MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Diet Assessment (2009–2012)
2.3. MIND Adherence Score
2.4. AHEI-2010 Adherence Score
2.5. Cognitive Assessments
2.6. Dementia Outcomes
2.7. Genetic Data and Calculation of Genetic Susceptibility Scores (GS)
2.8. Other Covariates
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. MIND and AHEI Adherence and Cognitive Ability
3.3. MIND and AHEI-2010 Adherence and Incident Dementia
3.4. Individual Diet Pattern Components and Cognitive Health
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. Trajectory Report. Available online: https://www.alz.org/help-support/resources/publications/trajectory_report (accessed on 1 September 2020).
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C. Nutritional determinants of cognitive aging and dementia. Proc. Nutr. Soc. 2012, 71, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, A.M.; Kang, J.H.; Feskens, E.J.M.; de Groot, C.; Grodstein, F.; van de Rest, O. Association of Long-Term Adherence to the MIND Diet with Cognitive Function and Cognitive Decline in American Women. J. Nutr. Health Aging 2018, 22, 222–229. [Google Scholar] [CrossRef] [PubMed]
- van Lent, D.M.; O’Donnell, A.; Beiser, A.S.; Vasan, R.S.; DeCarli, C.S.; Scarmeas, N.; Wagner, M.; Jacques, P.F.; Seshadri, S.; Himali, J.J.; et al. Mind Diet Adherence and Cognitive Performance in the Framingham Heart Study. J. Alzheimers Dis. 2021, 82, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Boumenna, T.; Scott, T.M.; Lee, J.-S.; Zhang, X.; Kriebel, D.; Tucker, K.L.; Palacios, N. MIND Diet and Cognitive Function in Puerto Rican Older Adults. J. Gerontol. Ser. A 2021, 77, 605–613. [Google Scholar] [CrossRef]
- Ahn, S.; Lingerfelt, C.N.; Lee, C.E.; Lee, J.-A.; Raynor, H.A.; Anderson, J.G. Association of adherence to high-intensity physical activity and the Mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay diet with cognition: A cross-sectional study. Int. J. Nurs. Stud. 2022, 131, 104243. [Google Scholar] [CrossRef]
- Ferreira, N.V.; Lotufo, P.A.; Marchioni, D.M.; Barreto, S.M.; Viana, M.C.; Caramelli, P.; Bensenor, I.J.; Suemoto, C.K. Association Between Adherence to the MIND Diet and Cognitive Performance is Affected by Income: The ELSA-Brasil Study. Alzheimer Dis. Assoc. Disord. 2022, 36, 133–139. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimer’s Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Shakersain, B.; Rizzuto, D.; Larsson, S.C.; Faxén-Irving, G.; Fratiglioni, L.; Xu, W.L. The Nordic Prudent Diet Reduces Risk of Cognitive Decline in the Swedish Older Adults: A Population-Based Cohort Study. Nutrients 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Adjibade, M.; Assmann, K.E.; Julia, C.; Galan, P.; Hercberg, S.; Kesse-Guyot, E. Prospective association between adherence to the MIND diet and subjective memory complaints in the French NutriNet-Santé cohort. J. Neurol. 2019, 266, 942–952. [Google Scholar] [CrossRef]
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer’s Dement. 2019, 15, 581–589. [Google Scholar] [CrossRef]
- Munoz-Garcia, M.I.; Toledo, E.; Razquin, C.; Dominguez, L.J.; Maragarone, D.; Martinez-Gonzalez, J.; Martinez-Gonzalez, M.A. “A priori” dietary patterns and cognitive function in the SUN project. Neuroepidemiology 2020, 54, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.D.; Norton, D.; Koscik, R.L.; Morris, M.C.; Jonaitis, E.M.; Clark, L.R.; Fields, T.; Allison, S.; Berman, S.; Kraning, S. Self-reported health behaviors and longitudinal cognitive performance in late middle age: Results from the Wisconsin Registry for Alzheimer’s Prevention. PLoS ONE 2020, 15, e0221985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotan, R.; Ravona-Springer, R.; Shakked, J.; Lin, H.-M.; Ouyang, Y.; Shahar, D.R.; Bezalel, S.; Agarwal, P.; Dhana, K.; Heymann, A.; et al. Greater intake of the MEDI diet is associated with better cognitive trajectory in older adults with type 2 diabetes. Diabetes Res. Clin. Pract. 2022, 190, 109989. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.T.; Beck, T.; Bennett, D.A.; Schneider, J.A.; Hayden, K.M.; Shadyab, A.H.; Rajan, K.B.; Morris, M.C.; Cornelis, M.C. Adherence to MIND Diet, Genetic Susceptibility, and Incident Dementia in Three US Cohorts. Nutrients 2022, 14, 2759. [Google Scholar] [CrossRef]
- Nishi, S.K.; Babio, N.; Gómez-Martínez, C.; Martínez-González, M.Á.; Ros, E.; Corella, D.; Castañer, O.; Martínez, J.A.; Alonso-Gómez, M.; Wärnberg, J.; et al. Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function: The 2-Year Longitudinal Changes in an Older Spanish Cohort. Front. Aging Neurosci. 2021, 13, 782067. [Google Scholar] [CrossRef]
- de Crom, T.O.E.; Mooldijk, S.S.; Ikram, M.K.; Ikram, M.A.; Voortman, T. MIND diet and the risk of dementia: A population-based study. Alzheimer’s Res. Ther. 2022, 14, 8. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- UK Biobank Coordinating Centre. UK Biobank: Protocol for a Large-Scale Prospective Epidemiological Resource. Available online: http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf (accessed on 1 January 2021).
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.L.; Ford, H.E.; Hancock, N.; et al. Validation of the Oxford WebQ Online 24-Hour Dietary Questionnaire Using Biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyall, D.M.; Cullen, B.; Allerhand, M.; Smith, D.J.; Mackay, D.; Evans, J.; Anderson, J.; Fawns-Ritchie, C.; McIntosh, A.M.; Deary, I.J. Cognitive test scores in UK Biobank: Data reduction in 480,416 participants and longitudinal stability in 20,346 participants. PLoS ONE 2016, 11, e0154222. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; Wang, Y.; Holland, T.; Agarwal, P.; Weintraub, S.; Morris, M.C. Age and cognitive decline in the UK Biobank. PLoS ONE 2019, 14, e0213948. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, T.; Schnier, C.; Bush, K.; Rannikmäe, K.; Henshall, D.E.; Lerpiniere, C.; Allen, N.E.; Flaig, R.; Russ, T.C.; Bathgate, D. Identifying dementia outcomes in UK Biobank: A validation study of primary care, hospital admissions and mortality data. Eur. J. Epidemiol. 2019, 34, 557–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; Destefano, A.L.; Bis, J.C.; Beecham, G.W.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Jansen, I.; Savage, J.; Watanabe, K.; Bryois, J.; Williams, D.; Steinberg, S.; Sealock, J.; Karlsson, I.; Hägg, S.; Athanasiu, L. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Pan UK-Biobank Consortium. Pan UK-Biobank: Pan-Ancestry Genetic Analysis of the UK Biobank. Available online: https://pan.ukbb.broadinstitute.org/ (accessed on 1 January 2021).
- SCHOENFELD, D. Partial residuals for the proportional hazards regression model. Biometrika 1982, 69, 239–241. [Google Scholar] [CrossRef]
- Gauci, S.; Young, L.M.; Arnoldy, L.; Lassemillante, A.-C.; Scholey, A.; Pipingas, A. Dietary patterns in middle age: Effects on concurrent neurocognition and risk of age-related cognitive decline. Nutr. Rev. 2022, 80, 1129–1159. [Google Scholar] [CrossRef]
- Fawns-Ritchie, C.; Deary, I.J. Reliability and validity of the UK Biobank cognitive tests. PLoS ONE 2020, 15, e0231627. [Google Scholar] [CrossRef]
- Calvin, C.M.; Wilkinson, T.; Starr, J.M.; Sudlow, C.; Hagenaars, S.P.; Harris, S.E.; Schnier, C.; Davies, G.; Fawns-Ritchie, C.; Gale, C.R.; et al. Predicting incident dementia 3-8 years after brief cognitive tests in the UK Biobank prospective study of 500,000 people. Alzheimer’s Dement. 2019, 15, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.-A.; Weinhold, L.; Schmid, M.; Nöthen, M.M.; Nöthlings, U. Analysis of associations between dietary patterns, genetic disposition, and cognitive function in data from UK Biobank. Eur. J. Nutr. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A. Diet and general cognitive ability in the UK Biobank dataset. Sci. Rep. 2021, 11, 11786. [Google Scholar] [CrossRef] [PubMed]
- Hepsomali, P.; Groeger, J.A. Diet, sleep, and mental health: Insights from the UK biobank study. Nutrients 2021, 13, 2573. [Google Scholar] [CrossRef] [PubMed]
- Dobreva, I.; Marston, L.; Mukadam, N. Which components of the Mediterranean diet are associated with dementia? A UK Biobank cohort study. GeroScience, 2022; ahead of print. [Google Scholar] [CrossRef]
- Parrott, M.D.; Shatenstein, B.; Ferland, G.; Payette, H.; Morais, J.A.; Belleville, S.; Kergoat, M.-J.; Gaudreau, P.; Greenwood, C.E. Relationship between Diet Quality and Cognition Depends on Socioeconomic Position in Healthy Older Adults. J. Nutr. 2013, 143, 1767–1773. [Google Scholar] [CrossRef] [Green Version]
- Munafò, M.R.; Tilling, K.; Taylor, A.E.; Evans, D.M.; Davey Smith, G. Collider scope: When selection bias can substantially influence observed associations. Int. J. Epidemiol. 2017, 47, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Batty, G.D.; Gale, C.R.; Kivimäki, M.; Deary, I.J.; Bell, S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: Prospective cohort study and individual participant meta-analysis. BMJ 2020, 368, m131. [Google Scholar] [CrossRef] [Green Version]
- Ronquillo, J.G.; Baer, M.R.; Lester, W.T. Sex-specific patterns and differences in dementia and Alzheimer’s disease using informatics approaches. J. Women Aging 2016, 28, 403–411. [Google Scholar] [CrossRef]
- Letellier, N.; Gutierrez, L.-A.; Carrière, I.; Gabelle, A.; Dartigues, J.-F.; Dufouil, C.; Helmer, C.; Cadot, E.; Berr, C. Sex-specific association between neighborhood characteristics and dementia: The Three-City cohort. Alzheimer’s Dement. 2018, 14, 473–482. [Google Scholar] [CrossRef]
- Sindi, S.; Kåreholt, I.; Ngandu, T.; Rosenberg, A.; Kulmala, J.; Johansson, L.; Wetterberg, H.; Skoog, J.; Sjöberg, L.; Wang, H.-X.; et al. Sex differences in dementia and response to a lifestyle intervention: Evidence from Nordic population-based studies and a prevention trial. Alzheimer’s Dement. 2021, 17, 1166–1178. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C. Dietary fat composition and dementia risk. Neurobiol. Aging 2014, 35, S59–S64. [Google Scholar] [CrossRef] [PubMed]
- Roe, M.; Church, S.; Pinchen, H.; Finglas, P. Nutrient Analysis of a Range of UK Processed Foods with Particular Reference to Trans Fatty Acids; Institute of Food Research: Norwich, UK, 2013. [Google Scholar]
Diet Component | Example Oxford WebQ Items | Component Score | ||
---|---|---|---|---|
0 | 0.5 | 1 | ||
Green leafy vegetables | cabbage/kale, lettuce, spinach | ≤2 servings/wk | 2 < 6 servings/wk | 6+ servings/wk |
Other vegetables | green beans, broccoli, butternut squash, carrot, cauliflower, celery, cucumber, leek, mushroom, sweet pepper, sprouts, sweetcorn, sweet potato | <5 servings/wk | 5 < 7 servings/wk | 7+ servings/wk |
Berries | berries | <1 serving/wk | 1 serving/wk | 2+ servings/wk |
Nuts | nuts, peanuts, seeds, peanut butter | <0.5 serving/wk | 0.5–4 servings/wk | >4 servings/wk |
Olive oil | Participant used olive oil in cooking across all diet records that reported using fat/oil in cooking | No | Yes | |
Butter/margarine | butter/margarine on bread/crackers and potatoes | <1 tsp/d | 1–2 tsp/d | >2 tsp/d |
Cheese (not low fat) | hard cheese, soft cheese, cheese spread, cottage cheese, mozzarella, goat’s cheese | 6+ servings/wk | 1 < 6 servings/wk | <1 servings/wk |
Whole grains | porridge, whole-wheat cereal/breads, wholemeal pasta, brown rice | <1 servings/d | 1–2 servings/d | >2 servings/d |
Fish (not fried) | tinned tuna, oily fish, white fish, prawns, lobster/crab, shellfish | <1 servings/m | 1+ servings/m | 1+ servings/wk |
Beans | baked bean, pulses, broad bean, hummus, tofu | <1 serving/wk | 1–3 servings/wk | >3 servings/wk |
Poultry (not fried) | poultry | <1 serving/wk | 1 serving/wk | 2+ servings/wk |
Red meat and products | sausage, beef, pork, lamb, bacon, ham | >6 servings/wk | 4–6 servings/wk | <4 servings/wk |
Fast/fried foods | fried poultry, breaded fish, fried potatoes, crisp/chips | >3 servings/wk | 1–3 servings/wk | <1 serving/wk |
Pastries and sweets | pastry, crumble, pancake, pudding, ice-cream, cake, doughnut, chocolate bar, biscuits, hot chocolate, fizzy drink, added sugars and preserves | 7+ servings/wk | 5–6 servings/wk | <5 servings/wk |
Wine | red wine, rose wine, white wine, fortified wine | <1 serving/m | 1 serving/m to 1 serving/wk | 2–7 servings/wk |
Characteristic | MIND | AHEI-2010 | ||||
---|---|---|---|---|---|---|
T1 0.0–5.5 n = 40,256 | T2 5.5–6.5 n = 35,963 | T3 7.0–14.5 n = 44,442 | T1 11.2–49.9 n = 40,220 | T2 49.9–62.3 n = 40,221 | T3 62.3–108.6 n = 40,220 | |
Age, years | 57.3 ± 8.0 | 57.9 ± 7.9 | 58.3 ± 7.7 | 56.9 ± 8.1 | 58.1 ± 7.8 | 58.6 ± 7.6 |
Female, n (%) | 17,443 (43.3) | 20,414 (56.8) | 30,209 (68.0) | 17,801 (44.3) | 23,098 (57.4) | 27,167 (67.6) |
Race/ethnicity, n (%) White South Asian Black Chinese Other, Unknown | 39,135 (97.2) 295 (0.7) 277 (0.7) 70 (0.2) 479 (1.2) | 34,791 (96.7) 364 (1.0) 249 (0.7) 79 (0.2) 480 (1.3) | 42,692 (96.0) 431 (1.0) 394 (0.9) 166 (0.4) 759 (1.7) | 39,051 (97.1) 270 (0.7) 300 (0.8) 84 (0.2) 515 (1.3) | 38,919 (96.8) 363 (0.9) 292 (0.7) 87 (0.2) 560 (1.4) | 38,648 (96.1) 457 (1.1) 328 (0.8) 144 (0.4) 643 (1.6) |
Townsend | −1.61 ± 2.85 | −1.72 ± 2.80 | −1.64 ± 2.84 | −1.59 ± 2.86 | −1.72 ± 2.80 | −1.65 ± 2.84 |
Household income ₤52,000+, n (%) | 11,009 (27.3) | 10,895 (30.3) | 14,695 (33.0) | 12,451 (31.0) | 12,072 (30.0) | 12,076 (30.0) |
College/university degree, n (%) | 16,012 (39.8) | 16,848 (46.9) | 23,855 (53.7) | 16,860 (41.9) | 18,781 (46.7) | 21,073 (52.4) |
Currently employed, n (%) | 25,171 (62.5) | 21,692 (60.3) | 26,433 (59.5) | 25,657 (63.8) | 24,066 (59.8) | 23,573 (58.6) |
Current smoker, n (%) | 3898 (9.7) | 2348 (6.5) | 2237 (5.0) | 4097 (10.2) | 2628 (6.5) | 1758 (4.4) |
BMI, kg/m2 | 27.4 ± 4.8 | 26.7 ± 4.5 | 26.0 ± 4.3 | 27.6 ± 4.8 | 26.7 ± 4.5 | 25.8 ± 4.3 |
Moderate to vigorous physical activity, hours/week | 68.7 ± 86.0 | 70.8 ± 78.9 | 75.2 ± 79.1 | 67.3 ± 82.7 | 71.3 ± 80.5 | 76.6 ± 80.9 |
Self-reported health, n (%) Excellent Good Fair Poor | 7172 (17.8) 23,733 (59.1) 7824 (19.5) 1456 (3.6) | 7950 (22.1) 21,536 (60.0) 5562 (15.5) 848 (2.4) | 11,015 (24.8) 26,856 (60.5) 5680 (12.8) 812 (1.8) | 7386 (18.4) 23,617 (58.8) 7710 (19.2) 1441 (3.6) | 8725 (21.7) 24,228 (60.4) 6231 (15.5) 964 (2.4) | 10,026 (25.0) 24,280 (60.5) 5125 (12.8) 711 (1.8) |
Family history of dementia, n (%) | 829 (2.1) | 803 (2.2) | 1107 (2.5) | 821 (2.0) | 941 (2.3) | 977 (2.4) |
Diabetes, n (%) | 1339 (3.3) | 898 (2.5) | 841 (1.9) | 1167 (2.9) | 1049 (2.6) | 862 (2.1) |
Heart disease, n (%) | 1820 (4.5) | 1362 (3.8) | 1409 (3.2) | 1725 (4.3) | 1533 (3.8) | 1333 (3.3) |
Hypertension, n (%) | 7329 (18.2) | 5955 (16.6) | 6592 (14.8) | 7340 (18.3) | 6585 (16.4) | 5951 (14.8) |
Stroke, n (%) | 494 (1.2) | 392 (1.1) | 393 (0.9) | 498 (1.2) | 414 (1.0) | 367 (0.9) |
Depression, n (%) | 1836 (4.6) | 1444 (4.0) | 1772 (4.0) | 1752 (4.4) | 1695 (4.2) | 1605 (4.0) |
APOE ε4 carriers, n (%) 2 | 9403 (27.7) | 8578 (28.1) | 10,600 (28.0) | 9344 (27.5) | 9416 (27.6) | 9821 (28.7) |
Genetic Score (GS)AD2 | 26.9 ± 3.0 | 26.9 ± 3.1 | 26.8 ± 3.1 | 26.9 ± 3.1 | 26.9 ± 3.1 | 26.9 ± 3.1 |
Energy, calories/d | 2075 ± 440 | 2009 ± 428 | 1953 ± 425 | 2097 ± 440 | 1990 ± 430 | 1945 ± 418 |
Frequent fast meal consumer, % | 1483 (3.7) | 943 (2.6) | 835 (1.9) | 1601 (4.0) | 1024 (2.6) | 636 (1.6) |
Vitamin/mineral supplement user, % | 16,639 (41.3) | 16,938 (47.1) | 23,759 (53.5) | 16,545 (41.1) | 19,030 (47.3) | 21,761 (54.1) |
Score Tertile | n | Test Score 5 | Model 1 1 | Model 2 2 | ||
---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | |||
3 Fluid Intelligence (higher scores reflect better performance) | ||||||
MIND T1 | 18,764 | 6.69 (2.07) | Reference | Reference | ||
MIND T2 | 16,865 | 6.73 (2.05) | 0.11 (0.07, 0.15) | <0.0001 | −0.03 (−0.07, 0.007) | 0.12 |
MIND T3 | 21,003 | 6.69 (2.02) | 0.12 (0.08, 0.16) | <0.0001 | −0.14 (−0.18, −0.10) | <0.0001 |
MIND score (raw), linear trend MIND score (per SD), linear trend | 0.03 (0.02, 0.03) 0.05 (0.03, 0.07) | <0.0001 | −0.04 (−0.05, −0.03) −0.07 (−0.09, −0.06) | <0.0001 | ||
4 Reaction Time (lower scores reflect better performance) | ||||||
MIND T1 | 40,084 | 542 (101) | Reference | Reference | ||
MIND T2 | 35,807 | 544 (99) | −2.35 (−3.72, −0.97) | 0.0008 | −0.47 (−1.85, 0.91) | 0.51 |
MIND T3 | 44,224 | 548 (101) | −2.52 (−3.85, −1.19) | 0.0002 | 0.66 (−0.70, 2.02) | 0.34 |
MIND score (raw), linear trend MIND score (per SD), linear trend | −0.45 (−0.74, −0.16) −0.87 (−1.43, −0.32) | 0.002 | 0.33 (0.03, 0.62) 0.63 (0.06, 1.21) | 0.03 | ||
4 Pairs Matching (lower scores reflect better performance) | ||||||
MIND T1 | 39,941 | 1.38 (0.62) | Reference | Reference | ||
MIND T2 | 35,609 | 1.39 (0.62) | 0.008 (−0.001, 0.02) | 0.09 | 0.01 (0.001, 0.02) | 0.03 |
MIND T3 | 43,999 | 1.42 (0.62) | 0.03 (0.02, 0.03) | <0.0001 | 0.03 (0.02, 0.04) | <0.0001 |
MIND score (raw), linear trend MIND score (per SD), linear trend | 0.007 (0.005, 0.009) 0.01 (0.01, 0.2) | <0.0001 | 0.008 (0.006, 0.01) 0.02 (0.01, 0.02) | <0.0001 | ||
3 Symbol Digit Substitution (higher scores reflect better performance) | ||||||
MIND T1 | 23,075 | 20.2 (5.1) | Reference | Reference | ||
MIND T2 | 21,153 | 20.1 (5.1) | 0.11 (0.03, 0.20) | 0.01 | −0.07 (−0.15, 0.02) | 0.16 |
MIND T3 | 26,404 | 19.9 (5.0) | 0.06 (−0.02, 0.15) | 0.13 | −0.25 (−0.33, −0.16) | <0.0001 |
MIND score (raw), linear trend MIND score (per SD), linear trend | 0.004 (−0.01, 0.02) 0.007 (−0.03, 0.04) | 0.68 | −0.07 (−0.09, −0.05) −0.14 (−0.17, −0.10) | <0.0001 | ||
4 Trail A (lower scores reflect better performance) | ||||||
MIND T1 | 20,603 | 3.58 (0.32) | Reference | Reference | ||
MIND T2 | 18,780 | 3.59 (0.32) | −0.003 (−0.009, 0.003) | 0.34 | 0.005 (−0.001, 0.01) | 0.10 |
MIND T3 | 23,258 | 3.60 (0.31) | −0.002 (−0.007, 0.004) | 0.56 | 0.01 (0.007, 0.02) | <0.0001 |
MIND score (raw), linear trend MIND score (per SD), linear trend | −0.0007 (−0.002, 0.0006) −0.001 (−0.004, 0.001) | 0.31 | 0.003 (0.002, 0.004) 0.006 (0.003, 0.008) | <0.0001 | ||
4 Trail B (lower scores reflect better performance) | ||||||
MIND T1 | 20,603 | 4.10 (0.33) | Reference | Reference | ||
MIND T2 | 18,780 | 4.12 (0.33) | −0.003 (−0.009, 0.003) | 0.35 | 0.01 (0.005, 0.02) | 0.0002 |
MIND T3 | 23,257 | 4.13 (0.33) | −0.001 (−0.007, 0.004) | 0.62 | 0.02 (0.02, 0.03) | <0.0001 |
MIND score (raw), linear trend MIND score (per SD), linear trend | 0.0001 (−0.001, 0.001) 0.0002 (−0.002, 0.003) | 0.87 | 0.006 (0.005, 0.008) 0.012 (0.010, 0.015) | <0.0001 | ||
4 Prospective Memory Test (higher scores reflect better performance) | ||||||
n | % correct | OR (95% CI) | p | OR (95% CI) | p | |
MIND T1 | 18,887 | 86 | Reference | Reference | ||
MIND T2 | 16,978 | 86 | 1.05 (0.99, 1.12) | 0.11 | 1.01 (0.95, 1.07) | 0.78 |
MIND T3 | 21,132 | 85 | 1.03 (0.97, 1.09) | 0.30 | 0.95 (0.90, 1.01) | 0.11 |
MIND score (raw), linear trend MIND score (per SD), linear trend | 1.00 (0.99, 1.01) 1.00 (0.98, 1.03) | 0.96 | 0.98 (0.97, 0.99) 0.96 (0.94, 0.99) | 0.004 |
Score Tertile | n | Test Score 3 | Model 1 1 | Model 2 2 | ||
---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | |||
4 Fluid Intelligence (higher scores reflect better performance) | ||||||
AHEI T1 | 18,826 | 6.77 (2.06) | Reference | Reference | ||
AHEI T2 | 18,819 | 6.72 (2.06) | 0.02 (−0.02, 0.07) | 0.25 | −0.05 (−0.09, −0.008) | 0.02 |
AHEI T3 | 18,987 | 6.63 (2.02) | −0.01 (−0.05, 0.03) | 0.60 | −0.17 (−0.21, −0.13) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | −0.0002 (−0.001, 0.001) −0.003 (−0.02, 0.01) | 0.72 | −0.006 (−0.007, −0.004) −0.08 (−0.09, −0.06) | <0.0001 | ||
5 Reaction Time (lower scores reflect better performance) | ||||||
AHEI T1 | 40,056 | 538 (99) | Reference | Reference | ||
AHEI T2 | 40,033 | 546 (100) | −0.01 (−1.35, 1.33) | 0.99 | 1.23 (−0.12, 2.57) | 0.07 |
AHEI T3 | 40,025 | 551 (102) | 0.65 (−0.71, 2.01) | 0.35 | 2.77 (1.37, 4.16) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | 0.03 (−0.01, 0.07) 0.42 (−0.14, 0.98) | 0.14 | 0.10 (0.06, 0.14) 1.41 (0.83, 1.99) | <0.0001 | ||
5 Pairs Matching (lower scores reflect better performance) | ||||||
AHEI T1 | 39,919 | 1.36 (0.62) | Reference | Reference | ||
AHEI T2 | 39,852 | 1.40 (0.62) | 0.03 (0.02, 0.04) | <0.0001 | 0.03 (0.02, 0.04) | <0.0001 |
AHEI T3 | 39,776 | 1.43 (0.63) | 0.04 (0.03, 0.05) | <0.0001 | 0.04 (0.03, 0.05) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | 0.001 (0.0012, 0.002) 0.02 (0.016, 0.023) | <0.0001 | 0.001 (0.0011, 0.0017) 0.019 (0.016, 0.023) | <0.0001 | ||
4 Symbol Digit Substitution (higher scores reflect better performance) | ||||||
AHEI T1 | 23,018 | 20.4 (5.1) | Reference | Reference | ||
AHEI T2 | 23,585 | 20.0 (5.1) | −0.06 (−0.14, 0.03) | 0.18 | −0.19 (−0.27, −0.11) | <0.0001 |
AHEI T3 | 24,029 | 19.7 (5.1) | −0.19 (−0.27, −0.10) | <0.0001 | −0.40 (−0.49, −0.32) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | −0.006 (−0.009, −0.004) −0.08 (−0.12, −0.05) | <0.0001 | −0.013 (−0.016, −0.011) −0.18 (−0.22, −0.15) | <0.0001 | ||
5 Trail A (lower scores reflect better performance) | ||||||
AHEI T1 | 20,614 | 3.57 (0.32) | Reference | Reference | ||
AHEI T2 | 20,829 | 3.59 (0.32) | 0.003 (−0.003, 0.009) | 0.29 | 0.009 (0.003, 0.01) | 0.002 |
AHEI T3 | 21,198 | 3.61 (0.31) | 0.01 (0.005, 0.02) | 0.0005 | 0.02 (0.01, 0.03) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | 0.0003 (0.0001, 0.0005) 0.004 (0.002, 0.006) | 0.001 | 0.0006 (0.0004, 0.0008) 0.008 (0.006, 0.01) | <0.0001 | ||
5 Trail B (lower scores reflect better performance) | ||||||
AHEI T1 | 20,614 | 4.09 (0.33) | Reference | Reference | ||
AHEI T2 | 20,828 | 4.12 (0.33) | 0.004 (−0.001, 0.01) | 0.14 | 0.015 (0.009, 0.021) | <0.0001 |
AHEI T3 | 21,198 | 4.14 (0.33) | 0.016 (0.01, 0.021) | <0.0001 | 0.034 (0.028, 0.039) | <0.0001 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | 0.0005 (0.0003, 0.0007) 0.007 (0.004, 0.009) | <0.0001 | 0.0011 (0.0009, 0.0012) 0.015 (0.012, 0.017) | <0.0001 | ||
4 Prospective Memory Test (higher scores reflect better performance) | ||||||
n | % correct | OR (95% CI) | p | OR (95% CI) | p | |
AHEI T1 | 18,927 | 87 | Reference | Reference | ||
AHEI T2 | 18,958 | 85 | 0.91 (0.86, 0.97) | 0.002 | 0.89 (0.84, 0.95) | 0.0003 |
AHEI T3 | 19,098 | 85 | 0.94 (0.88, 1.00) | 0.04 | 0.90 (0.85, 0.96) | 0.002 |
AHEI score (raw), linear trend AHEI score (per SD), linear trend | 1.00 (0.99, 1.00) 0.96 (0.94, 0.99) | 0.003 | 1.00 (0.99, 1.00) 0.95 (0.92, 0.97) | <0.0001 |
Model | Cases/ Person-Years | MIND Score | Cases/ Person-Years | AHEI Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 1 | Model 2 2 | Model 1 1 | Model 2 2 | |||||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |||
All-Cause Dementia | ||||||||||
T1 | 283/259,772 | Ref | Ref | 298/273,476 | Ref | Ref | ||||
T2 | 348/324,304 | 0.98 (0.84, 1.15) | 0.79 | 1.06 (0.90, 1.24) | 0.51 | 282/276,915 | 0.90 (0.77, 1.07) | 0.23 | 0.93 (0.78, 1.10) | 0.38 |
T3 | 211/245,160 | 0.81 (0.68, 0.97) | 0.03 | 0.90 (0.74, 1.09) | 0.27 | 262/278,666 | 0.84 (0.71, 1.00) | 0.04 | 0.89 (0.75, 1.06) | 0.20 |
Diet score (raw), linear trend Diet score (per SD), linear trend | 842/829,236 | 0.96 (0.93, 1.00) 0.93 (0.86, 1.00) | 0.04 | 0.99 (0.95, 1.03) 0.97 (0.90, 1.05) | 0.48 | 842/829,236 | 0.99 (0.99, 1.00) 0.92 (0.85, 0.98) | 0.01 | 1.00 (0.99, 1.00) 0.94 (0.87, 1.01) | 0.10 |
Alzheimer’s Dementia | ||||||||||
T1 | 117/259,807 | Ref | Ref | 117/273,683 | Ref | Ref | ||||
T2 | 139/324,333 | 0.94 (0.74, 1.21) | 0.63 | 1.00 (0.78, 1.30) | 0.98 | 116/276,938 | 0.94 (0.73, 1.22) | 0.65 | 0.94 (0.72, 1.23) | 0.66 |
T3 | 95/245,184 | 0.88 (0.67, 1.16) | 0.35 | 0.96 (0.72, 1.28) | 0.76 | 118/278,703 | 0.96 (0.74, 1.24) | 0.75 | 0.99 (0.75, 1.29) | 0.91 |
Diet score (raw), linear trend Diet score (per SD), linear trend | 351/829,324 | 0.99 (0.93, 1.05) 0.98 (0.88, 1.09) | 0.67 | 1.01 (0.95, 1.07) 1.02 (0.91, 1.14) | 0.76 | 351/829,324 | 1.00 (0.99, 1.01) 1.00 (0.90, 1.12) | 0.97 | 1.00 (0.99, 1.01) 1.01 (0.90, 1.14) | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornelis, M.C.; Agarwal, P.; Holland, T.M.; van Dam, R.M. MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank. Nutrients 2023, 15, 32. https://doi.org/10.3390/nu15010032
Cornelis MC, Agarwal P, Holland TM, van Dam RM. MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank. Nutrients. 2023; 15(1):32. https://doi.org/10.3390/nu15010032
Chicago/Turabian StyleCornelis, Marilyn C., Puja Agarwal, Thomas M. Holland, and Rob M. van Dam. 2023. "MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank" Nutrients 15, no. 1: 32. https://doi.org/10.3390/nu15010032
APA StyleCornelis, M. C., Agarwal, P., Holland, T. M., & van Dam, R. M. (2023). MIND Dietary Pattern and Its Association with Cognition and Incident Dementia in the UK Biobank. Nutrients, 15(1), 32. https://doi.org/10.3390/nu15010032