Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Method and Participants
2.2. Anthropometric Measurements and Clinical Examinations
2.3. The Definition of MetS
2.4. Dietary and Nutrient Assessment
2.5. Nutrient Patterns
2.6. Other Covariates
2.7. Statistical Analysis
3. Results
3.1. Nutrient Patterns and Its Correlation with Food Groups
3.1.1. Nutrient Patterns
3.1.2. Partial Correlation Test
3.2. Basic Characteristics of Participants
3.2.1. Basic Characteristics of Participants in 5 NPs
3.2.2. The Prevalence of MetS and Its Components in 5 NPs
3.3. The Association between NPs and MetS and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef] [PubMed]
- Vajdi, M.; Farhangi, M.A.; Nikniaz, L. Diet-derived nutrient patterns and components of metabolic syndrome: A cross-sectional community- based study. BMC Endocr. Disord. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Chen, G.C.; Wang, X.P.; Qin, L.; Bai, Y. Dietary Fiber and Metabolic Syndrome: A Meta-Analysis and Review of Related Mechanisms. Nutrients 2017, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Yan, Y.; Ding, W.; Dong, H.; Liu, Q.; Huang, G.; Mi, J. Prevalence of metabolic syndrome in Chinese children and adolescents: A meta-analysis. Zhonghua Liu Xing Bing Xue Za Zhi 2015, 36, 884–888. [Google Scholar] [PubMed]
- Shi, J.; He, L.; Yu, D.; Ju, L.; Guo, Q.; Piao, W.; Xu, X.; Zhao, L.; Yuan, X.; Cao, Q.; et al. Prevalence and Correlates of Metabolic Syndrome and Its Components in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Survey of Children and Lactating Mothers from 2016–2017. Nutrients 2022, 14, 3348. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.A.; Friedman, L.A.; Gray-McGuire, C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: The Princeton Lipid Research Clinics Follow-up Study. Pediatrics 2007, 120, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef]
- Sadeghi, O.; Sadeghi, A.; Mozaffari-Khosravi, H.; Shokri, A. The association between nutrient patterns and metabolic syndrome among Iranian adults: Cross-sectional analysis of Shahedieh cohort study. Public Health Nutr. 2021, 24, 3379–3388. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef]
- Nava, L.T.; Zambrano, J.M.; Arviso, K.P.; Brochetti, D.; Becker, K.L. Nutrition-based interventions to address metabolic syndrome in the Navajo: A systematic review. J. Clin. Nurs. 2015, 24, 3024–3045. [Google Scholar] [CrossRef]
- Khayyatzadeh, S.S.; Moohebati, M.; Mazidi, M.; Avan, A.; Tayefi, M.; Parizadeh, S.M.; Ebrahimi, M.; Heidari-Bakavoli, A.; Azarpazhooh, M.R.; Esmaily, H.; et al. Nutrient patterns and their relationship to metabolic syndrome in Iranian adults. Eur. J. Clin. Investig. 2016, 46, 840–852. [Google Scholar] [CrossRef]
- Guarnizo-Poma, M.; Urrunaga-Pastor, D.; Montero-Suyo, C.; Lazaro-Alcantara, H.; Paico-Palacios, S.; Pantoja-Torres, B.; Benites-Zapata, V.A. Association between serum vitamin B12 levels and metabolic syndrome in a euthyroid population. Diabetes Metab. Syndr. 2018, 12, 943–948. [Google Scholar] [CrossRef]
- Li, Z.; Gueant-Rodriguez, R.M.; Quilliot, D.; Sirveaux, M.A.; Meyre, D.; Gueant, J.L.; Brunaud, L. Folate and vitamin B12 status is associated with insulin resistance and metabolic syndrome in morbid obesity. Clin. Nutr. 2018, 37, 1700–1706. [Google Scholar] [CrossRef]
- Sahyoun, N.R.; Jacques, P.F.; Zhang, X.L.; Juan, W.; McKeown, N.M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 2006, 83, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Song, Y.; Ford, E.S.; Manson, J.E.; Buring, J.E.; Ridker, P.M. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 2926–2932. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am. J. Clin. Nutr. 2006, 84, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Cardwell, C.R.; Woodside, J.V.; Young, I.S.; Hunter, S.J.; McKinley, M.C. A posteriori dietary patterns are related to risk of type 2 diabetes: Findings from a systematic review and meta-analysis. J. Acad. Nutr. Diet 2014, 114, 1759–1775.E4. [Google Scholar] [CrossRef]
- Shi, J.; Fang, H.; Guo, Q.; Yu, D.; Ju, L.; Cheng, X.; Piao, W.; Xu, X.; Li, Z.; Mu, D.; et al. Association of Dietary Patterns with Metabolic Syndrome in Chinese Children and Adolescents Aged 7–17: The China National Nutrition and Health Surveillance of Children and Lactating Mothers in 2016–2017. Nutrients 2022, 14, 3524. [Google Scholar] [CrossRef]
- Moskal, A.; Pisa, P.T.; Ferrari, P.; Byrnes, G.; Freisling, H.; Boutron-Ruault, M.C.; Cadeau, C.; Nailler, L.; Wendt, A.; Kühn, T.; et al. Nutrient patterns and their food sources in an International Study Setting: Report from the EPIC study. PLoS ONE 2014, 9, e98647. [Google Scholar] [CrossRef] [Green Version]
- Moskal, A.; Freisling, H.; Byrnes, G.; Assi, N.; Fahey, M.T.; Jenab, M.; Ferrari, P.; Tjønneland, A.; Petersen, K.E.; Dahm, C.C.; et al. Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study. Br. J. Cancer 2016, 115, 1430–1440. [Google Scholar] [CrossRef] [Green Version]
- Ilesanmi-Oyelere, B.L.; Brough, L.; Coad, J.; Roy, N.; Kruger, M.C. The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women. Nutrients 2019, 11, 1262. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P. Nutrient patterns and their relationship with general and central obesity in US adults. Eur. J. Clin. Investig. 2017, 50, e12745. [Google Scholar] [CrossRef]
- Ratshikombo, T.; Goedecke, J.H.; Soboyisi, M.; Kufe, C.; Makura-Kankwende, C.B.T.; Masemola, M.; Micklesfield, L.K.; Chikowore, T. Sex Differences in the Associations of Nutrient Patterns with Total and Regional Adiposity: A Study of Middle-Aged Black South African Men and Women. Nutrients 2021, 13, 4558. [Google Scholar] [CrossRef]
- Shakya, P.R.; Melaku, Y.A.; Page, A.J.; Gill, T.K. Nutrient patterns and depressive symptoms among Australian adults. Eur. J. Nutr. 2021, 60, 329–343. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Arisawa, K.; Katsuura-Kamano, S.; Uemura, H.; Tsukamoto, M.; Kadomatsu, Y.; Okada, R.; Hishida, A.; Tanaka, K.; Hara, M.; et al. Associations of Nutrient Patterns with the Prevalence of Metabolic Syndrome: Results from the Baseline Data of the Japan Multi-Institutional Collaborative Cohort Study. Nutrients 2019, 11, 990. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- WS/T611-2018; High Waist Circumference Screenning Threshold among Children and Adolescents Aged 7–17 Years. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2018.
- Writing Group of Chinese Guidelines for Management of Hypertension; Chinese Hypertension League, Chinese Society of Cardiology; Chinese Medical Doctor Association Hypertension Committee; Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care; Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension. Chin. J. Cardiovasc. Med. 2018, 24, 24–56. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2018; ISBN 978-7-5659-1699-1. [Google Scholar]
- Yang, Y.X. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2019; ISBN 978-7-5659-1978-7. [Google Scholar]
- Pan, K.; Aragaki, A.K.; Neuhouser, M.L.; Simon, M.S.; Luo, J.; Caan, B.; Snetselaar, L.; Mortimer, J.E.; Manson, J.E.; Kroenke, C.; et al. Low-fat dietary pattern and breast cancer mortality by metabolic syndrome components: A secondary analysis of the Women’s Health Initiative (WHI) randomised trial. Br. J. Cancer 2021, 125, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Y.; Xie, W.; Zhang, J.; Ni, Y.; Peng, X.; Sun, G.; Dai, Y.; Zhou, Y. Multilevel Analysis of the Nutritional and Health Status among Children and Adolescents in Eastern China. Nutrients 2022, 14, 758. [Google Scholar] [CrossRef]
- Song, P.; Yu, J.; Chang, X.; Wang, M.; An, L. Prevalence and Correlates of Metabolic Syndrome in Chinese Children: The China Health and Nutrition Survey. Nutrients 2017, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarizadeh, H.; Setayesh, L.; Majidi, N.; Rasaei, N.; Mehranfar, S.; Ebrahimi, R.; Casazzza, K.; Mirzaei, K. Nutrient patterns and their relation to obesity and metabolic syndrome in Iranian overweight and obese adult women. Eat. Weight Disord. 2022, 27, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Gao, Y.; Zhang, M.; Wang, X.; Liu, W.; Zhang, D.; Huang, G. Dietary nutrient intake and metabolic syndrome risk in Chinese adults: A case-control study. Nutr. J. 2013, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Zeng, C.; Gong, Q.Y.; Li, X.X.; Lei, G.H.; Yang, T.B. Associations between Dietary Antioxidant Intake and Metabolic Syndrome. PLoS ONE 2015, 10, e0130876. [Google Scholar] [CrossRef]
- Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L.; Keshteli, A.H.; Feizi, A.; Feinle-Bisset, C.; Adibi, P. Nutrient patterns and their relation to general and abdominal obesity in Iranian adults: Findings from the SEPAHAN study. Eur. J. Nutr. 2016, 55, 505–518. [Google Scholar] [CrossRef]
- Cai, X.; Li, X.; Fan, W.; Yu, W.; Wang, S.; Li, Z.; Scott, E.M.; Li, X. Potassium and Obesity/Metabolic Syndrome: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Nutrients 2016, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Dibaba, D.T.; Xun, P.; Fly, A.D.; Yokota, K.; He, K. Dietary magnesium intake and risk of metabolic syndrome: A meta-analysis. Diabet. Med. 2014, 31, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Fung, G.J.; Steffen, L.M.; Zhou, X.; Harnack, L.; Tang, W.; Lutsey, P.L.; Loria, C.M.; Reis, J.P.; Van Horn, L.V. Vitamin D intake is inversely related to risk of developing metabolic syndrome in African American and white men and women over 20 y: The Coronary Artery Risk Development in Young Adults study. Am. J. Clin. Nutr. 2012, 96, 24–29. [Google Scholar] [CrossRef]
- Vorster, H.H.; Kruger, A.; Margetts, B.M. The nutrition transition in Africa: Can it be steered into a more positive direction? Nutrients 2011, 3, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teff, K.L.; Grudziak, J.; Townsend, R.R.; Dunn, T.N.; Grant, R.W.; Adams, S.H.; Keim, N.L.; Cummings, B.P.; Stanhope, K.L.; Havel, P.J. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 2009, 94, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S.; Li, D.; Zhou, Y.M.; Sun, W.P.; Liu, Q.G. B-vitamin consumption and the prevalence of diabetes and obesity among the US adults: Population based ecological study. BMC Public Health 2010, 10, 746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Sun, W.P.; Zhou, Y.M.; Liu, Q.G.; Zhou, S.S.; Luo, N.; Bian, F.N.; Zhao, Z.G.; Guo, M. Chronic niacin overload may be involved in the increased prevalence of obesity in US children. World J. Gastroenterol. 2010, 16, 2378–2387. [Google Scholar] [CrossRef]
- Moleres, A.; Ochoa, M.C.; Rendo-Urteaga, T.; Martínez-González, M.A.; Azcona San Julián, M.C.; Martínez, J.A.; Marti, A. Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish case-control study of children. Br. J. Nutr. 2012, 107, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Merchant, A.T.; Anand, S.S.; Vuksan, V.; Jacobs, R.; Davis, B.; Teo, K.; Yusuf, S. Protein intake is inversely associated with abdominal obesity in a multi-ethnic population. J. Nutr. 2005, 135, 1196–1201. [Google Scholar] [CrossRef] [Green Version]
- Alasfar, F.; Ben-Nakhi, M.; Khoursheed, M.; Kehinde, E.O.; Alsaleh, M. Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes. Surg. 2011, 21, 1710–1713. [Google Scholar] [CrossRef]
- Mahabir, S.; Ettinger, S.; Johnson, L.; Baer, D.J.; Clevidence, B.A.; Hartman, T.J.; Taylor, P.R. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur. J. Clin. Nutr. 2008, 62, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Costacou, T.; Levy, A.P.; Miller, R.G.; Snell-Bergeon, J.; Asleh, R.; Farbstein, D.; Fickley, C.E.; Pambianco, G.; de la Vega, R.; Evans, R.W.; et al. Effect of vitamin E supplementation on HDL function by haptoglobin genotype in type 1 diabetes: Results from the HapE randomized crossover pilot trial. Acta Diabetol. 2016, 53, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Raman, G.; Vishwanathan, R.; Jacques, P.F.; Johnson, E.J. Dietary cholesterol and cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 276–294. [Google Scholar] [CrossRef] [PubMed]
- Rice, B.H.; Cifelli, C.J.; Pikosky, M.A.; Miller, G.D. Dairy components and risk factors for cardiometabolic syndrome: Recent evidence and opportunities for future research. Adv. Nutr. 2011, 2, 396–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Shi, M.; Dolan, J.; He, J. Sodium sensitivity of blood pressure in Chinese populations. J. Hum. Hypertens. 2020, 34, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Pilic, L.; Pedlar, C.R.; Mavrommatis, Y. Salt-sensitive hypertension: Mechanisms and effects of dietary and other lifestyle factors. Nutr. Rev. 2016, 74, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; Dehghan, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Li, W.; Chen, H.; Yi, S.; et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: A cross-sectional analysis from the PURE study. Lancet Diabetes Endocrinol. 2017, 5, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, S.; Ahsan, H.; Khan, M.R.; Siddiqui, W.A. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression. Toxicol. Appl. Pharmacol. 2013, 273, 314–324. [Google Scholar] [CrossRef]
- Siddiqui, S.; Rashid Khan, M.; Siddiqui, W.A. Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem. Biol. Interact. 2010, 188, 651–658. [Google Scholar] [CrossRef]
- Salman Khan, M.; Akhtar, S.; Al-Sagair, O.A.; Arif, J.M. Protective effect of dietary tocotrienols against infection and inflammation-induced hyperlipidemia: An in vivo and in silico study. Phytother. Res. 2011, 25, 1586–1595. [Google Scholar] [CrossRef]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Vitamin E As a Potential Interventional Treatment for Metabolic Syndrome: Evidence from Animal and Human Studies. Front. Pharmacol. 2017, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Mottaghian, M.; Salehi, P.; Teymoori, F.; Mirmiran, P.; Hosseini-Esfahani, F.; Azizi, F. Nutrient patterns and cardiometabolic risk factors among Iranian adults: Tehran lipid and glucose study. BMC Public Health 2020, 20, 653. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., 3rd; Dreher, M.; Davenport, A.J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, M.; Abasi, R.; Nasiri, M.; Sharifi, F.; Vesaly, S.; Sadeghi, O.; Rahimi, N.; Sharif, N.A. Association of vitamin D status with metabolic syndrome and its components: A cross-sectional study in a population of high educated Iranian adults. Diabetes Metab. Syndr. 2018, 12, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, S.; Wang, W.; Zhang, D. Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int. J. Food Sci. Nutr. 2020, 71, 738–749. [Google Scholar] [CrossRef]
- Villatoro-Santos, C.R.; Ramirez-Zea, M.; Villamor, E. B-vitamins and metabolic syndrome in Mesoamerican children and their adult parents. Public Health Nutr. 2021, 24, 4537–4545. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Zhao, Z.H.; Zhang, Y.; Ma, Z.M.; Wang, S.X. Vitamin B6 Prevents Endothelial Dysfunction, Insulin Resistance, and Hepatic Lipid Accumulation in Apoe (-/-) Mice Fed with High-Fat Diet. J. Diabetes Res. 2016, 2016, 1748065. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Canas, J.A.; Beydoun, H.A.; Chen, X.; Shroff, M.R.; Zonderman, A.B. Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. J. Nutr. 2012, 142, 1693–1704. [Google Scholar] [CrossRef]
Food Group | NP1 | NP2 | NP3 | NP4 | NP5 |
---|---|---|---|---|---|
Cereals | 0.431 * | −0.183 * | −0.432 * | −0.088 * | −0.115 * |
Tubers | 0.172 * | −0.074 * | −0.039 * | 0.075 * | −0.033 * |
Mixed beans | 0.096 * | 0.023 * | −0.049 * | 0.019 * | −0.005 |
Legumes | 0.265 * | 0.033 * | −0.082 * | 0.071 * | −0.014 |
Vegetables | 0.262 * | 0.155 * | −0.112 * | 0.285 * | −0.006 |
Fruits | 0.120 * | 0.088 * | −0.106 * | 0.158 * | 0.011 |
Nuts | 0.071 * | 0.049 * | −0.036 * | 0.028 * | 0.012 |
Meat and poultry | −0.054 * | 0.517 * | −0.137 * | −0.065 * | −0.019 * |
Fish and shrimp | 0.036 * | 0.345 * | −0.099 * | 0.035 * | 0.047 * |
Milk | −0.003 | 0.013 | −0.001 | 0.018 * | 0.007 |
Eggs | −0.220 * | 0.579 * | −0.092 * | 0.135 * | −0.062 * |
Fast foods, ethnic foods and cakes | −0.011 | −0.004 | −0.077 * | −0.071 * | 0.236 * |
Oil | −0.532 * | −0.242 * | 0.739 * | 0.026 * | −0.067 * |
Salt | −0.084 * | −0.170 * | 0.565 * | 0.052 * | −0.057 * |
Characteristics | NP1 | NP2 | NP3 | NP4 | NP5 | All |
---|---|---|---|---|---|---|
Sex * | ||||||
Male | 1491(11.407) | 1553(11.881) | 1181(9.035) | 1228(9.395) | 1079(8.255) | 6532(49.973) |
Female | 1696(12.975) | 1458(11.154) | 1262(9.655) | 1284(9.823) | 839(6.419) | 6539(50.027) |
Residence area * | ||||||
urban | 1348(10.313) | 1923(14.712) | 817(6.250) | 1103(8.439) | 932(7.130) | 6123(46.844) |
rural | 1839(14.069) | 1088(8.324) | 1626(12.440) | 1409(10.780) | 986(7.543) | 6948(53.156) |
Age group * | ||||||
prepubertal | 1305(9.984) | 1609(12.310) | 1054(8.064) | 1199(9.173) | 784(5.998) | 5951(45.528) |
pubertal | 953(7.291) | 825(6.312) | 710(5.432) | 706(5.401) | 506(3.871) | 3700(28.307) |
Post-pubertal | 929(7.107) | 577(4.414) | 679(5.195) | 607(4.644) | 628(4.805) | 3420(26.165) |
Engel’s Coefficient * | ||||||
≥60% | 64(0.490) | 57(0.436) | 33(0.252) | 50(0.383) | 16(0.122) | 220(1.683) |
50–59% | 75(0.574) | 56(0.428) | 69(0.528) | 55(0.421) | 42(0.321) | 297(2.272) |
40–49% | 66(0.505) | 66(0.505) | 65(0.497) | 56(0.428) | 50(0.383) | 303(2.318) |
30–39% | 171(1.308) | 168(1.285) | 166(1.270) | 145(1.109) | 106(0.811) | 756(5.784) |
<30% | 459(3.512) | 440(3.366) | 456(3.489) | 331(2.532) | 252(1.928) | 1938(14.827) |
unknown | 2352(17.994) | 2224(17.015) | 1654(12.654) | 1875(14.345) | 1452(11.109) | 9557(73.116) |
Physical activity * | ||||||
none | 764(5.845) | 570(4.361) | 578(4.422) | 623(4.766) | 448(3.427) | 2983(22.822) |
0–3 days/week | 1078(8.247) | 1085(8.301) | 798(6.105) | 916(7.008) | 696(5.325) | 4573(34.986) |
≥4 days/week | 1345(10.290) | 1356(10.374) | 1067(8.163) | 973(7.444) | 774(5.922) | 5515(42.193) |
Screen time | ||||||
<2 h | 198(1.515) | 193(1.477) | 148(1.132) | 156(1.193) | 124(0.949) | 819(6.266) |
≥2 h | 2989(22.867) | 2818(21.559) | 2295(17.558) | 2356(18.025) | 1794(13.725) | 12,252(93.734) |
Passive smoking | ||||||
yes | 1400(10.711) | 1266(9.686) | 1110(8.492) | 1074(8.217) | 855(6.541) | 5705(43.646) |
no | 1787(13.671) | 1745(13.350) | 1333(10.198) | 1438(11.001) | 1063(8.133) | 7366(56.354) |
Alcohol drinking * | ||||||
yes | 462(3.535) | 329(2.517) | 368(2.815) | 300(2.295) | 296(2.265) | 1755(13.427) |
no | 2725(20.848) | 2682(20.519) | 2075(15.875) | 2212(16.923) | 1622(12.409) | 11,316(86.573) |
Family size * | ||||||
≤3 | 709(5.424) | 912(6.977) | 516(3.948) | 608(4.652) | 548(4.192) | 3293(25.193) |
4 | 1217(9.311) | 1011(7.735) | 835(6.388) | 846(6.472) | 675(5.164) | 4584(35.070) |
5 | 636(4.866) | 596(4.560) | 559(4.277) | 531(4.062) | 372(2.846) | 2694(20.611) |
>5 | 625(4.782) | 492(3.764) | 533(4.078) | 527(4.032) | 323(2.471) | 2500(19.126) |
Energy intake * | 2147.845(778.027) | 1892.159(712.887) | 2114.965(953.437) | 1373.598(499.943) | 1440.272(571.703) | 1816.990(866.140) |
All | 3187(24.382) | 3011(23.036) | 2443(18.690) | 2512(19.218) | 1918(14.674) | 13,071 |
NP | MetS | Abdominal Obesity | Elevated FBG | Elevated BP | High TG | Low HDL-C |
---|---|---|---|---|---|---|
ORs (95%CIs) | ORs (95%CIs) | ORs (95%CIs) | ORs (95%CIs) | ORs (95%CIs) | ORs (95%CIs) | |
NP1 | ||||||
Q1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Q2 | 1.078(0.860, 1.352) | 0.994(0.865, 1.142) | 0.905(0.609, 1.345) | 0.952(0.860, 1.054) | 0.982(0.857, 1.125) | 0.942(0.803, 1.106) |
Q3 | 1.233(0.975, 1.559) | 1.099(0.951, 1.269) | 1.072(0.718, 1.601) | 1.027(0.923, 1.142) | 1.061(0.921, 1.222) | 1.068(0.904, 1.262) |
Q4 | 1.207(0.917, 1.589) | 1.200(1.018, 1.416) | 0.708(0.430, 1.166) | 0.954(0.843, 1.079) | 1.133(0.963, 1.334) | 1.043(0.857, 1.269) |
p for trend | 0.115 | 0.072 | 0.395 | 0.645 | 0.233 | 0.676 |
NP2 | ||||||
Q1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Q2 | 1.056(0.849, 1.314) | 1.045(0.909, 1.201) | 0.839(0.556, 1.264) | 1.035(0.936, 1.144) | 0.905(0.794, 1.032) | 0.814(0.701, 0.946) |
Q3 | 0.946(0.753, 1.190) | 1.040(0.902, 1.199) | 1.077(0.725, 1.600) | 1.008(0.908, 1.118) | 0.874(0.763, 1.001) | 0.715(0.609, 0.838) |
Q4 | 0.882(0.688, 1.131) | 1.073(0.923, 1.247) | 0.920(0.592, 1.431) | 1.056(0.944, 1.181) | 0.850(0.733, 0.985) | 0.589(0.492, 0.706) |
p for trend | 0.482 | 0.385 | 0.800 | 0.446 | 0.018 | <0.0001 |
NP3 | ||||||
Q1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Q2 | 1.013(0.818, 1.255) | 0.949(0.830, 1.086) | 0.824(0.558, 1.218) | 0.973(0.880, 1.075) | 0.983(0.861, 1.121) | 0.995(0.850, 1.164) |
Q3 | 0.924(0.739, 1.156) | 1.000(0.873, 1.146) | 0.819(0.548, 1.223) | 0.882(0.796, 0.977) | 0.935(0.816, 1.070) | 0.888(0.752, 1.048) |
Q4 | 0.919(0.713, 1.184) | 0.942(0.808, 1.099) | 0.968(0.626, 1.498) | 0.961(0.857, 1.078) | 0.964(0.829, 1.122) | 1.222(1.022, 1.461) |
p for trend | 0.511 | 0.536 | 0.514 | 0.153 | 0.474 | 0.413 |
NP4 | ||||||
Q1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Q2 | 1.007(0.801, 1.266) | 0.895(0.779, 1.029) | 1.110(0.735, 1.677) | 1.066(0.962, 1.182) | 1.000(0.872, 1.147) | 0.937(0.797, 1.100) |
Q3 | 0.926(0.732, 1.172) | 0.914(0.794, 1.051) | 1.175(0.776, 1.779) | 0.974(0.878, 1.082) | 0.966(0.840, 1.109) | 0.975(0.829, 1.147) |
Q4 | 1.229(0.987, 1.529) | 1.041(0.910, 1.190) | 1.201(0.800, 1.804) | 1.046(0.944, 1.159) | 1.070(0.935, 1.224) | 0.908(0.771, 1.070) |
p for trend | 0.419 | 0.625 | 0.359 | 0.579 | 0.708 | 0.331 |
NP5 | ||||||
Q1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Q2 | 1.065(0.855, 1.327) | 0.948(0.825, 1.089) | 0.822(0.542, 1.246) | 0.957(0.865, 1.060) | 0.953(0.834, 1.089) | 0.887(0.760, 1.036) |
Q3 | 0.995(0.797, 1.243) | 1.033(0.901, 1.184) | 0.914(0.610, 1.369) | 0.975(0.881, 1.080) | 0.964(0.843, 1.102) | 0.763(0.650, 0.895) |
Q4 | 0.782(0.623, 0.983) | 0.969(0.847, 1.109) | 1.043(0.710, 1.532) | 0.918(0.829, 1.015) | 0.839(0.733, 0.960) | 0.650(0.552, 0.766) |
p for trend | 0.235 | 0.813 | 0.805 | 0.177 | 0.058 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Fang, H.; Cheng, X.; Guo, Q.; Ju, L.; Piao, W.; Xu, X.; Yu, D.; Zhao, L.; He, L. Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17. Nutrients 2023, 15, 117. https://doi.org/10.3390/nu15010117
Shi J, Fang H, Cheng X, Guo Q, Ju L, Piao W, Xu X, Yu D, Zhao L, He L. Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17. Nutrients. 2023; 15(1):117. https://doi.org/10.3390/nu15010117
Chicago/Turabian StyleShi, Jia, Hongyun Fang, Xue Cheng, Qiya Guo, Lahong Ju, Wei Piao, Xiaoli Xu, Dongmei Yu, Liyun Zhao, and Li He. 2023. "Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17" Nutrients 15, no. 1: 117. https://doi.org/10.3390/nu15010117
APA StyleShi, J., Fang, H., Cheng, X., Guo, Q., Ju, L., Piao, W., Xu, X., Yu, D., Zhao, L., & He, L. (2023). Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17. Nutrients, 15(1), 117. https://doi.org/10.3390/nu15010117