Vitamin D Supplementation and Its Impact on Different Types of Bone Fractures
Abstract
:1. Introduction
2. Fracture Risk Assessment and Vitamin D3 Status Guidelines
3. Vertebral Fractures
4. Hip Fractures
5. Stress Fractures
6. Pediatric Fractures
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vitamin D. Available online: https://lpi.oregonstate.edu/mic/vitamins/vitamin-D (accessed on 6 September 2022).
- Aydın, C.G.; Dinçel, Y.M.; Arıkan, Y.; Taş, S.K.; Deniz, S. The effects of indoor and outdoor sports participation and seasonal changes on vitamin D levels in athletes. SAGE Open Med. 2019, 7, 2050312119837480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Savastano, S.; Di Somma, C.; Savanelli, M.C.; Nappi, F.; Albanese, L.; Orio, F.; Colao, A. Low serum vitamin D-status, air pollution and obesity: A dangerous liaison. Rev. Endocr. Metab. Disord. 2016, 18, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin Against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D. Dermato-Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, L.J.; Lucas, R.M.; Sherriff, J.L.; Björn, L.O.; Bornman, J.F. In Pursuit of Vitamin D in Plants. Nutrients 2017, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Kühn, J.; Schröter, A.; Hartmann, B.M.; Stangl, G.I. Cocoa and chocolate are sources of vitamin D2. Food Chem. 2018, 269, 318–320. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4, 136. [Google Scholar] [CrossRef] [Green Version]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Balachandar, R.; Pullakhandam, R.; Kulkarni, B.; Sachdev, H.S. Relative Efficacy of Vitamin D2 and Vitamin D3 in Improving Vitamin D Status: Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3328. [Google Scholar] [CrossRef]
- Tripkovic, L.; Wilson, L.R.; Hart, K.; Johnsen, S.; de Lusignan, S.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Elliott, R.; et al. Daily supplementation with 15 μg vitamin D 2 compared with vitamin D 3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am. J. Clin. Nutr. 2017, 106, 481–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, U.; Hirche, F.; Stangl, G.I.; Hinz, K.; Westphal, S.; Dierkes, J. Bioavailability of Vitamin D2and D3in Healthy Volunteers, a Randomized Placebo-Controlled Trial. J. Clin. Endocrinol. Metab. 2013, 98, 4339–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdoia, M.; Schaffer, A.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G.; Novara Atheroscle-rosis Study Group (NAS). Impact of gender difference on vitamin D status and its relationship with the extent of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Al-Horani, H.; Abu Dayyih, W.; Mallah, E.; Hamad, M.; Mima, M.; Awad, R.; Arafat, T. Nationality, Gender, Age, and Body Mass Index Influences on Vitamin D Concentration among Elderly Patients and Young Iraqi and Jordanian in Jordan. Biochem. Res. Int. 2016, 2016, 8920503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tønnesen, R.; Hovind, P.H.; Jensen, L.T.; Schwarz, P. Determinants of vitamin D status in young adults: Influence of lifestyle, sociodemographic and anthropometric factors. BMC Public Health 2016, 16, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLuca, H.F. The Metabolism and Functions of Vitamin D. Adv. Exp. Med. Biol. 1986, 196, 361–375. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef]
- Valdivielso, J.M. The Physiology of Vitamin D Receptor Activation. Contrib. Nephrol. 2009, 163, 206–212. [Google Scholar] [CrossRef]
- Fleet, J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef]
- Sai, A.J.; Walters, R.; Fang, X.; Gallagher, J.C. Relationship between Vitamin D, Parathyroid Hormone, and Bone Health. J. Clin. Endocrinol. Metab. 2011, 96, E436–E446. [Google Scholar] [CrossRef]
- Bergwitz, C.; Jüppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.; Choi, Y.; Yoo, I.; Han, J.; Hong, J.S.; Kim, Y.Y.; Ka, H. Vitamin D-metabolic enzymes and related molecules: Expression at the maternal-conceptus interface and the role of vitamin D in endometrial gene expression in pigs. PLoS ONE 2017, 12, e0187221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danik, J.S.; Manson, J.E. Vitamin d and cardiovascular disease. Curr. Treat. Options Cardiovasc. Med. 2012, 14, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiciński, M.; Adamkiewicz, D.; Adamkiewicz, M.; Śniegocki, M.; Podhorecka, M.; Szychta, P.; Malinowski, B. Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients 2019, 11, 2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, P.B.; Joseph, C.; Angioi, M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J. Sci. Med. Sport 2015, 18, 575–580. [Google Scholar] [CrossRef]
- Garfinkel, R.J.; Dilisio, M.F.; Agrawal, D.K. Vitamin D and Its Effects on Articular Cartilage and Osteoarthritis. Orthop. J. Sports Med. 2017, 5, 2325967117711376. [Google Scholar] [CrossRef]
- Matkovic, V.; Jelic, T.; Wardlaw, G.M.; Ilich, J.Z.; Goel, P.K.; Wright, J.K.; Andon, M.B.; Smith, K.T.; Heaney, R.P. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J. Clin. Investig. 1994, 93, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Haines, S.T.; Park, S. Vitamin D Supplementation: What’s Known, What to Do, and What’s Needed. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2012, 32, 354–382. [Google Scholar] [CrossRef]
- Ebeling, P.R.; Nguyen, H.H.; Aleksova, J.; Vincent, A.J.; Wong, P.; Milat, F. Secondary Osteoporosis. Endocr. Rev. 2021, 43, 240–313. [Google Scholar] [CrossRef]
- Lorentzon, M. Treating osteoporosis to prevent fractures: Current concepts and future developments. J. Intern. Med. 2019, 285, 381–394. [Google Scholar] [CrossRef]
- Weitzmann, M.N. Estrogen deficiency and bone loss: An inflammatory tale. J. Clin. Investig. 2006, 116, 1186–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lips, P. Vitamin D Deficiency and Secondary Hyperparathyroidism in the Elderly: Consequences for Bone Loss and Fractures and Therapeutic Implications. Endocr. Rev. 2001, 22, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Fares, A. Pharmacological and Non-pharmacological Means for Prevention of Fractures among Elderly. Int. J. Prev. Med. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Lix, L.M. Comparison between various fracture risk assessment tools. Osteoporos. Int. 2013, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sagalla, N.; Colón-Emeric, C.; Sloane, R.; Lyles, K.; Vognsen, J.; Lee, R. FRAX without BMD can be used to risk-stratify Veterans who recently sustained a low trauma non-vertebral/non-hip fracture. Osteoporos. Int. 2020, 32, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Aspray, T.J.; Bowring, C.; Fraser, W.; Gittoes, N.; Javaid, M.K.; Macdonald, H.; Patel, S.; Selby, P.; Tanna, N.; Francis, R.M. National Osteoporosis Society Vitamin D Guideline Summary. Age Ageing 2014, 43, 592–595. [Google Scholar] [CrossRef] [Green Version]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2017, 175, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Francis, R.; Aspray, T.; Bowring, C.; Fraser, W.; Gittoes, N.; Javaid, M.; Macdonald, H.; Patel, S.; Selby, P.; Tanna, N. National Osteoporosis Society practical clinical guideline on vitamin D and bone health. Maturitas 2014, 80, 119–121. [Google Scholar] [CrossRef]
- Chauhan, K.; Shahrokhi, M.; Huecker, M.R. Vitamin D; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Waterloo, S.; A Ahmed, L.; Center, J.R.; A Eisman, J.; Morseth, B.; Nguyen, N.D.; Nguyen, T.; Sogaard, A.J.; Emaus, N. Prevalence of vertebral fractures in women and men in the population-based Tromsø Study. BMC Musculoskelet. Disord. 2012, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Ensrud, K.E.; Schousboe, J.T. Clinical Practice. Vertebral Fractures. N. Engl. J. Med. 2011, 364, 1634–1642. [Google Scholar] [CrossRef]
- Yoon, S.-P.; Lee, S.-H.; Ki, C.-H.; Lee, Y.-T.; Hong, S.-H.; Lee, H.-M.; Moon, S.-H. Quality of Life in Patients with Osteoporotic Vertebral Fractures. Asian Spine J. 2014, 8, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schousboe, J.T. Epidemiology of Vertebral Fractures. J. Clin. Densitom. 2015, 19, 8–22. [Google Scholar] [CrossRef] [PubMed]
- A Cauley, J.; Thompson, D.E.; Ensrud, K.; Scott, J.C.; Black, D. Risk of Mortality Following Clinical Fractures. Osteoporos. Int. 2000, 11, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, A.; Scambia, G.; Pedicelli, A.; Evangelista, M.; Sorge, R.; Lello, S. Clinical management of osteoporotic vertebral fracture treated with percutaneous vertebroplasty. Clin. Cases Miner. Bone Metab. 2017, 14, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, B.; Van Helden, S.; Broeke, R.T.; Nieuwenhuijzen-Kruseman, A.; Wyers, C.; Udrea, G.; Van Der Linden, S.; Geusens, P. Evaluation of patients with a recent clinical fracture and osteoporosis, a multidisciplinary approach. BMC Musculoskelet. Disord. 2008, 9, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, L.M.; Hillner, B.E. A cost effectiveness analysis of calcium and vitamin D supplementation, etidronate, and alendronate in the prevention of vertebral fractures in women treated with glucocorticoids. J. Rheumatol. 2003, 30, 132–138. [Google Scholar] [PubMed]
- Lopes, J.B.; Danilevicius, C.F.; Takayama, L.; Caparbo, V.F.; Scazufca, M.; Bonfá, E.; Pereira, R.M. Vitamin D insufficiency: A risk factor to vertebral fractures in community-dwelling elderly women. Maturitas 2009, 64, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Saito, T.; Oyama, M.; Oshiki, R.; Kobayashi, R.; Nishiwaki, T.; Nashimoto, M.; Tsuchiya, Y. Vitamin D sufficiency is associated with low incidence of limb and vertebral fractures in community-dwelling elderly Japanese women: The Muramatsu Study. Osteoporos. Int. 2010, 22, 97–103. [Google Scholar] [CrossRef]
- Maier, G.S.; Seeger, J.B.; Horas, K.; Roth, K.E.; Kurth, A.A.; Maus, U. The prevalence of vitamin D deficiency in patients with vertebral fragility fractures. Bone Jt. J. 2015, 97, 89–93. [Google Scholar] [CrossRef]
- Zhang, L.; Chun, C.; Yang, Y.; Liu, B.; Zhu, Y.; Chen, R.; Rong, L. Vitamin D Deficiency/Insufficiency Is Associated with Risk of Osteoporotic Thoracolumbar Junction Vertebral Fractures. Med. Sci. Monit. 2019, 25, 8260–8268. [Google Scholar] [CrossRef]
- Hernández, J.L.; Olmos, J.M.; Pariente, E.; Nan, D.; Martínez, J.; Llorca, J.; Valero, C.; Obregón, E.; González-Macias, J. Influence of Vitamin D Status on Vertebral Fractures, Bone Mineral Density, and Bone Turnover Markers in Normocalcemic Postmenopausal Women with High Parathyroid Hormone Levels. J. Clin. Endocrinol. Metab. 2013, 98, 1711–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atteritano, M.; Di Mauro, E.; Canale, V.; Bruzzese, A.M.; Ricciardi, C.A.; Cernaro, V.; Lacquaniti, A.; Buemi, M.; Santoro, D. Higher serum sclerostin levels and insufficiency of vitamin D are strongly associated with vertebral fractures in hemodialysis patients: A case control study. Osteoporos. Int. 2016, 28, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Zafeiris, C.P.; Lyritis, G.P.; Papaioannou, N.A.; Gratsias, P.E.; Galanos, A.; Chatziioannou, S.N.; Pneumaticos, S.G. Hypovitaminosis D as a risk factor of subsequent vertebral fractures after kyphoplasty. Spine J. 2012, 12, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Pramyothin, P.; Techasurungkul, S.; Lin, J.; Wang, H.; Shah, A.; Ross, P.D.; Puapong, R.; Wasnich, R.D. Vitamin D status and falls, frailty, and fractures among postmenopausal Japanese women living in Hawaii. Osteoporos. Int. 2009, 20, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Papadimitropoulos, E.; Wells, G.; Shea, B.; Gillespie, W.; Weaver, B.; Zytaruk, N.; Cranney, A.; Adachi, J.; Tugwell, P.; Josse, R.; et al. Meta-Analyses of Therapies for Postmenopausal Osteoporosis VIII: Meta-Analysis of the Efficacy of Vitamin D Treatment in Preventing Osteoporosis in Postmenopausal Women. Endocr. Rev. 2002, 23, 560–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.; Gaugris, S.; Sen, S.; Hosking, D. The effect of cholecalciferol (vitamin D3) on the risk of fall and fracture: A meta-analysis. QJM Int. J. Med. 2007, 100, 185–192. [Google Scholar] [CrossRef] [Green Version]
- The DIPART (vitamin D Individual Patient Analysis of Randomized Trials) Group Patient level pooled analysis of 68 500 patients from seven major vitamin D fracture trials in US and Europe. BMJ 2010, 340, b5463. [CrossRef] [Green Version]
- Avenell, A.; Mak, J.C.; O’Connell, D.L. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014, 2021, CD000227. [Google Scholar] [CrossRef]
- Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The Importance of Body Weight for the Dose Response Relationship of Oral Vitamin D Supplementation and Serum 25-Hydroxyvitamin D in Healthy Volunteers. PLoS ONE 2014, 9, e111265. [Google Scholar] [CrossRef] [Green Version]
- McCullough, P.J.; Lehrer, D.S.; Amend, J. Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience. J. Steroid Biochem. Mol. Biol. 2019, 189, 228–239. [Google Scholar] [CrossRef]
- Chel, V.; Wijnhoven, H.A.H.; Smit, J.H.; Ooms, M.; Lips, P. Efficacy of different doses and time intervals of oral vitamin D supplementation with or without calcium in elderly nursing home residents. Osteoporos. Int. 2007, 19, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilliu, H.; Pamphile, R.; Chapuy, M.-C.; Schulten, J.; Arlot, M.; Meunier, P.J. Calcium–vitamin D3 supplementation is cost-effective in hip fractures prevention. Maturitas 2003, 44, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Haentjens, P.; Autier, P.; Barette, M.; Venken, K.; Vanderschueren, D.; Boonen, S. Survival and functional outcome according to hip fracture type: A one-year prospective cohort study in elderly women with an intertrochanteric or femoral neck fracture. Bone 2007, 41, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Ingstad, F.; Solberg, L.B.; Nordsletten, L.; Thorsby, P.M.; Hestnes, I.; Frihagen, F. Vitamin D status and complications, readmissions, and mortality after hip fracture. Osteoporos. Int. 2020, 32, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, B.; Johnell, O.; Kanis, J. World-wide Projections for Hip Fracture. Osteoporos. Int. 1997, 7, 407–413. [Google Scholar] [CrossRef]
- Wehren, L.E.; Magaziner, J. Hip fracture: Risk factors and outcomes. Curr. Osteoporos. Rep. 2003, 1, 78–85. [Google Scholar] [CrossRef]
- Sprague, S.; Petrisor, B.; Scott, T.; Devji, T.; Phillips, M.; Spurr, H.; Bhandari, M.; Slobogean, G.P. What Is the Role of Vitamin D Supplementation in Acute Fracture Patients? A Systematic Review and Meta-Analysis of the Prevalence of Hypovitaminosis D and Supplementation Efficacy. J. Orthop. Trauma 2016, 30, 53–63. [Google Scholar] [CrossRef]
- Lauretani, F.; Frondini, C.; Davoli, M.L.; Martini, E.; Pellicciotti, F.; Zagatti, A.; Giordano, A.; Zurlo, A.; Pioli, G. Vitamin D supplementation is required to normalize serum level of 25OH-vitamin D in older adults: An observational study of 974 hip fracture inpatients. J. Endocrinol. Investig. 2012, 35, 921–924. [Google Scholar] [CrossRef]
- Johnson, A.L.; Smith, J.J.; Smith, J.M.; Sanzone, A.G. Vitamin D Insufficiency in Patients with Acute Hip Fractures of All Ages and Both Sexes in a Sunny Climate. J. Orthop. Trauma 2013, 27, e275–e280. [Google Scholar] [CrossRef]
- Neale, R.E.; Wilson, L.F.; Black, L.J.; Waterhouse, M.; Lucas, R.M.; Gordon, L.G. Hospitalisations for falls and hip fractures attributable to vitamin D deficiency in older Australians. Br. J. Nutr. 2021, 126, 1682–1686. [Google Scholar] [CrossRef]
- Rossini, M.; Alberti, V.; Flor, L.; Masiero, L.; Giannini, S.; Gatti, D.; Adami, S. Effect of oral vitamin D2 yearly bolus on hip fracture risk in elderly women: A community primary prevention study. Aging Clin. Exp. Res. 2004, 16, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Glerup, H.; Mikkelsen, K.; Poulsen, L.; Hass, E.; Overbeck, S.; Andersen, H.; Charles, P.; Eriksen, E.F. Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif. Tissue Int. 2000, 66, 419–424. [Google Scholar] [CrossRef] [PubMed]
- A Bischoff, H.; Stähelin, H.B.; Dick, W.; Akos, R.; Knecht, M.; Salis, C.; Nebiker, M.; Theiler, R.; Pfeifer, M.; Begerow, B.; et al. Effects of Vitamin D and Calcium Supplementation on Falls: A Randomized Controlled Trial. J. Bone Miner. Res. 2003, 18, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Stemmle, J.; Marzel, A.; Chocano-Bedoya, P.O.; Orav, E.J.; Dawson-Hughes, B.; Freystaetter, G.; Egli, A.; Theiler, R.; Staehelin, H.B.; Bischoff-Ferrari, H.A. Effect of 800 IU Versus 2000 IU Vitamin D3 With or Without a Simple Home Exercise Program on Functional Recovery After Hip Fracture: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019, 20, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.C.; Mason, R.S.; Klein, L.; Cameron, I.D. An initial loading-dose vitamin D versus placebo after hip fracture surgery: Randomized trial. BMC Musculoskelet. Disord. 2016, 17, 336. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.; Anderson, F.; Raphael, H.; Maslin, P.; Crozier, S.; Cooper, C. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology 2007, 46, 1852–1857. [Google Scholar] [CrossRef] [Green Version]
- Glendenning, P.; Chew, G.T.; Seymour, H.M.; Gillett, M.J.; Goldswain, P.R.; Inderjeeth, C.A.; Vasikaran, S.D.; Taranto, M.; Musk, A.A.; Fraser, W.D. Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone 2009, 45, 870–875. [Google Scholar] [CrossRef]
- Meyer, H.E.; Smedshaug, G.B.; Kvaavik, E.; Falch, J.A.; Tverdal, A.; Pedersen, J.I. Can Vitamin D Supplementation Reduce the Risk of Fracture in the Elderly? A Randomized Controlled Trial. J. Bone Miner. Res. 2002, 17, 709–715. [Google Scholar] [CrossRef]
- Yee, M.; Chin, K.-Y.; Ima-Nirwana, S.; Wong, S. Vitamin A and Bone Health: A Review on Current Evidence. Molecules 2021, 26, 1757. [Google Scholar] [CrossRef]
- Patel, D.S.; Roth, M.; Kapil, N. Stress fractures: Diagnosis, treatment, and prevention. Am. Fam. Physician 2011, 83, 39–46. [Google Scholar]
- Warden, S.J.; Burr, D.B.; Brukner, P.D. Stress fractures: Pathophysiology, epidemiology, and risk factors. Curr. Osteoporos. Rep. 2006, 4, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lappe, J.; Cullen, D.; Haynatzki, G.; Recker, R.; Ahlf, R.; Thompson, K. Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits. J. Bone Miner. Res. 2008, 23, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.L.; Jamieson, M.; Everson, S.; Siegel, C. Expected Time to Return to Athletic Participation After Stress Fracture in Division I Collegiate Athletes. Sports Health A Multidiscip. Approach 2017, 10, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Kale, N.N.; Wang, C.X.; Wu, V.J.; Miskimin, C.; Mulcahey, M.K. Age and Female Sex Are Important Risk Factors for Stress Fractures: A Nationwide Database Analysis. Sports Health A Multidiscip. Approach 2022, 14, 805–811. [Google Scholar] [CrossRef]
- Knechtle, B.; Jastrzębski, Z.; Hill, L.; Nikolaidis, P. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina 2021, 57, 223. [Google Scholar] [CrossRef]
- Richards, T.; Wright, C. British Army recruits with low serum vitamin D take longer to recover from stress fractures. BMJ Mil. Health 2018, 166, 240–242. [Google Scholar] [CrossRef]
- Abbott, A.; Bird, M.; Wild, E.; Brown, S.M.; Stewart, G.; Mulcahey, M.K. Part I: Epidemiology and risk factors for stress fractures in female athletes. Physician Sportsmed. 2019, 48, 17–24. [Google Scholar] [CrossRef]
- Sonneville, K.R.; Gordon, C.M.; Kocher, M.S.; Pierce, L.M.; Ramappa, A.; Field, A.E. Vitamin D, Calcium, and Dairy Intakes and Stress Fractures Among Female Adolescents. Arch. Pediatr. Adolesc. Med. 2012, 166, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Davey, T.; Lanham-New, S.A.; Shaw, A.M.; Hale, B.; Cobley, R.; Berry, J.L.; Roch, M.; Allsopp, A.J.; Fallowfield, J.L. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos. Int. 2015, 27, 171–179. [Google Scholar] [CrossRef]
- Williams, K.; Askew, C.; Mazoue, C.; Guy, J.; Torres-McGehee, T.M.; Iii, J.B.J. Vitamin D3 Supplementation and Stress Fractures in High-Risk Collegiate Athletes—A Pilot Study. Orthop. Res. Rev. 2020, 12, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Ruohola, J.-P.; Laaksi, I.; Ylikomi, T.; Haataja, R.; Mattila, V.M.; Sahi, T.; Tuohimaa, P.; Pihlajamäki, H. Association Between Serum 25(OH)D Concentrations and Bone Stress Fractures in Finnish Young Men. J. Bone Miner. Res. 2006, 21, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.; Root, A.D.; Dubois, J.; Cohen, R.P.; Valdivia, L.; Helming, B.; Kokoskie, J.; Waterbrook, A.L.; Paul, S. Association of Serum Vitamin D Levels and Stress Fractures in Collegiate Athletes. Orthop. J. Sports Med. 2020, 8, 2325967120966967. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Dunn, K.W.; Ciliberti, L.J.; Patel, R.D.; Swanson, B.A. Association of Vitamin D with Stress Fractures: A Retrospective Cohort Study. J. Foot Ankle Surg. 2016, 55, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Grieshober, J.A.; Mehran, N.; Photopolous, C.; Fishman, M.; Lombardo, S.J.; Kharrazi, F.D. Vitamin D Insufficiency Among Professional Basketball Players: A Relationship to Fracture Risk and Athletic Performance. Orthop. J. Sports Med. 2018, 6, 2325967118774329. [Google Scholar] [CrossRef] [Green Version]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical Factors Associated with Tibial Stress Fracture in Female Runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Chatzipapas, C.; Boikos, S.; Drosos, G.I.; Kazakos, K.; Tripsianis, G.; Serbis, A.; Stergiopoulos, S.; Tilkeridis, C.; Verettas, D.-A.; Stratakis, C.A. Polymorphisms of the Vitamin D Receptor Gene and Stress Fractures. Horm. Metab. Res. 2009, 41, 635–640. [Google Scholar] [CrossRef] [Green Version]
- McClung, J.P.; Karl, J.P. Vitamin D and stress fracture: The contribution of vitamin D receptor gene polymorphisms. Nutr. Rev. 2010, 68, 365–369. [Google Scholar] [CrossRef]
- Hedström, E.M.; Svensson, O.; Bergström, U.; Michno, P. Epidemiology of fractures in children and adolescents. Acta Orthop. 2010, 81, 148–153. [Google Scholar] [CrossRef]
- Naranje, S.M.; Erali, R.A.; Warner, W.C.; Sawyer, J.R.; Kelly, D.M. Epidemiology of Pediatric Fractures Presenting to Emergency Departments in the United States. J. Pediatr. Orthop. 2016, 36, e45–e48. [Google Scholar] [CrossRef]
- Song, F.; Zeng, Y.; Tian, J.; Lv, Y.; Feng, G.; Ni, X.; Futang Research Center of Pediatric Development (FRCPD). Epidemiology and the economic burden of pediatric fractures in China: A retrospective study of 14,141 fractures. Bone 2020, 144, 115498. [Google Scholar] [CrossRef]
- Liu, E.H.; Alqahtani, S.; Alsaaran, R.N.; Ho, E.S.; Zuker, R.M.; Borschel, G.H. A Prospective Study of Pediatric Hand Fractures and Review of the Literature. Pediatr. Emerg. Care 2014, 30, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Colen, D.L.; Fox, J.P.; Chang, B.; Lin, I.C. Pediatric Hand and Upper Extremity Injuries Presenting to Emergency Departments in the United States: Epidemiology and Health Care–Associated Costs. HAND 2019, 16, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Mathison, D.J.; Agrawal, D. An Update on the Epidemiology of Pediatric Fractures. Pediatr. Emerg. Care 2010, 26, 594–603, quiz 604–606. [Google Scholar] [CrossRef] [PubMed]
- Bram, J.T.; Johnson, M.A.; Magee, L.C.; Mehta, N.N.; Fazal, F.Z.; Baldwin, K.D.; Riley, J.; Shah, A.S. Where Have All the Fractures Gone? The Epidemiology of Pediatric Fractures During the COVID-19 Pandemic. J. Pediatr. Orthop. 2020, 40, 373–379. [Google Scholar] [CrossRef]
- Goulding, A. Risk Factors for Fractures in Normally Active Children and Adolescents. Med. Sport Sci. 2007, 51, 102–120. [Google Scholar] [CrossRef]
- Ryan, L.M.; Teach, S.J.; Singer, S.A.; Wood, R.; Freishtat, R.; Wright, J.L.; McCarter, R.; Tosi, L.; Chamberlain, J.M. Bone Mineral Density and Vitamin D Status Among African American Children with Forearm Fractures. Pediatrics 2012, 130, e553–e560. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, P.; Mohseni, M.; Minaie, A.; Kiebzak, G.M. Vitamin D Status in Children with Forearm Fractures: Incidence and Risk Factors. JAAOS Glob. Res. Rev. 2020, 4, e20.00150-5. [Google Scholar] [CrossRef]
- Minkowitz, B.; Cerame, B.; Poletick, E.; Nguyen, J.T.; Formoso, N.D.; Luxenberg, S.L.; Lee, B.H.; Lane, J.M.; Mor-ris-Essex Pediatric Bone Health Group. Low Vitamin D Levels are Associated with Need for Surgical Correction of Pediatric Fractures. J. Pediatr. Orthop. 2017, 37, 23–29. [Google Scholar] [CrossRef]
- Parchi, P.D.; Andreani, L.; Piolanti, N.; Niccolai, F.; Cervi, V.; Lisanti, M. Effect of vitamin D in fracture healing in a child: Case report. Arch. Osteoporos. 2014, 9, 170. [Google Scholar] [CrossRef]
- Ceroni, D.; de la Llana, R.A.; Martin, X.; Lamah, L.; De Coulon, G.; Turcot, K.; Dubois-Ferrière, V. Prevalence of vitamin D insufficiency in Swiss teenagers with appendicular fractures: A prospective study of 100 cases. J. Child. Orthop. 2012, 6, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Perez-Rossello, J.M.; Feldman, H.A.; Kleinman, P.K.; Connolly, S.A.; Fair, R.A.; Myers, R.M.; Gordon, C.M. Rachitic Changes, Demineralization, and Fracture Risk in Healthy Infants and Toddlers with Vitamin D Deficiency. Radiology 2012, 262, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Contreras, J.J.; Hiestand, B.; O’Neill, J.C.; Schwartz, R.; Nadkarni, M. Vitamin D Deficiency in Children with Fractures. Pediatr. Emerg. Care 2014, 30, 777–781. [Google Scholar] [CrossRef]
- Moore, D.M.; O’Sullivan, M.; Kiely, P.; Noel, J.; O’Toole, P.; Kennedy, J.; Moore, D.P.; Kelly, P. Vitamin D levels in Irish children with fractures: A prospective case–control study with 5 year follow-up. Surgeon 2021, 20, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Schilling, S.; Wood, J.N.; Levine, M.A.; Langdon, D.; Christian, C.W. Vitamin D Status in Abused and Nonabused Children Younger Than 2 Years Old with Fractures. Pediatrics 2011, 127, 835–841. [Google Scholar] [CrossRef] [PubMed]
Author | Research Design | Study Group | Vitamin D Dose | Serum Vitamin D3 Level | Results |
---|---|---|---|---|---|
Nakamura et al., 2011 [50] | Cohort | N = 773 (773 W) Japanese > 69 years | Averagely 240 IU | Mean 60 nmol/L (24 ng/mL) | Vitamin D3 serum level > 71 nmol/L (28.5 ng/mL) was associated with a reduced risk of VF |
Maier et al., 2015 [51] | Retrospective case-control study | Fracture group N = 246 Germans (105 M and 141 W) mean age = 69 Control group N = 392 Germans (219 M and 173 W) mean age = 63 | - | Fracture group 49.1 nmol/L (19.67 ng/mL) Control group 62.6 nmol/L (25.08 ng/mL) | Significant difference in vitamin D3 levels between fracture group and control group; p = 0.036 |
Zhang et al., 2019 [52] | Retrospective case-control study | Fracture group N = 534 (108 M and 426 W) mean age = 68.05 Control group N = 569 (135 M and 434 W) mean age = 66.84 | - | Fracture group 54.53 nmol/L (21.85 ng/mL) Control group 64.56 nmol/L (25.87 ng/mL) | The mean serum vitamin D3 level 29.67 ± 6.18 nmol/L (11.89 ± 2.48 ng/mL) was associated with the higher risk of VF (almost twofold) and more severe fractures. The range of serum vitamin D3 level from 60.91 nmol/L (24.40 ng/mL) to 103.3 nmol/L (41.39 ng/mL) was associated with the lower risk of VF |
Hernández et al., 2013 [53] | Cohort | N = 820 (820 W) normocalcemic postmenopausal women with high parathyroid hormone levels | - | - | Serum vitamin D3 above 63.6 nmol/L (25.5 ng/mL) decreased bone turnover stimulated by high level of parathormone (>58 pg/mL) and reduced VF prevalence |
Atteritano et al., 2017 [54] | Case-control study | N = 92 (66 M and 26 W) hemodialysis patients Mean age = 67.10 N = 100 controls Mean age = 64.85 | Averagely 210 mg/day Averagely 220 mg/day | Subjects with VF 41.43 nmol/L (16.6 ng/mL) Subjects with no fracture 69.39 nmol/L (27.8 ng/mL) | Significant difference in vitamin D3 levels between subjects who suffered from VF and who did not p = 0.016 |
Zafeiris et al., 2012 [55] | Prospective clinical study | N = 40 (40 W) postmenopausal women after kyphoplasty Mean age = 70.6 | - | Subjects with VF 35.91 nmol/L (14.39 ng/mL) Subjects with no fracture 56.41 nmol/L (22.6 ng/mL) | Significant difference in vitamin D3 levels between subjects who suffered from VF and who did not p = 0.001 |
Author | Number of Included Studies | Study Group | The Average Age | Vitamin D Dose | Effect Size |
---|---|---|---|---|---|
Papadimitropoul et al., 2002 [57] | 8 RCT placebo vs. vitamin D +/− calcium | N = 1130 postmenopausal women | Older than 45 years | >400 IU/day | RR 0.63; CI 0.45–0.88; p < 0.01 Significant difference |
Jackson et al., 2007 [58] | 3 RCT placebo vs. vitamin D +/− calcium | N = 1002 postmenopausal women | Older than 60 years | 300–800 IU/day | RR 1.22; CI 0.64–2.31 No significant difference |
The DIPART group, 2010 [59] | 4 RCT Vitamin D + calcium vs. placebo | N = 54,493 | Mean age = 82 | 400–800 IU/day | Hazard ratio 0.85 No significant difference |
2 RCT Vitamin D vs. placebo | N = 12,880 | Mean age = 72.9 | 800 IU/day | Hazard ratio 1.12 No significant difference | |
Avenell et al., 2014 [60] | 6 RCT Vitamin D vs. placebo | N = 11,396 | - | - | RR 1.03; CI 0.76–1.39 No significant difference |
2 RCT Vitamin D + calcium vs. calcium | N = 2681 | - | - | RR 0.14; CI 0.01–2.77 No significant difference | |
3 RCT Vitamin D vs. calcium | N = 2976 | - | - | RR 2.21; CI 1.08–4.53; Vitamin D was less effective than calcium | |
4 RCT Vitamin D + calcium vs. placebo | N = 42,185 | - | - | RR 0.89; CI 0.74–1.09 No significant difference |
Author | Research Design | Study Group | Vitamin D Dose | Serum Vitamin D3 Level | Results |
---|---|---|---|---|---|
Lilliu et al., 2003 [64] | Randomized controlled trial | Treatment group N = 1176 (1176 W) Placebo group N = 1127 (1127 W) | 800 IU/day | - | 25% fewer cases of HFs (138 vs. 184, p < 0.02) in the experimental group compared with the placebo group |
Rossini et al., 2004 [73] | Quasi-experimental, prospective intervention study | First year N = 23,325 (23,325 W) Second year N = 24,747 (24,747 W) | Single dose of 400 000 IU/year | - | Decreased frequency of HFs by 10% p = 0.05 in comparison with the previous two years |
Bischoff et al., 2003 [75] | Double-blind randomized controlled trial | Treatment group N = 62 (62 W) Mean age = 85.3 years Placebo group N = 60 (60 W) Mean age = 85.3 years | 800 IU/day | - | Decreased frequency of falls by 49% in the treatment group compared to the placebo group |
Stemmle et al., 2019 [76] | Randomized controlled trial | N = 173 after hip surgery Mean age = 84 years | 800 IU or 2000 IU/day | - | Clinically significant improvement in the function of the lower limbs |
Ingstad et al., 2021 [66] | Retrospective cohort study | N = 872 patients with HF Mean age = 80.5 years | Single dose of 100,000 IU | - | Patient after a single-dose of vitamin D had less orthopedic complications during 30 days after surgery (p = 0.044; OR 0.32; 95% CI 0.11 to 0.97) |
Mak et al., 2016 [77] | Double-blind randomized controlled trial | N = 218 patient with HF Mean age = 83.9 years | Single dose of 250,000 IU | - | The treatment group decreased amount of falls compared to the placebo group (6.3% vs. 21.1%; p = 0.024) and reduced feeling of pain or discomfort (96.4% vs. 88.8% p = 0.037) |
Smith et al., 2007 [78] | Double-blind randomized controlled trial | N = 9440 (4354 M and 5086 W) >75 years old | Single dose of 300,000 IU vitamin D2 | - | No significant association between treatment and control groups in HF frequency (p = 0.04) |
Meyer et al., 2002 [80] | Randomized controlled trial | Treatment group N = 569 Mean age = 84.4 years Placebo group N = 575 Mean age = 85.0 years | 400 IU/day | - | No significant association between treatment and control groups in HF frequency (p = 0.66) |
Author | Research Design | Study Group | Vitamin D Dose | Serum Vitamin D3 Level | Results |
---|---|---|---|---|---|
Lappe et al., 2008 [84] | Randomized double-blind study | N = 5201 (5201 W) Navy recruits Age range = 17–35 years | 800 IU/day | - | The group that supplemented vitamin D had 20% lower incidence of SF than the control group (5.3% vs. 6.6%; p = 0.0026) |
Sonneville et al. 2012 [90] | Prospective cohort study | N = 6712 (6712 W) Age range = 9–15 years | Treatment group 663 IU/day Control group 107 IU/day | - | The treatment group had 52% lower risk of SF than control group HR = 0.48; 95% CI, 0.22–1.02; p = 0.04 No significant difference between calcium intake and SF |
Davey et al. 2016 [91] | Prospective cohort study | N = 1082 (1082 M) Royal Marine Age range = 16–32 years | - | Mean 69.2 ± 29.2 nmol/L (27.2 ± 11.7 ng/mL) | Serum vitamin D3 level <50 nmol/L (20 ng/mL) was associated with an increased risk of SF compared to subjects with above this threshold; p = 0.042; odds ratio 1.6 (95% confidence interval 1.0–2.6) |
Williams et al., 2020 [92] | Prospective cohort study accompanied by a retrospective review for control comparison | N = 118 (30 M, 88 W) Mean age = 19.7 years in M Mean age = 19.6 years in W Retrospective control group N = 453 | 50 000 IUs of vitamin D3 per week for a period of 8 weeks in subjects with serum level of vitamin D3 < 75 nmol/L (<30 ng/mL) | Mean 80.37 nmol/L (32.2 ng/mL) in August and mean 79.62 nmol/L (31.9 ng/mL) in February | Decrease of SF from 7.51% to 1.65% (p = 0.009) in the treatment group compared to the control group |
Ruohola et al., 2006 [93] | Prospective cohort study | N = 800 (800 M) Finnish military recruits Mean age = 19.8 years | - | Mean 75.8 nmol/L (30.4 ng/mL) | Serum vitamin D3 level <75 nmol/L (<30 ng/mL) was associated with increased risk of SF OR 3.6 (95% CI: 1.2–11.1) |
Millward et al., 2020 [94] | Prospective cohort study | N = 802 (497 M and 305 W) collegiate athletes | 50,000 IUs or 30,000 IUs of vitamin D3 per week for a period of 8 weeks in subjects with serum level of vitamin D3 <50 nmol/L (20 ng/mL) or <75 nmol/L (<30 ng/mL) respectively | Mean 93.6 nmol/L (37.5 ng/mL) in M Mean 108.6 nmol/L (43.5 ng/mL) in W | Collegiate athletes who improved their vitamin D3 status to >100 nmol/L (40 ng/mL) had the rate of SF 12% lower than sportsmen who remained low serum vitamin D3 status (95% CI, 6–19; p < 0.001) |
Miller et al., 2016 [95] | Retrospective cohort study | N = 124 (42 M and 82 W) | - | Mean 31.14 ± 14.71 nmol/L (12.48 ± 5.89 ng/mL) | Vitamin D3 status < 40 nmol/L (16 ng/mL) was associated with an increased risk of SF |
Grieshober et al., 2018 [96] | Descriptive epidemiology study | N = 279 (279 M) professional basketball players | - | - | No significant association between serum vitamin D3 concentration and stress fracture |
Author | Research Design | Study Group | Vitamin D Dose | Serum Vitamin D3 Level | Results | |
---|---|---|---|---|---|---|
Ryan et al., 2012 [108] | Case-control study | Fracture group N = 76 (44 M, 32 F) Control group N = 74 (40 M, 34 F) Age range = 5–9 years | - | - | Serum vitamin D3 level < 50 nmol/L (20 ng/mL) was associated with lower bone mineral density and increased odds of low energy forearm fractures (47.1% vs. 40.8%; adjusted odds ratio 3.46) | |
Hosseinzadeh et al., 2020 [109] | Prospective cohort study | N = 100 (65 M, 35 F) Age range = 3–15 years | - | Mean 68.6 ± 20.7 nmol/L (27.5 ± 8.3 ng/mL) | Children who required surgical management were more likely to be vitamin D3 deficient compared with the nonsurgical group (50% versus 17% respectively); RR of surgical treatment in children with forearm fracture and D3 deficiency was 3.8 | |
Minkowitz et al., 2017 [110] | Retrospective and prospective cohort study | Fracture group N = 369 Control group N = 662 | - | Fracture group 68.8 nmol/L (27.5 ng/mL) Control group 68.4 nmol/L (27.4 ng/mL) | Serum vitamin D3 level < 100 nmol/L(40 ng/mL) was correlated with increased risk for need for surgical correction. No relationship between vitamin D3 status and PF occurrence. | |
Ceroni et al., 2012 [112] | Prospective cohort study | Fracture group N = 100 Mean age = 12.9 years Control group N = 50 Mean age = 12.7 years | - | Fracture group 80.1 nmol/L (32.1 ng/mL) and 76.1 nmol/L (30.5 ng/mL) Control group 81.6 nmol/L (32.7 ng/mL) | No significant association between serum vitamin D3 concentration and PF | |
Perez-Rossello et al., 2012 [113] | Prospective cohort study | N = 40 (18 M, 22 F) Age range = 8–24 months | - | - | No fracture before or after treatment for vitamin D3 deficiency | |
Contreras et al., 2014 [114] | Prospective case-control study | Fracture group N = 100 Control group N = 100 | - | Fracture group 66.6 nmol/L (26.7 ng/mL) Control group 63.6 nmol/L (25.5 ng/mL) | No significant association between serum vitamin D3 concentration and PF p = 0.859; odds ratio 0.94) | |
Moore et al., 2014 [115] | Prospective case-control study | Fracture group N = 58 Mean age = 8.0 years Control group N = 58 Mean age = 8.9 years | - | Fracture group 63.2 nmol/L (25.3 ng/mL) Control group 62.5 nmol/L (25.0 ng/mL) | No significant association between serum vitamin D3 concentration and pediatric fracture p = 0.86 | |
Schilling et al., 2011 [116] | Cohort | N = 118 Mean age = 203 days | - | - | No significant association between serum vitamin D3 concentration and pediatric fracture p = 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdmann, J.; Wiciński, M.; Szyperski, P.; Gajewska, S.; Ohla, J.; Słupski, M. Vitamin D Supplementation and Its Impact on Different Types of Bone Fractures. Nutrients 2023, 15, 103. https://doi.org/10.3390/nu15010103
Erdmann J, Wiciński M, Szyperski P, Gajewska S, Ohla J, Słupski M. Vitamin D Supplementation and Its Impact on Different Types of Bone Fractures. Nutrients. 2023; 15(1):103. https://doi.org/10.3390/nu15010103
Chicago/Turabian StyleErdmann, Jakub, Michał Wiciński, Paweł Szyperski, Sandra Gajewska, Jakub Ohla, and Maciej Słupski. 2023. "Vitamin D Supplementation and Its Impact on Different Types of Bone Fractures" Nutrients 15, no. 1: 103. https://doi.org/10.3390/nu15010103
APA StyleErdmann, J., Wiciński, M., Szyperski, P., Gajewska, S., Ohla, J., & Słupski, M. (2023). Vitamin D Supplementation and Its Impact on Different Types of Bone Fractures. Nutrients, 15(1), 103. https://doi.org/10.3390/nu15010103