRef]
- Ye, J.; Ghosh, S. Omega-3 PUFA vs. NSAIDs for preventing cardiac inflammation. Front. Cardiovasc. Med. 2018, 5, 146. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart 2018, 5, e000946. [Google Scholar] [CrossRef]
- Salerno, J.W.; Smith, D.E. The use of sesame oil and other vegetable oils in the inhibition of human colon cancer growth in vitro. Anticancer Res. 1991, 11, 209–215. [Google Scholar] [PubMed]
- Salem, M.L. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. Int. Immunopharmacol. 2005, 5, 947–960. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Shimada, M.; Rikimaru, T.; Hasegawa, H.; Yamashita, Y.; Hamatsu, T.; Yamasaki, M.; Kaku, S.; Yamada, K.; Sugimachi, K. Antioxidant and anti-inflammatory effects of a diet supplemented with sesamin on hepatic ischemia-reperfusion injury in rats. Hepatogastroenterology 2003, 50, 1609–1613. [Google Scholar]
- Umesha, S.S.; Naidu, K.A. Vegetable oil blends with alpha-linolenic acid rich garden cress oil modulate lipid metabolism in experimental rats. Food Chem. 2012, 135, 2845–2851. [Google Scholar] [CrossRef]
- Soung, D.Y.; Patade, A.; Khalil, D.A.; Lucas, E.A.; Devareddy, L.; Greaves, K.A.; Arjmandi, B.H. Soy protein supplementation does not cause lymphocytopenia in postmenopausal women. Nutr. J. 2006, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, M.; Mitsunobu, F.; Ashida, K.; Mifune, T.; Hosaki, Y.; Tsugeno, H.; Harada, S.; Tanizaki, Y.; Kataoka, M.; Niiya, K.; et al. Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int. Arch. Allergy Immunol. 2000, 122, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, F.; Liu, X.; Xie, Y.; Xia, H.; Wang, S.; Sun, G. Effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acids on erythrocyte fatty acid composition in type 2 diabetic patients. Lipids Health Dis. 2022, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Bonen, A.; Campbell, S.E.; Benton, C.R.; Chabowski, A.; Coort, S.L.; Han, X.X.; Koonen, D.P.; Glatz, J.F.; Luiken, J.J. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc. Nutr. Soc. 2004, 63, 245–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorner, Z.; Barbeau, P.A.; Castellani, L.; Wright, D.C.; Chabowski, A.; Holloway, G.P. Dietary α-linolenic acid supplementation alters skeletal muscle plasma membrane lipid composition, sarcolemmal FAT/CD36 abundance, and palmitate transport rates. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R1234–R1242. [Google Scholar] [CrossRef] [Green Version]
- Lyudinina, A.Y.; Bushmanova, E.A.; Varlamova, N.G.; Bojko, E.R. Dietary and plasma blood alpha-linolenic acid as modulators of fat oxidation and predictors of aerobic performance. J. Int. Soc. Sports Nutr. 2020, 17, 57. [Google Scholar] [CrossRef]
- Laiglesia, L.M.; Lorente-Cebrián, S.; Prieto-Hontoria, P.L.; Fernández-Galilea, M.; Ribeiro, S.M.; Sáinz, N.; Martínez, J.A.; Moreno-Aliaga, M.J. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J. Nutr. Biochem. 2016, 37, 76–82. [Google Scholar] [CrossRef]
- Lee, M.S.; Kwun, I.S.; Kim, Y. Eicosapentaenoic acid increases lipolysis through up-regulation of the lipolytic gene expression and down-regulation of the adipogenic gene expression in 3T3-L1 adipocytes. Genes Nutr. 2008, 2, 327–330. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.J.; Kim, J.E.; Choi, H.J.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Seo, S.; Yang, S.Y.; An, B.-S.; Lee, H.S.; et al. α-Linolenic acid-enriched cold-pressed perilla oil suppress high-fat diet-induced hepatic steatosis through amelioration of the ER stress-mediated autophagy. Molecules 2020, 25, 2662. [Google Scholar] [CrossRef]
- Thies, F.; Miles, E.A.; Nebe-von-Caron, G.; Powell, J.R.; Hurst, T.L.; Newsholme, E.A.; Calder, P.C. Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 2001, 36, 1183–1193. [Google Scholar] [CrossRef]
- Kew, S.; Banerjee, T.; Minihane, A.M.; Finnegan, Y.E.; Muggli, R.; Albers, R.; Williams, C.M.; Calder, P.C. Lack of effect of foods enriched with plant- or marine-derived n-3 fatty acids on human immune function. Am. J. Clin. Nutr. 2003, 77, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Song, B.R.; Kim, J.E.; Bae, S.J.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Lee, H.S.; Lee, C.Y.; Kim, B.-H.; et al. Therapeutic effects of cold-pressed perilla oil mainly consisting of linolenic acid, oleic acid and linoleic acid on UV-induced photoaging in NHDF cells and SKH-1 hairless mice. Molecules 2020, 25, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.Y.; Lee, M.H.; Lee, S.; Cho, E.J. Comparative study on antioxidant activity of vegetable oils under in vitro and cellular system. J. Agric. Sci. 2015, 7, 58–65. [Google Scholar] [CrossRef]
- Pfeifer, W.P.; Degasperi, G.R.; Almeida, M.T.; Vercesi, A.E.; Costa, F.F.; Saad, S.T. Vitamin E supplementation reduces oxidative stress in beta thalassaemia intermedia. Acta Haematol. 2008, 120, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Matsuzaki, K.; Maruyama, K.; Hossain, S.; Sumiyoshi, E.; Wakatsuki, H.; Kato, S.; Ohno, M.; Tanabe, Y.; Kuroda, Y.; et al. Perilla seed oil in combination with nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: A possible supplement for brain health in the elderly. Food Funct. 2022, 13, 2768–2781. [Google Scholar] [CrossRef]
- Devaraj, S.; Leonard, S.; Traber, M.G.; Jialal, I. Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome. Free Radic. Biol. Med. 2008, 44, 1203–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senavong, P.; Kongkham, S.; Saelim, S.; Suangkavathin, V. Neuroprotective effect of perilla extracts on PC12 cells. J. Med. Assoc. Thai. 2016, 99 (Suppl. S4), S256–S264. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Hossain, S.; Ito, T.; Wakatsuki, H.; Tanabe, Y.; Ohno, M.; Kato, S.; Yamashita, K.; Shido, O. Perilla seed oil enhances cognitive function and mental health in healthy elderly Japanese individuals by enhancing the biological antioxidant potential. Foods 2021, 10, 1130. [Google Scholar] [CrossRef]
Categories | Drink Samples | ||
---|---|---|---|
SM | 1% PFO-SM | BS-SM | |
Serving volume (mL) | 180 | 180 | 180 |
Total calories (kcal) | 90 | 90 | 100 |
Calories from fat (kcal) | 15.0 | 10.0 | 22.5 |
Total fat (g) | 1.5 | 1.0 | 2.5 |
Saturated fat (g) | 0.00 | 0.50 | NA |
Trans fat (g) | ND | ND | NA |
Cholesterol (mg) & | <1.62 | <1.62 | NA |
Monounsaturated fats (mg) | NA | NA | NA |
Polyunsaturated fats (mg) | 1.43 | 1.73 | NA |
Total carbohydrate (g) | 15.0 | 16.0 | 14.0 |
Dietary fiber (g) | 0.86 | 0.18 | 1.00 |
Sugars (g) | 13.0 | 12.0 | 4.0 |
Protein (g) | 5.0 | 4.0 | 6.0 |
Sodium (mg) | 20.0 | 25.0 | 80.0 |
Vitamin A (µg) | ND | ND | NA |
Vitamin B1 (mg) ^ | 0.060 | <0.025 | NA |
Vitamin B2 (mg) ^ | <0.025 | <0.025 | NA |
Calcium (mg) | 45.81 | 29.92 | NA |
Iron (mg) | 0.70 | 0.54 | NA |
Information | 1% PFO-SM Product |
---|---|
Gender (n) | 100 (52F, 48M) |
Age range (y) | 18–55 |
Profession (%): | |
Student | 70 |
Lecturer | 15 |
Back officer | 10 |
Others | 5 |
Price preference (%): | |
15–20 baht | 88 |
21–25 baht | 12 |
Product intension (%): | |
Purchased | 68 |
Not purchased | 15 |
Not sure | 17 |
Buying reason: | |
Price | 65 |
Taste | 24 |
Brand | 3 |
Health product | 8 |
Other | 0 |
Characteristics | Sensory Evaluation | |
---|---|---|
0.5% PFO-SM | 1% PFO-SM | |
Color | 7.28 ± 1.51 ns | 7.37 ± 1.51 ns |
Flavor: | ||
PFO odor | 5.83 ± 1.63 ns | 5.93 ± 1.81 ns |
SM odor | 6.19 ± 1.67 ns | 6.10 ± 1.55 ns |
Taste: | ||
Sweet taste | 6.34 ± 1.97 ns | 6.34 ± 1.87 ns |
SM taste | 5.76 ± 1.98 ns | 5.97 ± 1.83 ns |
PFO taste | 6.13 ± 1.77 ns | 6.17 ± 1.80 ns |
Texture | 6.33 ± 1.83 ns | 6.17 ± 1.93 ns |
Overall acceptance | 6.39 ± 1.84 ns | 6.29 ± 1.95 ns |
Health Index | DI (n = 48) | SM (n = 48) | PFO-SM (n = 48) | BS-SM (n = 48) | ||||
---|---|---|---|---|---|---|---|---|
D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | |
Gender | 14M, 34F | 14M, 34F | 10M, 38F | 10M, 38F | 9M, 39F | 9M, 39F | 18M, 30F | 18M, 30F |
Age (y) | 33.4 ± 12.1 | 33.4 ± 12.1 | 33.2 ± 10.1 | 33.2 ± 10.1 | 33.6 ± 13.7 | 33.6 ± 13.7 | 33.4 ± 12.2 | 33.4 ± 12.2 |
BW (kg) | 60.6 ± 13.4 | 60.7 ± 13.3 | 58.8 ± 12.1 | 60.2 ± 12.8 | 58.0 ± 11.4 | 58.9 ± 11.8 | 59.3 ± 15.0 | 59.4 ± 15.2 |
BMI (kg/m2) | 20.5 ± 4.2 | 20.1 ± 4.3 | 23.3 ± 4.0 | 23.8 ± 4.3 | 22.6 ± 3.9 | 23.0 ± 4.3 | 23.5 ± 4.7 | 23.6 ± 4.8 |
SBP (mm Hg) | 124 ± 19 | 119 ± 15 | 118 ± 11 | 115 ± 10 | 119 ± 15 | 116 ± 13 | 122 ± 16 | 120 ± 17 |
DBP (mm Hg) | 74 ± 10 | 69 ± 10 | 71 ± 9.0 | 68 ± 10 | 70 ± 10 | 67 ± 9 | 71 ± 11 | 70 ± 11 |
(a) | ||||||||||||||||
Parameter | DI (6M, 34F) | SM (10M, 33F) | PFO-SM (8M, 37F) | BS-SM (9M, 37F) | ||||||||||||
D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | |||||||||
RBC | ||||||||||||||||
(×106/mm3) | 4.9 ± 0.7 | 4.7 ± 0.6 | 4.9 ± 0.6 a | 4.8 ± 0.7 a | 4.9 ± 0.6 | 4.9 ± 0.6 | 4.9 ± 0.5 | 4.8 ± 0.6 | ||||||||
Hb (g/dL) | 12.9 ± 2.5 | 12.9 ± 1.4 | 13.0 ± 1.5 a | 12.8 ± 1.4 a | 12.7 ± 1.4 | 12.7 ± 1.4 | 13.5 ± 1.5 | 13.4 ± 1.5 | ||||||||
Hct (%) | 40.5 ± 3.9 | 39.6 ± 3.9 | 40.0 ± 4.3 a | 39.3 ± 3.9 a | 39.2 ± 3.9 | 39.2 ± 4.0 | 41.4 ± 4.7 | 40.9 ± 4.0 | ||||||||
MCV (fL) | 83.3 ± 9.8 | 84.3 ± 10.5 | 82.8 ± 10.1 | 82.6 ± 10.1 | 80.7 ± 9.9 | 80.7 ± 9.7 | 83.6 ± 11.3 | 85.1 ± 1.7 | ||||||||
MCH (pg) | 27.2 ± 3.7 | 27.7 ± 3.8 | 27.1 ± 3.9 | 26.9 ± 3.8 | 26.1 ± 3.6 | 26.8 ± 5.8 | 27.7 ± 3.0 | 27.7 ± 3.0 | ||||||||
MCHC (g/dL) | 32.6 ± 0.9 | 32.7 ± 0.8 | 32.6 ± 0.9 | 32.5 ± 0.8 | 32.4 ± 0.7 | 32.3 ± 0.8 | 32.6 ± 1.0 | 32.6 ± 1.8 | ||||||||
RDW (fL) | 15.0 ± 4.0 | 14.9 ± 3.7 | 14.4 ± 1.6 | 14.2 ± 1.7 | 14.9 ± 2.5 | 14.8 ± 2.2 | 13.9 ± 1.2 | 13.8 ± 1.2 | ||||||||
WBC | ||||||||||||||||
(×103/mm3) | 7.3 ± 1.5 | 7.1 ± 1.7 | 7.4 ± 1.3 | 7.2 ± 1.3 | 6.8 ± 1.4 | 6.6 ± 1.7 | 7.5 ± 2.0 | 7.2 ± 1.9 | ||||||||
Neu (%) | 53.8 ± 8.8 | 51.2 ± 8.9 | 52.7 ± 9.0 | 53.4 ± 9.5 | 54.2 ± 7.1 | 52.5 ± 8.3 | 55.0 ± 7.4 | 53.7 ± 7.5 | ||||||||
Lym (%) | 35.2 ± 8.4 | 36.7 ± 7.6 | 36.7 ± 7.8 | 36.2 ± 8.8 | 35.4 ± 6.4 | 37.0 ± 7.5 | 34.1 ± 6.1 | 34.9 ± 6.0 | ||||||||
Mon (%) | 7.3 ± 2.0 | 7.0 ± 1.6 | 6.7 ± 1.3 | 7.0 ± 1.5 | 7.3 ± 1.7 | 7.5 ± 2.0 | 7.5 ± 1.6 | 7.6 ± 2.1 | ||||||||
Eos (%) | 3.1 ± 3.1 | 4.5 ± 8.7 | 3.2 ± 3.2 | 2.8 ± 2.1 | 2.6 ± 1.8 | 2.5 ± 1.5 | 2.9 ± 1.7 | 3.3 ± 2.5 | ||||||||
Bas (%) | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.1 | ||||||||
PLT | ||||||||||||||||
(×104/mm3) | 26.8 ± 5.8 | 28.0 ± 5.1 | 25.8 ± 6.2 | 25.8 ± 5.7 | 28.4 ± 7.6 | 28.3 ± 6.9 | 25.5 ± 5.3 | 25.2 ± 5.5 | ||||||||
MPV (fL) | 9.0 ± 0.7 | 8.8 ± 0.7 | 8.9 ± 1.0 | 9.1 ± 1.2 | 8.9 ± 0.8 | 8.7 ± 0.8 | 9.3 ± 1.0 | 9.1 ± 0.9 | ||||||||
PDW | 16.4 ± 0.6 | 18.3 ± 10.8 | 17.6 ± 7.2 | 16.7 ± 0.6 | 16.5 ± 0.6 | 17.4 ± 6.3 | 16.4 ± 0.6 | 16.4 ± 0.5 | ||||||||
Pct (%) | 0.24 ± 0.05 | 0.24 ± 0.04 | 0.23 ± 0.05 | 0.23 ± 0.05 | 0.25 ± 0.08 | 0.25 ± 0.06 | 0.21 ± 0.01 | 0.20 ± 0.01 | ||||||||
(b) | ||||||||||||||||
Parameter | DI (6M) | DI (34F) | SM (10M) | SM (33F) | PFO-SM (8M) | PFO-SM (37F) | BS-SM (9M) | BS-SM (37F) | ||||||||
D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | |
RBC | ||||||||||||||||
(×106/mm3) | 5.1 ± 1.1 | 4.9 ± 0.5 | 4.8 ± 0.6 | 4.6 ± 0.6 | 5.4 ± 0.6 e | 5.2 ± 0.7 f | 4.7 ± 0.6 e | 4.7 ± 0.6 f | 5.3 ± 0.6 e | 5.6 ± 0.7 f | 4.8 ± 0.5 e | 4.8 ± 0.5 e | 5.3 ± 0.6 e | 5.6 ± 0.7 f | 4.8 ± 0.5 e | 4.8 ± 0.5 f |
Hb (g/dL) | 13.3 ± 1.5 | 13.9 ± 1.6 e | 12.5 ± 2.8 | 12.6 ± 1.3 f | 14.6 ± 1.0 e | 14.1 ± 0.9 f | 12.6 ± 1.4 e | 12.4 ± 1.3 f | 14.0 ± 1.2 e | 14.4 ± 0.9 f | 12.4 ± 1.3 e | 12.3 ± 1.3 f | 15.7 ± 0.7 e | 15.7 ± 0.6 f | 13.0 ± 1.1 e | 12.8 ± 1.0 f |
Hct (%) | 40.6 ± 4.8 | 42.5 ± 4.5 e | 40.0 ± 3.1 | 38.6 ± 3.3 f | 44.8 ± 2.2 e | 43.5 ± 2.2 f | 38.5 ± 3.7 e | 38.0 ± 3.3 f | 43.1 ± 3.3 e | 44.7 ± 2.0 f | 38.4 ± 3.5 e | 38.1 ± 3.3 f | 48.2 ± 3.2 e | 47.1 ± 1.9 f | 39.7 ± 3.2 e | 39.4 ± 2.8 f |
MCV (fL) | 82.0 ± 13.4 | 87.0 ± 5.3 | 83.7 ± 8.9 | 84.1 ± 11.2 | 83.7 ± 8.6 | 83.9 ± 8.6 | 82.5 ± 10.6 | 82.2 ± 10.6 | 82.3 ± 11.1 | 81.2 ± 11.7 | 80.3 ± 9.8 | 80.6 ± 9.6 | 89.1 ± 4.5 e | 88.7 ± 4.6 | 82.2 ± 12.1 e | 83.8 ± 8.1 |
MCH (pg) | 26.9 ± 5.1 | 28.4 ± 2.1 | 27.3 ± 3.4 | 27.5 ± 4.2 | 27.2 ± 3.3 | 27.2 ± 3.3 | 27.0 ± 4.1 | 26.8 ± 4.0 | 26.7 ± 3.9 | 26.3 ± 3.9 | 26.0 ± 3.6 | 26.9 ± 6.2 | 29.7 ± 1.7 e | 29.5 ± 1.8 f | 27.3 ± 3.1 e | 27.2 ± 3.1 f |
MCHC (g/dL) | 32.7 ± 1.0 | 32.7 ± 0.6 | 32.6 ± 0.9 | 32.7 ± 0.9 | 32.5 ± 0.8 | 32.4 ± 0.9 | 32.6 ± 1.0 | 32.6 ± 0.8 | 32.3 ± 0.6 | 32.2 ± 0.7 | 32.4 ± 0.7 | 32.3 ± 0.8 | 32.8 ± 1.6 | 32.2 ± 0.6 f | 32.6 ± 0.8 | 32.4 ± 0.8 f |
RDW (fL) | 14.3 ± 1.6 | 14.5 ± 1.4 | 15.2 ± 4.4 | 15.0 ± 1.3 | 13.9 ± 1.3 | 13.7 ± 1.3 f | 14.5 ± 1.7 | 14.4 ± 1.8 f | 14.0 ± 1.8 | 14.4 ± 2.2 | 15.1 ± 2.5 | 14.9 ± 2.3 | 13.1 ± 0.8 e | 13.1 ± 0.7 f | 14.1 ± 1.2 e | 14.0 ± 1.2 f |
WBC | ||||||||||||||||
(×103/mm3) | 7.2 ± 0.7 | 7.1 ± 1.7 | 7.4 ± 1.7 | 7.1 ± 1.7 | 7.4 ± 1.8 | 7.1 ± 1.3 | 7.4 ± 1.1 | 7.3 ± 1.3 | 8.1 ± 1.5 e | 7.6 ± 2.8 | 6.5 ± 1.2 e | 6.4 ± 1.3 | 8.2 ± 2.2 | 8.6 ± 2.7 | 7.3 ± 2.0 | 6.9 ± 1.6 |
Neu (%) | 55.1 ± 7.7 | 49.3 ± 9.2 | 53.4 ± 9.2 | 51.8 ± 9.0 | 48.0 ± 6.3 | 49.2 ± 10.1 | 54.2 ± 9.3 | 54.7 ± 9.1 | 54.6 ± 4.8 | 53.4 ± 8.6 | 54.1 ± 7.5 | 52.3 ± 8.3 | 52.4 ± 6.4 | 51.4 ± 11.5 | 55.6 ± 7.5 | 54.5 ± 6.3 |
Lym (%) | 32.6 ± 6.7 | 39.1 ± 4.5 | 36.0 ± 8.8 | 36.0 ± 8.2 | 40.8 ± 5.3 | 40.3 ± 8.8 | 35.5 ± 8.0 | 34.9 ± 8.6 | 33.4 ± 3.3 | 34.2 ± 8.2 | 35.8 ± 6.8 | 37.6 ± 7.3 | 34.9 ± 5.6 | 35.2 ± 7.5 | 33.9 ± 6.2 | 34.5 ± 5.7 |
Mon (%) | 8.7 ± 2.1 | 6.4 ± 1.3 g | 6.8 ± 2.0 | 7.1 ± 1.6 g | 6.9 ± 1.1 | 7.1 ± 1.2 | 6.6 ± 1.4 | 7.0 ± 1.6 | 7.8 ± 1.8 | 8.4 ± 1.8 | 7.2 ± 1.7 | 7.3 ± 2.1 | 8.4 ± 2.0 e | 7.7 ± 2.0 | 7.2 ± 1.4 e | 7.6 ± 2.1 |
Eos (%) | 3.1 ± 2.6 | 4.1 ± 5.2 | 3.2 ± 3.2 | 4.6 ± 9.5 | 3.7 ± 3.0 | 2.9 ± 1.9 | 3.1 ± 3.8 | 2.8 ± 2.2 | 3.7 ± 1.3 e | 3.6 ± 2.3 f | 2.3 ± 1.9 e | 2.3 ± 1.2 f | 3.6 ± 1.8 | 5.2 ± 3.9 | 2.7 ± 1.7 | 2.8 ± 1.9 |
Bas (%) | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.5 ± 0.1 |
PLT | ||||||||||||||||
(×104/mm3) | 25.6 ± 6.3 | 30.6 ± 7.6 | 27.1 ± 5.8 | 27.3 ± 4.1 | 25.1 ± 3.3 | 26.2 ± 3.6 | 26.0 ± 6.9 | 25.7 ± 6.2 | 26.8 ± 6.1 | 24.0 ± 3.0 | 28.8 ± 7.9 | 29.2 ± 7.2 | 25.2 ± 6.1 | 26.5 ± 6.8 | 25.5 ± 5.1 | 25.0 ± 5.4 |
MPV (fL) | 9.2 ± 1.0 | 9.1 ± 1.1 | 9.0 ± 0.6 | 8.7 ± 0.6 | 9.0 ± 0.9 | 9.1 ± 1.2 | 8.9 ± 1.0 | 9.1 ± 1.2 | 8.8 ± 0.6 | 8.6 ± 0.5 | 8.9 ± 0.8 | 8.8 ± 0.9 | 8.9 ± 1.6 | 8.7 ± 0.7 | 9.4 ± 1.1 | 9.2 ± 0.9 |
PDW | 16.6 ± 0.5 | 16.6 ± 0.4 e | 16.3 ± 0.6 | 16.2 ± 0.4 f | 16.3 ± 0.5 | 16.7 ± 0.7 | 16.6 ± 0.6 | 16.7 ± 0.6 | 16.1 ± 0.3 e | 16.3 ± 0.2 | 16.6 ± 0.7 e | 16.5 ± 0.5 | 16.5 ± 0.4 | 16.4 ± 0.4 | 16.4 ± 0.6 | 16.4 ± 0.6 |
Pct (%) | 0.23 ± 0.05 | 0.27 ± 0.05 e | 0.24 ± 0.05 | 0.24 ± 0.03 f | 0.22 ± 0.03 | 0.24 ± 0.05 | 0.23 ± 0.05 | 0.23 ± 0.06 | 0.23 ± 0.05 | 0.21 ± 0.02 f | 0.26 ± 0.08 | 0.25 ± 0.06 f | 0.22 ± 0.05 | 0.23 ± 0.05 | 0.24 ± 0.05 | 0.23 ± 0.05 |
(a) | ||||||||||||||||
Parameter | DI (6M, 34 F) | SM (10M, 33F) | PFO-SM (8M, 37F) | BS-SM (9M, 37F) | DI (6M, 34 F) | SM (10M, 33F) | PFO-SM (8M, 37F) | BS-SM (9M, 37F) | ||||||||
D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | |||||||||
BUN (mg/dL) | 12.87 ± 3.52 | 11.75 ± 3.11 | 13.83 ± 4.55 | 13.22 ± 4.32 | 13.09 ± 3.53 | 12.54 ± 3.57 | 12.44 ± 4.02 | 12.36 ± 2.95 | ||||||||
CRE (mg/dL) | 0.83 ± 0.14 | 0.88 ± 0.13 | 0.89 ± 0.19 | 0.89 ± 0.19 d | 0.84 ± 0.11 | 0.82 ± 0.11 d | 0.90 ± 0.16 a | 0.83 ± 0.15 a,d | ||||||||
AST (U/L) | 11.1 ± 3.5 | 10.9 ± 3.8 | 12.1 ± 4.9 | 11.9 ± 5.1 d | 12.3 ± 4.4 b | 10.9 ± 4.0 b,d | 15.2 ± 8.0 b | 12.6 ± 7.1 b,d | ||||||||
ALT (U/L) | 5.0 ± 2.0 a | 4.1 ± 2.5 a | 4.5 ± 2.1 | 4.6 ± 2.7 | 4.6 ± 2.3 | 4.5 ± 3.1 d | 5.7 ± 6.5 b | 6.2 ± 5.1 b,d | ||||||||
ALP (U/L) | 49.9 ± 14.6 b | 53.3 ± 12.8 b | 50.1 ± 12.9 | 50.0 ± 13.0 d | 51.5 ± 13.1 | 52.7 ± 13.4 d | 54.2 ± 15.7 b | 49.2 ± 15.2 b,d | ||||||||
TC (mg/dL) | 187 ± 35 | 197 ± 34 d | 183 ± 29 b | 213 ± 46 b,d | 161 ± 38 b | 182 ± 32 b,d | 193 ± 34 a | 258 ± 33 a,d | ||||||||
TG (mg/dL) | 129 ± 56 a | 112 ± 54 a,c | 99 ± 42 b | 113 ± 41 b,c | 100 ± 45 | 89 ± 41 c | 94 ± 56 b | 153 ± 55 b,c | ||||||||
HDL-C (mg/dL) | 68 ± 19 | 62 ± 32 | 65 ± 12 a | 60 ± 8 a | 64 ± 11 b | 61 ± 11 b | 68 ± 14 a | 61 ± 10 a | ||||||||
LDL-C (mg/dL) | 98 ± 29 | 116 ± 58 c | 96 ± 26 a | 132 ± 41 a,c | 77 ± 33 a | 105 ± 30 a,c | 106 ± 34 a | 166 ± 26 a,c | ||||||||
(b) | ||||||||||||||||
Parameter | DI (8M) | DI (32F) | SM (9M) | SM (35F) | PFO-SM (8M) | PFO-SM (35F) | BS-SM (9M) | BS-SM (39F) | ||||||||
D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | D0 | D30 | |
BUN (mg/dL) | 14.63 ± 4.24 | 13.16 ± 3.36 | 12.28 ± 3.13 | 11.28 ± 2.94 | 17.97 ± 5.22 f | 16.46 ± 4.12 f | 12.61 ± 3.57 f | 12.27 ± 3.95 f | 13.11 ± 3.81 | 14.59 ± 1.48 | 12.61 ± 3.57 | 12.08 ± 3.75 | 14.50 ± 4.13 | 14.38 ± 3.27 e | 11.95 ± 3.89 | 11.88 ± 2.70 e |
CRE (mg/dL) | 0.87 ± 0.21 | 0.95 ± 0.15 | 0.82 ± 0.10 | 0.86 ± 0.12 | 1.13 ± 0.11 e | 1.15 ± 0.11 e | 0.85 ± 0.12 e | 0.82 ± 0.13 e | 0.93 ± 0.07 e | 0.94 ± 0.07 e | 0.82 ± 0.10 e | 0.80 ± 0.10 e | 1.10 ± 0.14 e | 1.00 ± 0.19 e | 0.85 ± 0.13 e | 0.80 ± 0.11 e |
AST (U/L) | 13.4 ± 2.9 e | 12.8 ± 4.5 | 10.3 ± 3.4 e | 10.4 ± 3.4 | 13.9 ± 4.0 | 15.0 ± 7.6 e | 11.6 ± 5.0 | 11.0 ± 3.8 e | 13.4 ± 3.0 | 12.2 ± 4.1 | 12.1 ± 4.6 | 10.5 ± 4.0 | 27.1 ± 9.9 f | 22.5 ± 11.1 f | 12.4 ± 4.0 f | 10.2 ± 2.7 f |
ALT (U/L) | 6.3 ± 3.0 f | 4.5 ± 3.5 | 4.4 ± 1.3 f | 4.1 ± 2.1 | 5.5 ± 2.1 | 5.8 ± 2.3 | 4.2 ± 2.0 | 4.2 ± 2.7 | 5.6 ± 1.8 f | 7.8 ± 4.5 f | 4.4 ± 2.4 f | 3.7 ± 2.1 f | 11.8 ± 11.5 f | 11.3 ± 8.7 f | 4.2 ± 3.5 f | 5.0 ± 2.9 f |
ALP (U/L) | 55.5 ± 13.8 | 60.3 ± 9.5 | 47.7 ± 14.5 | 51.0 ± 12.8 | 53.4 ± 9.6 | 53.1 ± 9.5 | 49.1 ± 13.6 | 49.1 ± 13.8 | 61.0 ± 15.8 | 63.9 ± 14.7 e | 49.4 ± 11.7 | 50.3 ± 11.5 e | 63.0 ± 17.6 f | 57.8 ± 15.8 | 52.1 ± 14.7 f | 47.2 ± 14.6 |
TC (mg/dL) | 192 ± 36 | 202 ± 30 | 185 ± 35 | 195 ± 35 | 184 ± 24 | 200 ± 55 | 183 ± 31 | 216 ± 44 | 149 ± 21 | 182 ± 26 | 164 ± 40 | 181 ± 34 | 201 ± 27 | 277 ± 35 | 191 ± 35 | 254 ± 32 |
TG (mg/dL) | 137 ± 30 | 125 ± 41 | 126 ± 63 | 107 ± 57 | 100 ± 32 | 103 ± 53 | 98 ± 45 | 116 ± 39 | 127 ± 54 | 133 ± 67 f | 94 ± 41 | 79 ± 27 f | 129 ± 74 f | 186 ± 85 | 86 ± 50 f | 146 ± 45 |
HDL-C (mg/dL) | 60 ± 57 | 57 ± 22 | 70 ± 21 | 64 ± 35 | 61 ± 11 | 53 ± 6 e | 66 ± 13 | 62 ± 7 e | 53 ± 4 e | 53 ± 3 | 70 ± 14 e | 62 ± 10 | 58 ± 13 | 59 ± 12 | 70 ± 14 | 62 ± 10 |
LDL-C (mg/dL) | 107 ± 34 | 129 ± 53 | 95 ± 27 | 112 ± 60 | 95 ± 27 | 124 ± 49 | 95 ± 27 | 134 ± 39 | 66 ± 19 | 101 ± 26 | 80 ± 35 | 106 ± 31 | 117 ± 20 | 177 ± 24 | 104 ± 35 | 164 ± 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koonyosying, P.; Kusirisin, W.; Kusirisin, P.; Kasempitakpong, B.; Sermpanich, N.; Tinpovong, B.; Salee, N.; Pattanapanyasat, K.; Srichairatanakool, S.; Paradee, N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients 2022, 14, 1721. https://doi.org/10.3390/nu14091721
Koonyosying P, Kusirisin W, Kusirisin P, Kasempitakpong B, Sermpanich N, Tinpovong B, Salee N, Pattanapanyasat K, Srichairatanakool S, Paradee N. Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients. 2022; 14(9):1721. https://doi.org/10.3390/nu14091721
Chicago/Turabian StyleKoonyosying, Pimpisid, Winthana Kusirisin, Prit Kusirisin, Boonsong Kasempitakpong, Nipon Sermpanich, Bow Tinpovong, Nuttinee Salee, Kovit Pattanapanyasat, Somdet Srichairatanakool, and Narisara Paradee. 2022. "Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial" Nutrients 14, no. 9: 1721. https://doi.org/10.3390/nu14091721
APA StyleKoonyosying, P., Kusirisin, W., Kusirisin, P., Kasempitakpong, B., Sermpanich, N., Tinpovong, B., Salee, N., Pattanapanyasat, K., Srichairatanakool, S., & Paradee, N. (2022). Perilla Fruit Oil-Fortified Soybean Milk Intake Alters Levels of Serum Triglycerides and Antioxidant Status, and Influences Phagocytotic Activity among Healthy Subjects: A Randomized Placebo-Controlled Trial. Nutrients, 14(9), 1721. https://doi.org/10.3390/nu14091721