Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and the Definition of NAFLD
2.2. Dietary Assessment
2.3. Genome-Wide Genotyping
2.4. Statistical Analysis
3. Results
3.1. Association between Nutrients and NAFLD in the Total Population Subsection
3.2. Association between Nutrients and NAFLD According to the PNPLA3 Genotype Figures, Tables, and Schemes
3.3. Protective Foods against NAFLD in the PNPLA3 Risk Allele Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 2014, 60, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef]
- Tong, M.; Wang, F. APOC3rs2854116, PNPLA3rs738409, and TM6SF2rs58542926 polymorphisms might influence predisposition of NAFLD: A meta-analysis. IUBMB Life 2020, 72, 1757–1764. [Google Scholar] [CrossRef]
- Lorenz, B.; Georg, S.; Hannes, O.; Stephan, Z.; Michael, S.; Leonora, D.; David, N.; Alexandra, F.; Felix, S.; Christian, D.; et al. PNPLA3 is the dominant SNP linked to liver disease severity at time of first referral to a tertiary center. Dig. Liver Dis. 2021, 54, 84–90. [Google Scholar] [CrossRef]
- Carlsson, B.; Lindén, D.; Brolén, G.; Liljeblad, M.; Bjursell, M.; Romeo, S.; Loomba, R. Review article: The emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1305–1320. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, K.I.; Chen, S.-D.; Lee, D.H.; Wu, X.-X.; Wang, X.-D.; Targher, G.; Byrne, C.D.; Chen, Y.-P.; Kim, W.; et al. Individualized Polygenic Risk Score Identifies NASH in the Eastern Asia Region: A Derivation and Validation Study. Clin. Transl. Gastroenterol. 2021, 12, e00321. [Google Scholar] [CrossRef]
- Huh, Y.; Cho, Y.J.; Nam, G.E. Recent Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease. J. Obes. Metab. Syndr. 2022, 31, 17–27. [Google Scholar] [CrossRef]
- Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”? Nutrients 2020, 12, 3118. [Google Scholar] [CrossRef]
- Vilarinho, S.; Ajmera, V.; Zheng, M.; Loomba, R. Emerging Role of Genomic Analysis in Clinical Evaluation of Lean Individuals With NAFLD. Hepatology 2021, 74, 2241–2250. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Gomez, E.; Pirola, C.J.; Sookoian, S.; Wilson, L.A.; Belt, P.; Liang, T.; Liu, W.; Chalasani, N. Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD. Am. J. Gastroenterol. 2021, 116, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, S. High carbohydrate and noodle/meat-rich dietary patterns interact with the minor haplotype in the 22q13 loci to increase its association with non-alcoholic fatty liver disease risk in Koreans. Nutr. Res. 2020, 82, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2015, 16, 25168–25198. [Google Scholar] [CrossRef] [Green Version]
- Kalafati, I.P.; Dimitriou, M.; Borsa, D.; Vlachogiannakos, J.; Revenas, K.; Kokkinos, A.; Ladas, S.D.; Dedoussis, G.V. Fish intake interacts with TM6SF2 gene variant to affect NAFLD risk: Results of a case-control study. Eur. J. Nutr. 2019, 58, 1463–1473. [Google Scholar] [CrossRef]
- Fianchi, F.; Liguori, A.; Gasbarrini, A.; Grieco, A.; Miele, L. Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int. J. Mol. Sci. 2021, 22, 6485. [Google Scholar] [CrossRef]
- Kong, L.; Lu, Y.; Zhang, S.; Nan, Y.; Qiao, L. Role of nutrition, gene polymorphism, and gut microbiota in non-alcoholic fatty liver disease. Discov. Med. 2017, 24, 95–106. [Google Scholar]
- Lee, H.W.; Kim, B.K.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Kim, K.J.; Han, K.H. Prevalence and Predictors of Significant Fibrosis Among Subjects with Transient Elastography-Defined Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2017, 62, 2150–2158. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, S.; Yang, H.J.; Shin, P.-K.; Hur, H.J.; Park, S.-J.; Lee, K.-H.; Hong, M.; Kim, J.H.; Choi, S.-W.; et al. Alleviation of Dyslipidemia via a Traditional Balanced Korean Diet Represented by a Low Glycemic and Low Cholesterol Diet in Obese Women in a Randomized Controlled Trial. Nutrients 2022, 14, 235. [Google Scholar] [CrossRef]
- Lim, M.Y.; Hong, S.; Bang, S.J.; Chung, W.H.; Shin, J.H.; Kim, J.H.; Nam, Y.D. Gut Microbiome Structure and Association with Host Factors in a Korean Population. mSystems 2021, 6, e0017921. [Google Scholar] [CrossRef]
- Wang, C.C.; Yeh, H.Y.; Popov, A.N.; Zhang, H.Q.; Matsumura, H.; Sirak, K.; Cheronet, O.; Kovalev, A.; Rohland, N.; Kim, A.M.; et al. Genomic insights into the formation of human populations in East Asia. Nature 2021, 591, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, 1350. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Kim, J.O.; Park, J.M.; Choi, J.E.; Park, D.H.; Song, Y.; Kim, S.J.; Lee, J.W.; Hong, K.W. Identification of Genetic Factors Underlying the Association between Sodium Intake Habits and Hypertension Risk. Nutrients 2020, 12, 2580. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Park, D.H.; Choi, J.E.; Lee, D.; Hong, K.W.; Lee, J.W. Identification of the interactions between specific genetic polymorphisms and nutrient intake associated with general and abdominal obesity in middle-aged adults. Clin. Nutr. 2022, 41, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Choi, J.E.; Park, B.; Cha, M.Y.; Hong, K.W.; Jung, D.H. Dyslipidaemia-Genotype Interactions with Nutrient Intake and Cerebro-Cardiovascular Disease. Biomedicines 2022, 10, 1615. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.D.; Kinnear, P.R. IBM SPSS Statistics 19 Made Simple; Psychology Press: New York, NY, USA, 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Cabrera, D.; Rao, I.; Raasch, F.; Solis, N.; Pizarro, M.; Freire, M.; Sáenz De Urturi, D.; Ramírez, C.A.; Triantafilo, N.; León, J.; et al. Mineralocorticoid receptor modulation by dietary sodium influences NAFLD development in mice. Ann. Hepatol. 2021, 24, 100357. [Google Scholar] [CrossRef]
- Baudrand, R.; Campino, C.; Carvajal, C.A.; Olivieri, O.; Guidi, G.; Faccini, G.; Vohringer, P.A.; Cerda, J.; Owen, G.; Kalergis, A.M.; et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin. Endocrinol. 2014, 80, 677–684. [Google Scholar] [CrossRef]
- van den Berg, E.H.; Gruppen, E.G.; Blokzijl, H.; Bakker, S.J.L.; Dullaart, R.P.F. Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study. J. Clin. Med. 2019, 8, 2157. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, K.J. Analysis of the dietary factors associated with suspected pediatric nonalcoholic fatty liver disease and potential liver fibrosis: Korean National Health and Nutrition Examination Survey 2014-2017. BMC Pediatr. 2020, 20, 121. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kim, E.S.; Lee, J.; Kim, Y. Trends in sodium intake and major contributing food groups and dishes in Korea: The Korea National Health and Nutrition Examination Survey 2013–2017. Nutr. Res. Pract. 2021, 15, 382–395. [Google Scholar] [CrossRef]
- Park, K.-Y.; Jeong, J.-K.; Lee, Y.-E.; Daily, J.W., III. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 2014, 17, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Choi, H. Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats. J. Med. Food 2009, 12, 292–297. [Google Scholar] [CrossRef]
- Park, J.A.; Tirupathi Pichiah, P.B.; Yu, J.J.; Oh, S.H.; Daily, J.W., 3rd; Cha, Y.S. Anti-obesity effect of kimchi fermented with Weissella koreensis OK1-6 as starter in high-fat diet-induced obese C57BL/6J mice. J. Appl. Microbiol. 2012, 113, 1507–1516. [Google Scholar] [CrossRef]
- Woo, M.; Kim, M.; Noh, J.S.; Park, C.H.; Song, Y.O. Preventative activity of kimchi on high cholesterol diet-induced hepatic damage through regulation of lipid metabolism in LDL receptor knockout mice. Food Sci. Biotechnol. 2018, 27, 211–218. [Google Scholar] [CrossRef]
- An, S.Y.; Lee, M.S.; Jeon, J.Y.; Ha, E.S.; Kim, T.H.; Yoon, J.Y.; Ok, C.O.; Lee, H.K.; Hwang, W.S.; Choe, S.J.; et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann. Nutr. Metab. 2013, 63, 111–119. [Google Scholar] [CrossRef]
- Choi, I.H.; Noh, J.S.; Han, J.S.; Kim, H.J.; Han, E.S.; Song, Y.O. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: Randomized clinical trial. J. Med. Food 2013, 16, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.K.; An, S.Y.; Lee, M.S.; Kim, T.H.; Lee, H.K.; Hwang, W.S.; Choe, S.J.; Kim, T.Y.; Han, S.J.; Kim, H.J.; et al. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr. Res. 2011, 31, 436–443. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, W.H.; Seo, H.; Oh, J.Y.; Lee, D.Y.; Kim, S.J.; Hahm, K.B. Fecal microbiota changes with fermented kimchi intake regulated either formation or advancement of colon adenoma. J. Clin. Biochem. Nutr. 2021, 68, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Kang, E.A.; Park, J.M.; Oh, J.Y.; Lee, D.Y.; Choi, S.H.; Hahm, K.B. Dietary intake of fermented kimchi prevented colitis-associated cancer. J. Clin. Biochem. Nutr. 2020, 67, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Kwon, S.J.; Cho, K.M.; Seo, S.H.; Kim, E.J.; Unno, T.; Bok, S.H.; Park, D.H.; Son, H.S. Intervention with kimchi microbial community ameliorates obesity by regulating gut microbiota. J. Microbiol. 2020, 58, 859–867. [Google Scholar] [CrossRef]
- Lee, S.H.; Whon, T.W.; Roh, S.W.; Jeon, C.O. Unraveling microbial fermentation features in kimchi: From classical to meta-omics approaches. Appl. Microbiol. Biotechnol. 2020, 104, 7731–7744. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.R.; Jang, H.Y.; Lee, S.Y.; Jung, S.J.; Chae, S.W.; Lee, S.O.; Park, B.H. Lactobacillus plantarum HAC01 Supplementation Improves Glycemic Control in Prediabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2337. [Google Scholar] [CrossRef]
- Youn, H.S.; Kim, J.H.; Lee, J.S.; Yoon, Y.Y.; Choi, S.J.; Lee, J.Y.; Kim, W.; Hwang, K.W. Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect. Immun. 2021, 89, e0061520. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Oh, S.H.; Cha, Y.S. Lactobacillus Brevis OPK-3 from Kimchi Prevents Obesity and Modulates the Expression of Adipogenic and Pro-Inflammatory Genes in Adipose Tissue of Diet-Induced Obese Mice. Nutrients 2020, 12, 604. [Google Scholar] [CrossRef] [Green Version]
- Coppola, S.; Avagliano, C.; Calignano, A.; Berni Canani, R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021, 26, 682. [Google Scholar] [CrossRef]
- Brahe, L.K.; Astrup, A.; Larsen, L.H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 2013, 14, 950–959. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, Z.X.; Zhou, D.; Han, Y.; Ma, F.; Hu, Z.; Xin, F.Z.; Liu, X.L.; Ren, T.Y.; Zhang, F.; et al. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 857–871. [Google Scholar] [CrossRef]
- Deng, M.; Qu, F.; Chen, L.; Liu, C.; Zhang, M.; Ren, F.; Guo, H.; Zhang, H.; Ge, S.; Wu, C.; et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD. J. Endocrinol. 2020, 245, 425–437. [Google Scholar] [CrossRef]
- Oh, J.H.; Lee, J.H.; Cho, M.S.; Kim, H.; Chun, J.; Lee, J.H.; Yoon, Y.; Kang, W. Characterization of Gut Microbiome in Korean Patients with Metabolic Associated Fatty Liver Disease. Nutrients 2021, 13, 1013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, H.; Guan, M.; Zhou, X.; Liang, X.; Lv, Y.; Bai, L.; Zhang, J.; Gong, P.; Liu, T.; et al. Lactobacillus casei YRL577 combined with plant extracts reduce markers of non-alcoholic fatty liver disease in mice. Br. J. Nutr. 2021, 125, 1081–1091. [Google Scholar] [CrossRef]
- Parra-Vargas, M.; Rodriguez-Echevarria, R.; Jimenez-Chillaron, J.C. Nutritional Approaches for the Management of Nonalcoholic Fatty Liver Disease: An Evidence-Based Review. Nutreints 2020, 12, 3860. [Google Scholar] [CrossRef]
- Tendler, D.; Lin, S.; Yancy, W.S.; Mavropoulos, J.; Sylvestre, P.; Rockey, D.C.; Westman, E.C. The Effect of a Low-Carbohydrate, Ketogenic Diet on Nonalcoholic Fatty Liver Disease: A Pilot Study. Dig. Dis. Sci. 2007, 52, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Bueno, N.B.; de Melo, I.S.; de Oliveira, S.L.; da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef] [Green Version]
- Cunha, G.M.; Guzman, G.; Correa De Mello, L.L.; Trein, B.; Spina, L.; Bussade, I.; Marques Prata, J.; Sajoux, I.; Countinho, W. Efficacy of a 2-Month Very Low-Calorie Ketogenic Diet (VLCKD) Compared to a Standard Low-Calorie Diet in Reducing Visceral and Liver Fat Accumulation in Patients With Obesity. Front. Endocrinol. 2020, 11, 607. [Google Scholar] [CrossRef]
- Watanabe, M.; Risi, R.; Camajani, E.; Contini, S.; Persichetti, A.; Tuccinardi, D.; Ernesti, I.; Mariani, S.; Lubrano, C.; Genco, A.; et al. Baseline HOMA IR and Circulating FGF21 Levels Predict NAFLD Improvement in Patients Undergoing a Low Carbohydrate Dietary Intervention for Weight Loss: A Prospective Observational Pilot Study. Nutrients 2020, 12, 2141. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Muñoz-Serrano, A. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: A pilot study. J. Med. Food 2011, 14, 677–680. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef] [Green Version]
- Mardinoglu, A.; Wu, H.; Bjornson, E.; Zhang, C.; Hakkarainen, A.; Räsänen, S.M.; Lee, S.; Mancina, R.M.; Bergentall, M.; Pietiläinen, K.H.; et al. An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metab. 2018, 27, 559–571.e555. [Google Scholar] [CrossRef] [PubMed]
- Anekwe, C.V.; Chandrasekaran, P.; Stanford, F.C. Ketogenic Diet-induced Elevated Cholesterol, Elevated Liver Enzymes and Potential Non-alcoholic Fatty Liver Disease. Cureus 2020, 12, e6605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Tuccinardi, D.; Ernesti, I.; Basciani, S.; Mariani, S.; Genco, A.; Manfrini, S.; Lubrano, C.; Gnessi, L. Scientific evidence underlying contraindications to the ketogenic diet: An update. Obes. Rev. 2020, 21, e13053. [Google Scholar] [CrossRef] [PubMed]
- D’Abbondanza, M.; Ministrini, S.; Pucci, G.; Nulli Migliola, E.; Martorelli, E.E.; Gandolfo, V.; Siepi, D.; Lupattelli, G.; Vaudo, G. Very Low-Carbohydrate Ketogenic Diet for the Treatment of Severe Obesity and Associated Non-Alcoholic Fatty Liver Disease: The Role of Sex Differences. Nutrients 2020, 12, 2748. [Google Scholar] [CrossRef]
- Bruschi, F.V.; Claudel, T.; Tardelli, M.; Caligiuri, A.; Stulnig, T.M.; Marra, F.; Trauner, M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017, 65, 1875–1890. [Google Scholar] [CrossRef] [Green Version]
- Hellemans, K.; Verbuyst, P.; Quartier, E.; Schuit, F.; Rombouts, K.; Chandraratna, R.A.; Schuppan, D.; Geerts, A. Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids. Hepatology 2004, 39, 97–108. [Google Scholar] [CrossRef]
- Videla, L.A.; Valenzuela, R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022, 48, 400–415. [Google Scholar] [CrossRef]
Characteristics | Total Population (n = 15,725) | NAFLD (n = 2923) | Control (n = 12,802) | p-Value |
---|---|---|---|---|
Age (years) | 49.84 (±7.82) | 55.77 (±7.58) | 48.48 (±7.22) | 0.01 |
Male (%) | 7108 (45.20) | 1481 (50.68) | 5630 (43.98) | <0.001 |
Female (%) | 8617 (54.80) | 1442 (49.32) | 7172 (56.02) | |
Glucose (mg/dL) | 92.09 (±15.03) | 100.67 (±23.30) | 90.12 (±11.51) | <0.001 |
Total cholesterol (mg/dL) | 193.17 (±33.09) | 197.11 (±37.00) | 192.27 (±32.06) | <0.001 |
HDL cholesterol (mg/dL) | 53.73 (±12.98) | 48.49 (±11.37) | 54.93 (±13.03) | <0.001 |
Triglyceride (mg/dL) | 114.78 (±75.87) | 153.08 (±100.12) | 106.02 (±66.08) | <0.001 |
Waist circumference (cm) | 80.26 (±8.55) | 85.9 (±7.91) | 78.97 (±8.16) | 0.01 |
Systolic blood pressure (mmHg) | 119.98 (±14.03) | 125.68 (±14.46) | 118.68 (±13.60) | <0.001 |
Diastolic blood pressure (mmHg) | 74.84 (±9.58) | 77.47 (±9.50) | 74.24 (±9.50) | <0.001 |
Body mass index (kg/m2) | 23.67 (±2.82) | 25.53 (±2.88) | 23.24 (±2.62) | 0.01 |
Alcohol intake | <0.001 | |||
Non-drinker (n (%)) | 6823 (43.50) | 1368 (46.92) | 5455 (42.70) | |
Ex-drinker (n (%)) | 579 (3.70) | 206 (7.08) | 373 (2.95) | |
Current drinker (n (%)) | 8275 (52.80) | 1340 (46.00) | 6935 (54.35) | |
Smoking | <0.001 | |||
Non-smoker (n (%)) | 10,590 (67.5) | 1850 (63.39) | 8740 (68.43) | |
Ex-smoker (n (%)) | 2862 (18.3) | 703 (24.13) | 2159 (16.90) | |
Current smoker (n (%)) | 2238 (14.3) | 364 (12.47) | 1874 (14.67) | |
PNPLA3 rs738409 genotype | ||||
GG (n (%)) | 2911 (18.4) | 652 (22.2) | 2259 (17.5) | <0.001 |
GC (n (%)) | 7705 (48.6) | 1458 (48.4) | 6247 (48.4) | |
CC (n (%)) | 5241 (33.0) | 840 (28.4) | 4401 (34.1) |
NAFLD (n) | Control (n) | Proportion of NAFLD (%) | Additive Model | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value * | ||||
PNPLA3 rs738409 allele | |||||
C allele | 837 | 4380 | 16.04 | 1 | |
G allele | 2100 | 8452 | 19.90 | 1.22 (1.15~1.30) | 1.75 × 10−10 |
Sex | |||||
Male | 1485 | 5652 | 20.81 | 1 | |
Female | 1452 | 7180 | 16.82 | 0.80 (0.75–0.85) | 4.79 × 10−11 |
Age <49 years old >=49 years old | 521 2416 | 7430 5402 | 6.55 30.9 | 1 4.68 (4.28–5.11) | 5.8 × 10−280 |
Alcohol | |||||
Non-drinker | 1379 | 5479 | 20.11 | 1 | |
Ex-drinker | 208 | 378 | 35.49 | 1.76 (1.56–1.98) | 1.77 × 10−16 |
Current drinker | 1350 | 6975 | 16.22 | 0.81 (0.75–0.86) | 7.26 × 10−10 |
Smoking | |||||
Non-smoker | 1863 | 8781 | 17.5 | 1 | |
Ex-smoker | 708 | 2169 | 24.61 | 1.40 (1.30–1.52) | 2.9 × 10−17 |
Current smoker | 366 | 1882 | 16.28 | 0.93 (0.84–1.03) | 0.177 |
Nutrient | High-Intake Group ** | Low-Intake Group ** | OR (95% CI) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
NAFLD (n) | Control (n) | Proportion of NAFLD (%) | NAFLD (n) | Control (n) | Proportion of NAFLD (%) | |||
Energy | 786 | 3823 | 17.05% | 2137 | 8979 | 19.22% | 0.864 (0.789–0.945) | 0.001 |
Carbohydrate | 2354 | 10,113 | 18.88% | 569 | 2689 | 17.46% | 1.10 (0.994–1.217) | 0.064 |
Protein | 1396 | 6971 | 16.68% | 1527 | 5831 | 20.75% | 0.765 (0.706–0.829) | <0.0001 |
Fat | 1294 | 7209 | 15.22% | 1629 | 5593 | 22.56% | 0.616 (0.568–0.668) | <0.0001 |
Sodium | 1678 | 7732 | 17.83% | 1245 | 5070 | 19.71% | 0.884 (0.815–0.959) | <0.0001 |
Potassium | 285 | 1281 | 18.20% | 2638 | 11,521 | 18.63% | 0.972 (0.849–1.112) | 0.677 |
Calcium | 353 | 1508 | 18.97% | 2570 | 11,294 | 18.54% | 1.029 (0.909–1.164) | 0.654 |
Phosphorus | 2021 | 9282 | 17.88% | 902 | 3520 | 20.40% | 0.850 (0.778–0.927) | <0.0001 |
Iron | 342 | 1460 | 18.98% | 2581 | 11,342 | 18.54% | 1.029 (0.908–1.167) | 0.651 |
Zinc | 1190 | 5475 | 17.85% | 1733 | 7327 | 19.13% | 0.919 (0.847–0.997) | 0.043 |
Vitamin A | 493 | 2160 | 18.58% | 2430 | 10,642 | 18.59% | 1.00 (0.898–1.113) | 0.994 |
Carotene | 1547 | 7026 | 18.05% | 1376 | 5776 | 19.24% | 0.924 (0.853–1.002) | 0.055 |
Vitamin B1 | 383 | 2094 | 15.46% | 2540 | 10,708 | 19.17% | 0.771 (0.686–0.867) | <0.0001 |
Vitamin B2 | 302 | 1491 | 16.84% | 2621 | 11,311 | 18.81% | 0.874 (0.767–0.996) | 0.044 |
Niacin | 1052 | 5504 | 16.05% | 1871 | 7298 | 20.41% | 0.746 (0.686–0.81) | <0.0001 |
Vitamin B6 | 1553 | 7344 | 17.46% | 1370 | 5458 | 20.06% | 0.842 (0.777–0.913) | <0.0001 |
Folate | 209 | 820 | 20.31% | 2714 | 11,982 | 18.47% | 1.125 (0.961–1.317) | 0.142 |
Vitamin C | 1265 | 5585 | 18.47% | 1658 | 7217 | 18.68% | 0.986 (0.909–1.069) | 0.732 |
Vitamin E | 395 | 1870 | 17.44% | 2528 | 10,932 | 18.78% | 0.913 (0.813–1.027) | 0.129 |
Ash | 491 | 2171 | 18.44% | 2432 | 10,631 | 18.62% | 0.989 (0.888–1.101) | 0.835 |
Cholesterol | 352 | 1715 | 17.03% | 2571 | 11,087 | 18.82% | 0.885 (0.783–1.0) | 0.051 |
Food | rs738409 GG + GC (n = 10,616) | rs738409 CC (n = 5241) | Interaction p | ||||||
---|---|---|---|---|---|---|---|---|---|
Proportion of NAFLD (%) | OR (95% CI) | p | Proportion of NAFLD (%) | OR (95% CI) | p | ||||
High Intake | Low Intake | High Intake | Low Intake | ||||||
Energy | 18 | 20.6 | 0.946 (0.835–1.071) | 0.381 | 15.1 | 16.4 | 0.943 (0.778–1.141) | 0.551 | 0.931 |
Carbohydrate | 20.3 | 18.3 | 1.037 (0.901–1.194) | 0.617 | 16 | 15.8 | 0.94 (0.757–1.171) | 0.577 | 0.545 |
Protein | 17.7 | 22.3 | 0.821 (0.734–0.918) | 0.001 | 14.8 | 17.5 | 0.863 (0.727–1.026) | 0.094 | 0.381 |
Fat | 16.1 | 24.2 | 0.755 (0.675–0.845) | <0.0001 | 13.4 | 19.1 | 0.794 (0.667–0.945) | 0.009 | 0.154 |
Sodium | 18.5 | 21.9 | 0.771 (0.689–0.863) | <0.0001 | 16.5 | 15.2 | 1.017 (0.853–1.214) | 0.851 | 0.002 |
Potassium | 19.8 | 19.9 | 0.991 (0.821–1.191) | 0.922 | 15.2 | 16.1 | 0.901 (0.678–1.186) | 0.466 | 0.508 |
Calcium | 20.2 | 19.8 | 0.997 (0.837–1.183) | 0.972 | 16.6 | 15.9 | 0.954 (0.736–1.226) | 0.715 | 0.626 |
Phosphorus | 18.9 | 22.3 | 0.851 (0.755–0.96) | 0.009 | 15.9 | 16.4 | 0.971 (0.801–1.181) | 0.77 | 0.11 |
Iron | 19.4 | 19.9 | 0.98 (0.822–1.164) | 0.817 | 18.1 | 15.7 | 1.226 (0.948–1.576) | 0.115 | 0.284 |
Zinc | 19 | 20.5 | 0.948 (0.847–1.061) | 0.354 | 15.5 | 16.4 | 0.917 (0.771–1.091) | 0.331 | 0.758 |
Vitamin A | 19.3 | 20 | 0.905 (0.779–1.05) | 0.19 | 17.2 | 15.7 | 1.075 (0.861–1.337) | 0.517 | 0.208 |
Vitamin B1 | 16.1 | 20.6 | 0.881 (0.748–1.033) | 0.122 | 14.1 | 16.4 | 0.889 (0.697–1.128) | 0.339 | 0.801 |
Vitamin B2 | 18.2 | 20.1 | 0.959 (0.8–1.145) | 0.649 | 14.3 | 16.2 | 0.819 (0.621–1.07) | 0.15 | 0.696 |
Niacin | 16.9 | 21.9 | 0.8 (0.713–0.897) | <0.0001 | 14.3 | 17.2 | 0.843 (0.706–1.005) | 0.057 | 0.275 |
Vitamin B6 | 18.5 | 21.6 | 0.823 (0.736–0.92) | 0.001 | 15.3 | 16.9 | 0.865 (0.728–1.028) | 0.099 | 0.596 |
Folate | 20.4 | 19.8 | 0.961 (0.765–1.2) | 0.73 | 20.2 | 15.7 | 1.325 (0.968–1.796) | 0.074 | 0.255 |
Vitamin C | 19.8 | 20 | 0.97 (0.867–1.085) | 0.594 | 15.8 | 16.1 | 1.016 (0.854–1.208) | 0.859 | 0.862 |
Vitamin E | 18.6 | 20.1 | 1.016 (0.864–1.191) | 0.849 | 15.1 | 16.2 | 0.985 (0.77–1.251) | 0.9 | 0.869 |
Ash | 19.1 | 20 | 0.833 (0.716–0.967) | 0.017 | 17.2 | 15.7 | 1.032 (0.826–1.283) | 0.782 | 0.449 |
Food | rs738409 GG + GC (n = 10,616) | rs738409 CC (n = 5241) | Interaction p | ||||||
---|---|---|---|---|---|---|---|---|---|
Proportion of NAFLD (%) | OR (95% CI) | p | Proportion of NAFLD (%) | OR (95% CI) | p | ||||
High Intake | Low Intake | High Intake | Low Intake | ||||||
Protective Foods | |||||||||
White rice | 15.07 | 21.13 | 0.785 (0.68–0.9) | 0.001 | 10.69 | 17.3 | 0.674 (0.53–0.85) | 0.001 | 0.689 |
Baechu kimchi | 19.03 | 27.33 | 0.689 (0.57–0.83) | <0.001 | 15.79 | 15.4 | 0.745 (0.63–0.87) | <0.001 | 0.012 |
Leaf mustard or scallion kimchi | 18.89 | 19.87 | 0.758 (0.62–0.94) | 0.007 | 15.85 | 16 | 0.871 (0.71–0.99) | 0.369 | 0.474 |
Green pepper | 19.71 | 20.29 | 0.849 (0.73–0.99) | 0.034 | 15.1 | 16.1 | 0.842 (0.74–0.96) | 0.008 | 0.643 |
Orange | 17.65 | 20.44 | 0.792 (0.66–0.95) | 0.011 | 15.84 | 16.3 | 0.841 (0.72–0.98) | 0.023 | 0.187 |
Strawberry | 19.55 | 20.3 | 0.871 (0.75–1.02) | 0.077 | 13.74 | 16.7 | 0.861 (0.76–0.98) | 0.025 | 0.795 |
Pear | 19.05 | 20.25 | 0.868 (0.41–0.67) | 0.08 | 13.53 | 16.4 | 0.861 (0.47–0.71) | 0.03 | 0.873 |
Coffee | 17.62 | 26.25 | 0.743 (0.66–0.84) | <0.001 | 14.09 | 21.9 | 0.741 (0.67–0.82) | <0.001 | 0.487 |
Sugar for tea or coffee | 17.64 | 22.68 | 0.751 (0.67–0.84) | <0.001 | 13.91 | 19.1 | 0.745 (0.68–0.82) | <0.001 | 0.757 |
Cream for tea or coffee | 17.33 | 22.35 | 0.753 (0.68–0.84) | <0.001 | 13.8 | 18.1 | 0.761 (0.7–0.83) | <0.001 | 0.28 |
Risk Foods | |||||||||
Multi grain rice | 21.89 | 17.79 | 1.173 (1.06–1.3) | 0.003 | 18.11 | 13.61 | 1.289 (1.09–1.52) | 0.002 | 0.58 |
Yoghurt | 23.55 | 19.49 | 1.159 (1–1.34) | 0.045 | 19.04 | 15.3 | 1.147 (1.02–1.29) | 0.025 | 0.59 |
Nuts (peanut, almond, pine nut) | 26.54 | 19.34 | 1.284 (1.02–1.61) | 0.032 | 23.02 | 15.44 | 1.297 (0.93–1.82) | 0.131 | 0.703 |
Pickled radish | 21.65 | 19.84 | 1.282 (1.03–1.59) | 0.024 | 17.49 | 15.79 | 1.193 (0.85–1.67) | 0.305 | 0.748 |
Vegetable salad | 23.65 | 19.84 | 1.289 (1–1.66) | 0.046 | 13.64 | 16.14 | 1.134 (0.91–1.41) | 0.254 | 0.038 |
Green tea | 19.56 | 19.89 | 1.135 (0.99–1.3) | 0.065 | 17.15 | 15.59 | 1.149 (1.03–1.28) | 0.014 | 0.554 |
Fried food | 17.71 | 20.61 | 1.232 (1.10–1.38) | <0.001 | 14.34 | 16.54 | 1.254 (1.05–1.503) | 0.014 | 0.745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Lee, J.; Chun, S.; Choi, J.-E.; Kim, M.N.; Chon, Y.E.; Ha, Y.; Hwang, S.-G.; Choi, S.-W.; Hong, K.-W. Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study. Nutrients 2023, 15, 152. https://doi.org/10.3390/nu15010152
Oh S, Lee J, Chun S, Choi J-E, Kim MN, Chon YE, Ha Y, Hwang S-G, Choi S-W, Hong K-W. Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study. Nutrients. 2023; 15(1):152. https://doi.org/10.3390/nu15010152
Chicago/Turabian StyleOh, Sooyeon, Jooho Lee, Sukyung Chun, Ja-Eun Choi, Mi Na Kim, Young Eun Chon, Yeonjung Ha, Seong-Gyu Hwang, Sang-Woon Choi, and Kyung-Won Hong. 2023. "Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study" Nutrients 15, no. 1: 152. https://doi.org/10.3390/nu15010152
APA StyleOh, S., Lee, J., Chun, S., Choi, J. -E., Kim, M. N., Chon, Y. E., Ha, Y., Hwang, S. -G., Choi, S. -W., & Hong, K. -W. (2023). Interaction between the PNPLA3 Gene and Nutritional Factors on NAFLD Development: The Korean Genome and Epidemiology Study. Nutrients, 15(1), 152. https://doi.org/10.3390/nu15010152