Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review
Abstract
:1. Introduction
1.1. Lactose and Its Derivatives
1.2. Lactose Malabsorption
- Developmental lactase deficiency—observed in premature infants due to temporary lactase deficiency which improves with time [6]. In cases of lactase deficiency, lactose is not properly digested (lactose maldigestion) and, therefore, cannot be absorbed in an undigested form (lactose malabsorption) and is fermented by the gut microbiota [10].
- Congenital lactase deficiency (also called alactasia)—a rare and severe recessive autosomal disorder presenting in infants with severe osmotic diarrhoea at the commencement of feeding, especially present in Finland and Western Russia.
- Lactase non-persistence (hypolactasia)—the most common condition, defined as the physiological gradual decline of lactase activity after weaning, occurring in about 70% of the global population. Generally, lactase activity in adults constitutes approximately 10% of that of newborns [1].
- Secondary lactose intolerance—occurs as a consequence of small bowel injury because of conditions such as viral gastroenteritis, giardiasis, celiac disease, or Crohn’s disease [6].
2. Epidemiology of Lactose Malabsorption
3. Symptoms of Lactose Intolerance
4. Diagnosis of Lactose Malabsorption and Intolerance
4.1. Hydrogen Breath Test and Methane Breath Test
4.2. Quick Lactase Test
4.3. Lactose Tolerance Test
4.4. Genetic Test
5. Treatment
6. Constipation—Convergences in Differential Diagnosis with Lactose Intolerance
6.1. Cow’s Milk Allergy
6.2. Constipation and Gut Microbiota
6.3. Possible Contradictions in Treatment
7. Methane—A Connection between Lactose Intolerance and Constipation
8. Rapid-Transit Constipation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Westhoff, G.M.; Kuster, B.F.M.; Heslinga, M.C.; Pluim, H.; Verhage, M. Lactose and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut 2019, 68, 2080–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Costanzo, M.; Canani, R.B. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Tabbers, M.M.; DiLorenzo, C.; Berger, M.Y.; Faure, C.; Langendam, M.W.; Nurko, S.; Staiano, A.; Vandenplas, Y.; Benninga, M.A. Evaluation and treatment of functional constipation in infants and children: Evidence-based recommendations from ESPGHAN and NASPGHAN. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Panesar, P.S.; Kumari, S. Lactulose: Production, purification and potential applications. Biotechnol. Adv. 2011, 29, 940–948. [Google Scholar] [CrossRef]
- Heine, R.G.; AlRefaee, F.; Bachina, P.; De Leon, J.C.; Geng, L.; Gong, S.; Madrazo, J.A.; Ngamphaiboon, J.; Ong, C.; Rogacion, J.M. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children—Common misconceptions revisited. World Allergy Organ. J. 2017, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Lomer, M.C.E.; Parkes, G.C.; Sanderson, J.D. Review article: Lactose intolerance in clinical practice—Myths and realities. Aliment. Pharmacol. Ther. 2007, 27, 93–103. [Google Scholar] [CrossRef]
- Misselwitz, B.; Pohl, D.; Frühauf, H.; Fried, M.; Vavricka, S.R.; Fox, M. Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment. United Eur. Gastroenterol. J. 2013, 1, 151–159. [Google Scholar] [CrossRef]
- How Does Lactase Work? Evo-Ed. Cases for Evolution Education. Available online: https://www.evo-ed.org/Pages/Lactase/cellbio.html (accessed on 12 April 2022).
- Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients 2018, 10, 1599. [Google Scholar] [CrossRef] [Green Version]
- Harper, W.J. Lactose and Lactose Derivatives. Whey Lact. Process. 1992, 1992, 317–360. [Google Scholar]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, regional, and global estimates for lactose malabsorption in adults: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef] [PubMed]
- Savaiano, D.A.; Boushey, C.J.; Mccabe, G.P. Symposium: Calcium-Related Chronic Diseases in Ethnic Minorities: Can Dairy Consumption Reduce Health Disparities? Lactose Intolerance Symptoms Assessed by Meta-Analysis: A Grain of Truth That Leads to Exaggeration. J. Nutr. 2006, 136, 1107–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, S.B.; Waud, J.P.; Roberts, A.G.; Campbell, A.K. Systemic lactose intolerance: A new perspective on an old problem. Postgrad. Med. J. 2005, 81, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, T.; Priebe, M.G.; Harmsen, H.J.; Stellaard, F.; Sun, X.; Welling, G.W.; Vonk, R.J. Colonic Fermentation May Play a Role in Lactose Intolerance in Humans. J. Nutr. 2006, 136, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misselwitz, B.; Fox, M. What is normal and abnormal in lactose digestion? Lancet Gastroenterol. Hepatol. 2017, 2, 696–697. [Google Scholar] [CrossRef]
- Glatstein, M.; Reif, S.; Scolnik, D.; Rom, L.; Yerushalmy-Feler, A.; Dali-Levy, M.; Cohen, S. Lactose Breath Test in Children: Relationship between Symptoms during the Test and Test Results. Am. J. Ther. 2018, 25, e189–e193. [Google Scholar] [CrossRef]
- Suarez, F.; Savalano, D. Levitt A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. Eur. J. Gastroenterol. Hepatol. 1995, 7, 1014. [Google Scholar] [CrossRef]
- Sterniste, G.; Hammer, K.; Memaran, N.; Huber, W.-D.; Hammer, J. Significance of validated symptom assessment versus breath testing for malabsorption after lactose load in children. Eur. J. Gastroenterol. Hepatol. 2021, 34, 274–280. [Google Scholar] [CrossRef]
- Casellas, F.; Aparici, A.; Pérez, M.J.; Rodríguez, P. Perception of lactose intolerance impairs health-related quality of life. Eur. J. Clin. Nutr. 2016, 70, 1068–1072. [Google Scholar] [CrossRef]
- Rana, S.V.; Malik, A. Hydrogen Breath Tests in Gastrointestinal Diseases. Indian J. Clin. Biochem. 2014, 29, 398–405. [Google Scholar] [CrossRef]
- De Geyter, C.; Van de Maele, K.; Hauser, B.; Vandenplas, Y. Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients 2021, 13, 3261. [Google Scholar] [CrossRef] [PubMed]
- Ángela, P.P.; Simone, F.C.; Gabriel, A.A. Análisis de test de aire espirado en niños con sospecha de intolerancia a la lactosa. Rev. Chil. Pediatr. 2015, 86, 80–85. [Google Scholar]
- Däbritz, J.; Muhlbauer, M.; Domagk, D.; Voos, N.; Henneböhl, G.; Siemer, M.L.; Foell, D. Significance of hydrogen breath tests in children with suspected carbohydrate malabsorption. BMC Pediatr. 2014, 14, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzsanyi, V.; Heinz-Erian, P.; Entenmann, A.; Karall, D.; Müller, T.; Schimkowitsch, A.; Amann, A.; Scholl-Bürgi, S. Diagnosing lactose malabsorption in children: Difficulties in interpreting hydrogen breath test results. J. Breath Res. 2016, 10, 016015. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, C.D.; Di Palma, J.A. Carbohydrate challenge tests: Do you need to measure methane? South Med. J. 2012, 105, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Wutzke, K.D.; Däbritz, J. Methane breath tests and blood sugar tests in children with suspected carbohydrate malabsorption. Sci. Rep. 2020, 10, 18972. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.; Hasanagic, H.; Memaran, N.; Huber, W.-D.; Hammer, J. Relevance of Methane and Carbon Dioxide Evaluation in Breath Tests for Carbohydrate Malabsorption in a Paediatric Cohort. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e71–e77. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Broekaert, I.J.; Borrelli, O.; Dolinsek, J.; Martin-De-Carpi, J.; Mas, E.; Miele, E.; Pienar, C.; Ribes-Koninckx, C.; Thomassen, R.; Thomson, M.; et al. An ESPGHAN Position Paper on the Use of Breath Testing in Paediatric Gastroenterology. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 123–137. [Google Scholar] [CrossRef]
- Perets, T.T.; Shporn, E.; Aizic, S.; Kelner, E.; Levy, S.; Bareli, Y.; Pakanaev, L.; Niv, Y.; Dickman, R. A Diagnostic Approach to Patients with Suspected Lactose Malabsorption. Am. J. Dig. Dis. 2014, 59, 1012–1016. [Google Scholar]
- Ojetti, V.; La Mura, R.; Zocco, M.A.; Cesaro, P.; De Masi, E.; La Mazza, A.; Cammarota, G.; Gasbarrini, G.; Gasbarrini, A. Quick Test: A New Test for the Diagnosis of Duodenal Hypolactasia. Am. J. Dig. Dis. 2007, 53, 1589–1592. [Google Scholar] [CrossRef] [PubMed]
- Furnari, M.; Bonfanti, D.; Parodi, A.; Franzè, J.; Savarino, E.; Bruzzone, L.; Moscatelli, A.; Di Mario, F.; Dulbecco, P.; Savarino, V. A Comparison Between Lactose Breath Test and Quick Test on Duodenal Biopsies for Diagnosing Lactase Deficiency in Patients with Self-reported Lactose Intolerance. J. Clin. Gastroenterol. 2013, 47, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Rojo, C.; Jaime, F.; Azócar, L.; Hernández, C.; Villagrán, A.; Arancibia, G.; Miquel, J.F. Concordance between Lactose Quick Test, hydrogen-methane breath test and genotyping for the diagnosis of lactose malabsorption in children. Neurogastroenterol. Motil. 2017, 30, e13271. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.L.D.; Suárez, A.F. Correlation Between Capillary and Venous Blood Glucose in the Lactose Tolerance Test. Am. J. Dig. Dis. 2016, 61, 208–214. [Google Scholar]
- Domínguez-Jiménez, J.L.; Fernández-Suárez, A.; Ruiz-Tajuelos, S.; Puente-Gutiérrez, J.J.; Cerezo-Ruiz, A. Lactose tolerance test shortened to 30 minutes: An exploratory study of its feasibility and impact. Rev. Española De Enferm. Dig. 2014, 106, 381–385. [Google Scholar]
- Tomczonek-Moruś, J.; Wojtasik, A.; Zeman, K.; Smolarz, B.; Bąk-Romaniszyn, L. 13910C>T and 22018G>A LCT gene polymorphisms in diagnosing hypolactasia in children. United Eur. Gastroenterol. J. 2019, 7, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Santonocito, C.; Scapaticci, M.; Guarino, D.; Annicchiarico, E.B.; Lisci, R.; Penitente, R.; Gasbarrini, A.; Zuppi, C.; Capoluongo, E. Lactose intolerance genetic testing: Is it useful as routine screening? Results on 1426 south–central Italy patients. Clin. Chim. Acta 2015, 439, 14–17. [Google Scholar] [CrossRef]
- Suchy, F.J.; Brannon, P.M.; Carpenter, T.O.; Fernandez, J.R.; Gilsanz, V. NIH Conference Annals of Internal Medicine National Institutes of Health Consensus Development Conference. Ann. Intern. Med. 2010, 152, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Savaiano, D.A. Lactose digestion from yogurt: Mechanism and relevance. Am. J. Clin. Nutr. 2014, 99, 1251S–1255S. [Google Scholar] [CrossRef] [Green Version]
- Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1675–1683. [Google Scholar] [CrossRef]
- Saborido, R.; Leis, R. Yogurt and dietary recommendations for lactose intolerance. Nutr. Hosp. 2018, 35, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Dekker, P.J.T.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochet, B.; Jung, A.; Griessen, M.; Bartholdi, P.; Schaller, P.; Alfred, D. Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology 1983, 84, 935–940. [Google Scholar] [CrossRef]
- Infante, D.; Tormo, R. Risk of Inadequate Bone Mineralization in Diseases Involving Long-Term Suppression of Dairy Products. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 310–313. [Google Scholar] [CrossRef]
- Francavilla, R.; Calasso, M.; Calace, L.; Siragusa, S.; Ndagijimana, M.; Vernocchi, P.; Brunetti, L.; Mancino, G.; Tedeschi, G.; Guerzoni, E.; et al. Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr. Allergy Immunol. 2012, 23, 420–427. [Google Scholar] [CrossRef]
- Vitellio, P.; Celano, G.; Bonfrate, L.; Gobbetti, M.; Portincasa, P.; De Angelis, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2019, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Ceresola, E.R.; Ferrarese, R.; Preti, A.; Canducci, F. Targeting patients’ microbiota with probiotics and natural fibers in adults and children with constipation. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7045–7057. [Google Scholar]
- Koppen, I.J.N.; Lammers, L.A.; Benninga, M.A.; Tabbers, M.M. Management of Functional Constipation in Children: Therapy in Practice. Pediatr. Drugs 2015, 17, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Plunkett, A.; Phillips, C.P.; Beattie, R.M. Management of Chronic Functional Constipation in Childhood. Pediatr. Drugs 2007, 9, 33–46. [Google Scholar] [CrossRef]
- Vriesman, M.H.; Koppen, I.J.N.; Camilleri, M.; Di Lorenzo, C.; Benninga, M.A. Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 21–39. [Google Scholar] [CrossRef]
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef]
- Carroccio, A.; Iacono, G. Review article: Chronic constipation and food hypersensitivity? An intriguing relationship. Aliment. Pharmacol. Ther. 2006, 24, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- El-Hodhod, M.A.; Younis, N.T.; Zaitoun, Y.A.; Daoud, S.D. Cow’s milk allergy related pediatric constipation: Appropriate time of milk tolerance. Pediatr. Allergy Immunol. 2010, 21, e407–e412. [Google Scholar] [CrossRef] [PubMed]
- Bourkheili, A.M.; Mehrabani, S.; Esmaelidoohi, M.; Ahmadi, M.H.; Moslemi, L. Effect of Cow’s-milk–free diet on chronic constipation in children; A randomized clinical trial. Casp. J. Intern. Med. 2021, 12, 91–96. [Google Scholar]
- Gelsomino, M.; Del Vescovo, E.; Bersani, G.; Sopo, S.M. Functional constipation related to cow’s milk allergy in children. A management proposal. Allergol. Et Immunopathol. 2021, 49, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Meyer, R.; Shah, N.; Quekett, J.; Fox, A.T. Differentiating milk allergy (IgE and non-IgE mediated) from lactose intolerance: Understanding the underlying mechanisms and presentations. Br. J. Gen. Pract. 2016, 66, e609–e611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Toit, G.; Meyer, R.; Shah, N.; Heine, R.G.; Thomson, M.A.; Lack, G.; Fox, A.T. Identifying and managing cow’s milk protein allergy. Arch. Dis. Child. Educ. Pract. 2010, 95, 134–144. [Google Scholar] [CrossRef]
- Arvola, T.; Ruuska, T.; Keränen, J.; Hyöty, H.; Salminen, S.; Isolauri, E. Rectal Bleeding in Infancy: Clinical, Allergological, and Microbiological Examination. Pediatrics 2006, 117, e760–e768. [Google Scholar] [CrossRef] [Green Version]
- Devanarayana, N.M.; Rajindrajith, S. Irritable bowel syndrome in children: Current knowledge, challenges and opportunities. World J. Gastroenterol. 2018, 24, 2211–2235. [Google Scholar] [CrossRef]
- Cancarevic, I.; Rehman, M.; Iskander, B.; Lalani, S.; Malik, B.H. Is There a Correlation between Irritable Bowel Syndrome and Lactose Intolerance? Cureus 2020, 12, e6710. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Lembo, A. Microbiome and Its Role in Irritable Bowel Syndrome. Am. J. Dig. Dis. 2020, 65, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, M.; Chatterjee, S.; Chow, E.J.; Park, S.; Kong, Y. Neomycin Improves Constipation-Predominant Irritable Bowel Syndrome in a Fashion That Is Dependent on the Presence of Methane Gas: Subanalysis of a Double-Blind Randomized Controlled Study. Am. J. Dig. Dis. 2006, 51, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, U.C.; Srivastava, D.; Misra, A. A randomized double-blind placebo-controlled trial showing rifaximin to improve constipation by reducing methane production and accelerating colon transit: A pilot study. Indian J. Gastroenterol. 2018, 37, 416–423. [Google Scholar] [CrossRef]
- Pimentel, M.; Chang, C.; Chua, K.S.; Mirocha, J.; DiBaise, J.; Rao, S.; Amichai, M. Antibiotic Treatment of Constipation-Predominant Irritable Bowel Syndrome. Am. J. Dig. Dis. 2014, 59, 1278–1285. [Google Scholar] [CrossRef]
- Tian, H.; Ye, C.; Yang, B.; Cui, J.; Zheng, Z.; Wu, C.; Zhou, S.; Lv, X.; Qin, N.; Qin, H.; et al. Gut Metagenome as a Potential Diagnostic and Predictive Biomarker in Slow Transit Constipation. Front. Med. 2022, 8, 777961. [Google Scholar] [CrossRef]
- Wang, J.-K.; Yao, S.-K. Roles of Gut Microbiota and Metabolites in Pathogenesis of Functional Constipation. Evid.-Based Complement. Altern. Med. 2021, 2021, 5560310. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Li, D.; Zhao, L.; Zhu, L. Role of gut microbiota in functional constipation. Gastroenterol. Rep. 2021, 9, 392–401. [Google Scholar] [CrossRef]
- Medycyna Praktyczna. Laktuloza (Lactulose). Available online: https://indeks.mp.pl/desc.php?id=486 (accessed on 13 January 2022).
- Leung, A.K.; Hon, K.L. Paediatrics: How to manage functional constipation. Drugs Context 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Leis, R.; De Castro, M.-J.; De Lamas, C.; Picáns, R.; Couce, M.L. Effects of Prebiotic and Probiotic Supplementation on Lactase Deficiency and Lactose Intolerance: A Systematic Review of Controlled Trials. Nutrients 2020, 12, 1487. [Google Scholar] [CrossRef]
- Campbell, A.K.; Waud, J.P.; Matthews, S.B. The molecular basis of lactose intolerance. Sci. Prog. 2009, 92, 241–287. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, C.C.K.; Chang, C.; Pimentel, M. Methanogens, Methane and Gastrointestinal Motility. J. Neurogastroenterol. Motil. 2014, 20, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin Waqar, S.H.; Rehan, A. Methane and Constipation-predominant Irritable Bowel Syndrome: Entwining Pillars of Emerging Neurogastroenterology. Cureus 2019, 11, e4764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attaluri, A.; Jackson, M.; Valestin, J.; Rao, S.S. Methanogenic Flora Is Associated with Altered Colonic Transit but Not Stool Characteristics in Constipation without IBS. Am. J. Gastroenterol. 2010, 105, 1407–1411. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-M.; Paik, C.-N.; Chung, W.C.; Yang, J.-M.; Choi, M.-G. Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation. Eur. J. Gastroenterol. Hepatol. 2013, 25, 726–732. [Google Scholar] [CrossRef]
- Furnari, M.; Savarino, E.; Bruzzone, L.; Moscatelli, A.; Gemignani, L.; Giannini, E.G.; Zentilin, P.; Dulbecco, P.; Savarino, V. Reassessment of the role of methane production between irritable bowel syndrome and functional constipation. J. Gastrointest. Liver Dis. 2012, 21, 157–163. [Google Scholar]
- Pimentel, M.; Lin, H.C.; Enayati, P.; Burg, B.V.D.; Lee, H.-R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Duehren, S.; Katon, J.; Rangan, V.; Ballou, S.; Patel, R.; Iturrino, J.; Lembo, A.; Nee, J. Breath Methane Does Not Correlate with Constipation Severity or Bloating in Patients with Constipation. J. Clin. Gastroenterol. 2020, 54, 365–369. [Google Scholar] [CrossRef]
- Chaudhary, P.P.; Conway, P.L.; Schlundt, J. Methanogens in humans: Potentially beneficial or harmful for health. Appl. Microbiol. Biotechnol. 2018, 102, 3095–3104. [Google Scholar] [CrossRef]
- Camara, A.; Konate, S.; Tidjani Alou, M.; Kodio, A.; Togo, A.H.; Cortaredona, S.; Henrissat, B.; Thera, M.A.; Doumbo, O.K.; Raoult, D.; et al. Clinical evidence of the role of Methanobrevibacter smithii in severe acute mal-nutrition. Sci. Rep. 2021, 11, 5426. [Google Scholar] [CrossRef]
- Soares, A.C.F.; Lederman, H.M.; Fagundes-Neto, U.; de Morais, M.B. Breath Methane Associated with Slow Colonic Transit Time in Children with Chronic Constipation. J. Clin. Gastroenterol. 2005, 39, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.C.F.; Lederman, H.M.; Fagundes-Neto, U.; de Morais, M.B. Breath Hydrogen Test After a Bean Meal Demonstrates Delayed Oro-Cecal Transit Time in Children with Chronic Constipation. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Waingankar, K.; Lai, C.; Punwani, V.; Wong, J.; Hutson, J.M.; Southwell, B.R. Dietary exclusion of fructose and lactose after positive breath tests improved rapid-transit constipation in children. JGH Open 2018, 2, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yik, Y.I.; Cain, T.M.; Tudball, C.F.; Cook, D.J.; Southwell, B.R.; Hutson, J.M. Nuclear transit studies of patients with intractable chronic constipation reveal a subgroup with rapid proximal colonic transit. J. Pediatr. Surg. 2011, 46, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Hutson, J.M.; Hynes, M.C.; Kearsey, I.; Yik, Y.I.; Veysey, D.M.; Tudball, C.F.; Cain, T.M.; King, S.K.; Southwell, B.R. ‘Rapid transit’ constipation in children: A possible genesis for irritable bowel syndrome. Pediatr. Surg. Int. 2020, 36, 11–19. [Google Scholar] [CrossRef] [PubMed]
Country | Prevalence (Mean) % | CI of Standard Variation (95% CI)% |
---|---|---|
Ireland | 4 | 0–8 |
Denmark | 4 | 0–9 |
Sweden | 7 | 4–9 |
United Kingdom | 8 | 7–9 |
New Zealand | 10 | 8–11 |
Finland | 19 | 18–20 |
Poland | 43 | 39–47 |
Australia | 44 | 35–53 |
Canada | 59 | 44–74 |
Russia | 61 | 59–64 |
Japan | 73 | 59–86 |
Armenia | 98 | 98–99 |
Zambia | 98 | 98–99 |
Vietnam | 98 | 98–99 |
Solomon Islands | 99 | 98–99 |
Ghana | 100 | 100–100 |
Malawi | 100 | 100–100 |
South Korea | 100 | 100–100 |
Yemen | 100 | 99–100 |
Symptoms of Lactose Intolerance | Frequency (% of Total) | |
---|---|---|
Gut-related | Abdominal pain | ~100 |
Gut distension | ||
Borborygmi | ||
Flatulence | ||
Nausea | 78 | |
Vomiting | ||
Diarrhoea | 70 | |
Constipation | 30 | |
Systemic | Headache | 86 |
Loss of concentration | 82 | |
Long term tiredness | 63 | |
Muscle pain | 71 | |
Joint pain/stiffness | 71 | |
Allergy | 40 | |
Mouth ulcers | 30 | |
Heart arrhythmia | 24 | |
Increased frequency of micturition | <20 | |
Sore throat |
Factors Associated with Development of Symptoms after Lactose Digestion |
---|
Lactase deficiency Lactose dosage (≤12 g lactose is usually well-tolerated) Speed of lactose consumption Ingestion with other nutrients Oro-caecal transit time Intestinal microbiota Visceral hypersensitivity Irritable bowel syndrome and other functional gastrointestinal diseases Anxiety, depression, and other psychiatric conditions High levels of psychosocial stress Acute physical stress (e.g., abdominal surgery, infection) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszkowicz, J.; Plata-Nazar, K.; Szlagatys-Sidorkiewicz, A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients 2022, 14, 1785. https://doi.org/10.3390/nu14091785
Leszkowicz J, Plata-Nazar K, Szlagatys-Sidorkiewicz A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients. 2022; 14(9):1785. https://doi.org/10.3390/nu14091785
Chicago/Turabian StyleLeszkowicz, Julia, Katarzyna Plata-Nazar, and Agnieszka Szlagatys-Sidorkiewicz. 2022. "Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review" Nutrients 14, no. 9: 1785. https://doi.org/10.3390/nu14091785
APA StyleLeszkowicz, J., Plata-Nazar, K., & Szlagatys-Sidorkiewicz, A. (2022). Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients, 14(9), 1785. https://doi.org/10.3390/nu14091785