Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment and DII Score
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Dietary Intakes and Dietary Quality Scores during Pregnancy among the DII Groups
3.3. Association between Maternal DII during Pregnancy and CHD
3.4. The Prediction Value for Maternal DII during Pregnancy on CHD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970–2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.M.; Liu, F.; Wu, L.; Ma, X.J.; Niu, C.; Huang, G.Y. Prevalence of Congenital Heart Disease at Live Birth in China. J. Pediatr. 2019, 204, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. Child Adolesc. Health 2020, 4, 185–200. [CrossRef] [PubMed]
- Zhang, T.N.; Wu, Q.J.; Liu, Y.S.; Lv, J.L.; Sun, H.; Chang, Q.; Liu, C.F.; Zhao, Y.H. Environmental Risk Factors and Congenital Heart Disease: An Umbrella Review of 165 Systematic Reviews and Meta-Analyses with More Than 120 Million Participants. Front. Cardiovasc. Med. 2021, 8, 640729. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Wang, D.; Chen, X.; Li, M.; Huang, X.; Jiang, Y.; Dou, Y.; Wang, Y.; Ma, X.; et al. Periconception Red Blood Cell Folate and Offspring Congenital Heart Disease: Nested Case-Control and Mendelian Randomization Studies. Ann. Intern. Med. 2022, 175, 1212–1220. [Google Scholar] [CrossRef]
- Smedts, H.P.; Rakhshandehroo, M.; Verkleij-Hagoort, A.C.; de Vries, J.H.; Ottenkamp, J.; Steegers, E.A.; Steegers-Theunissen, R.P. Maternal intake of fat, riboflavin and nicotinamide and the risk of having offspring with congenital heart defects. Eur. J. Nutr. 2008, 47, 357–365. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Chang, Q.; Zhang, B.; Liu, X.; Zeng, L.; Yan, H.; Dang, S. Maternal Zinc, Copper, and Selenium Intakes during Pregnancy and Congenital Heart Defects. Nutrients 2022, 14, 1055. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Shen, Y.; Shi, G.; Liu, Y.; Qu, P.; Zhang, R.; Yan, H.; et al. Iron intake and iron status during pregnancy and risk of congenital heart defects: A case-control study. Int. J. Cardiol. 2020, 301, 74–79. [Google Scholar] [CrossRef]
- Helle, E.; Priest, J.R. Maternal Obesity and Diabetes Mellitus as Risk Factors for Congenital Heart Disease in the Offspring. J. Am. Heart Assoc. 2020, 9, e011541. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, L.; Yang, T.; Chen, L.; Wang, T.; Chen, L.; Zhao, L.; Zhang, S.; Zheng, Z.; Luo, L.; et al. Maternal Viral Infection and Risk of Fetal Congenital Heart Diseases: A Meta-Analysis of Observational Studies. J. Am. Heart Assoc. 2019, 8, e011264. [Google Scholar] [CrossRef]
- Blossom, S.J.; Rau, J.L.; Best, T.H.; Bornemeier, R.A.; Hobbs, C.A. Increased maternal cytokine production and congenital heart defects. J. Reprod. Immunol. 2013, 97, 204–210. [Google Scholar] [CrossRef]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Q.; Dang, S.; Liu, X.; Zeng, L.; Yan, H. Dietary Quality during Pregnancy and Congenital Heart Defects. Nutrients 2022, 14, 3654. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, Y.; Zeng, L.; Dang, S.; Yan, H. Maternal dietary diversity during pregnancy and congenital heart defects: A case-control study. Eur. J. Clin. Nutr. 2021, 75, 355–363. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Yan, H.; Dang, S. Maternal Dietary Patterns during Pregnancy and Congenital Heart Defects: A Case-Control Study. Int. J. Env. Res. Public Health 2019, 16, 2957. [Google Scholar] [CrossRef]
- de Freitas, N.P.A.; Carvalho, T.R.; Gonçalves, C.; da Silva, P.H.A.; de Melo Romão, L.G.; Kwak-Kim, J.; Cavalcante, M.B. The Dietary Inflammatory Index as a predictor of pregnancy outcomes: Systematic review and meta-analysis. J. Reprod. Immunol. 2022, 152, 103651. [Google Scholar] [CrossRef]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.; Hu, X.; Wen, B.; Wang, L.; Wang, C. A predictive model of offspring congenital heart disease based on maternal risk factors during pregnancy: A hospital based case-control study in Nanchong City. Int. J. Med. Sci. 2020, 17, 3091–3097. [Google Scholar] [CrossRef]
- Qu, Y.; Deng, X.; Lin, S.; Han, F.; Chang, H.H.; Ou, Y.; Nie, Z.; Mai, J.; Wang, X.; Gao, X.; et al. Using Innovative Machine Learning Methods to Screen and Identify Predictors of Congenital Heart Diseases. Front. Cardiovasc. Med. 2021, 8, 797002. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar] [PubMed]
- Yang, J.; Cheng, Y.; Pei, L.; Jiang, Y.; Lei, F.; Zeng, L.; Wang, Q.; Li, Q.; Kang, Y.; Shen, Y.; et al. Maternal iron intake during pregnancy and birth outcomes: A cross-sectional study in Northwest China. Br. J. Nutr. 2017, 117, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dang, S.; Cheng, Y.; Qiu, H.; Mi, B.; Jiang, Y.; Qu, P.; Zeng, L.; Wang, Q.; Li, Q.; et al. Dietary intakes and dietary patterns among pregnant women in Northwest China. Public Health Nutr. 2017, 20, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Food Safety, China Center for Disease Control. China Food Composition Book 2; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Institute of Nutrition and Food Safety, China Center for Disease Control. China Food Composition Book 1, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Bromage, S.; Batis, C.; Bhupathiraju, S.N.; Fawzi, W.W.; Fung, T.T.; Li, Y.; Deitchler, M.; Angulo, E.; Birk, N.; Castellanos-Gutiérrez, A.; et al. Development and Validation of a Novel Food-Based Global Diet Quality Score (GDQS). J. Nutr. 2021, 151, 75s–92s. [Google Scholar] [CrossRef]
- Mahmassani, H.A.; Switkowski, K.M.; Scott, T.M.; Johnson, E.J.; Rifas-Shiman, S.L.; Oken, E.; Jacques, P.F. Maternal diet quality during pregnancy and child cognition and behavior in a US cohort. Am. J. Clin. Nutr. 2022, 115, 128–141. [Google Scholar] [CrossRef]
- Nie, X.; Liu, X.; Wang, C.; Wu, Z.; Sun, Z.; Su, J.; Yan, R.; Peng, Y.; Yang, Y.; Wang, C.; et al. Assessment of evidence on reported non-genetic risk factors of congenital heart defects: The updated umbrella review. BMC Pregnancy Childbirth 2022, 22, 371. [Google Scholar] [CrossRef]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Casas, R.; Castro-Barquero, S. Maternal Dietary Inflammatory Index during Pregnancy Is Associated with Perinatal Outcomes: Results from the IMPACT BCN Trial. Nutrients 2022, 14, 2284. [Google Scholar] [CrossRef]
- Chen, L.W.; Aubert, A.M.; Shivappa, N. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes: An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. PLoS Med. 2021, 18, e1003491. [Google Scholar] [CrossRef]
- Botto, L.D.; Krikov, S.; Carmichael, S.L.; Munger, R.G.; Shaw, G.M.; Feldkamp, M.L. Lower rate of selected congenital heart defects with better maternal diet quality: A population-based study. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F43–F49. [Google Scholar] [CrossRef]
- Obermann-Borst, S.A.; Vujkovic, M.; de Vries, J.H.; Wildhagen, M.F.; Looman, C.W.; de Jonge, R.; Steegers, E.A.; Steegers-Theunissen, R.P. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1205–1215. [Google Scholar] [CrossRef]
- Cui, T.; Zhang, J.; Liu, L.; Xiong, W.; Su, Y.; Han, Y.; Gao, L.; Qu, Z.; Zhang, X. Relationship between the Dietary Inflammatory Index Score and Cytokine Levels in Chinese Pregnant Women during the Second and Third Trimesters. Nutrients 2022, 15, 194. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Płaczkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Sozański, R.; Grajeta, H. Association of Dietary Inflammatory Index with Serum IL-6, IL-10, and CRP Concentration during Pregnancy. Nutrients 2020, 12, 2789. [Google Scholar] [CrossRef]
- Ward, E.J.; Bert, S.; Fanti, S.; Malone, K.M.; Maughan, R.T.; Gkantsinikoudi, C.; Prin, F.; Volpato, L.K.; Piovezan, A.P.; Graham, G.J.; et al. Placental Inflammation Leads to Abnormal Embryonic Heart Development. Circulation 2023, 147, 956–972. [Google Scholar] [CrossRef]
- Fisher, S.A.; Burggren, W.W. Role of hypoxia in the evolution and development of the cardiovascular system. Antioxid. Redox Signal. 2007, 9, 1339–1352. [Google Scholar] [CrossRef]
- Zheng, J.; Hoffman, K.L.; Chen, J.S.; Shivappa, N.; Sood, A.; Browman, G.J.; Dirba, D.D.; Hanash, S.; Wei, P.; Hebert, J.R.; et al. Dietary inflammatory potential in relation to the gut microbiome: Results from a cross-sectional study. Br. J. Nutr. 2020, 124, 931–942. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Huang, P.; Yang, T.; Zhang, S.; Zhao, L.; Chen, L.; Ye, Z.; Luo, L.; Qin, J. Association of maternal gut microbiota and plasma metabolism with congenital heart disease in offspring: A multi-omic analysis. Sci Rep 2021, 11, 5339. [Google Scholar] [CrossRef]
- Bosco, J.L.; Tseng, M.; Spector, L.G.; Olshan, A.F.; Bunin, G.R. Reproducibility of reported nutrient intake and supplement use during a past pregnancy: A report from the Children’s Oncology Group. Paediatr. Perinat. Epidemiol. 2010, 24, 93–101. [Google Scholar] [CrossRef]
- Bunin, G.R.; Gyllstrom, M.E.; Brown, J.E.; Kahn, E.B.; Kushi, L.H. Recall of diet during a past pregnancy. Am. J. Epidemiol. 2001, 154, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
Cases (N = 474) | Controls (N = 948) | |||||||
---|---|---|---|---|---|---|---|---|
Anti-Inflammatory Diet Group 1 (N = 83) | Intermediate Group 1 (N = 218) | Pro-Inflammatory Diet Group 1 (N = 173) | p 2 | Anti-Inflammatory Diet Group 1 (N = 237) | Intermediate Group 1 (N = 477) | Pro-Inflammatory Diet Group 1 (N = 234) | p 2 | |
DII | ||||||||
Range | −1.36 to 4.04 | 4.04 to 5.06 | 5.08 to 5.73 | 0.43 to 4.04 | 4.05 to 5.08 | 5.08 to 5.63 | ||
Median (25th percentile, 75th percentile) | 3.55 (2.88, 3.82) | 4.66 (4.42, 4.86) | 5.30 (5.20, 5.42) | <0.001 | 3.16 (2.35, 3.77) | 4.63 (4.41, 4.84) | 5.30 (5.21, 5.42) | <0.001 |
Sociodemographic characteristics, n (%) | ||||||||
Maternal age ≥30 years | 24 (28.9) | 79 (36.2) | 56 (32.4) | 0.446 | 77 (32.5) | 170 (35.6) | 77 (32.9) | 0.631 |
Rural residence | 32 (38.6) | 81 (37.2) | 48 (27.7) | 0.093 | 58 (24.5) | 143 (30.0) | 68 (29.1) | 0.296 |
Maternal education, senior high school or above | 50 (60.2) | 136 (62.4) | 93 (53.8) | 0.218 | 195 (82.3) | 377 (79.0) | 193 (82.5) | 0.427 |
Maternal occupation, in employment | 42 (50.6) | 112 (51.4) | 86 (49.7) | 0.948 | 185 (78.1) | 388 (81.3) | 174 (74.4) | 0.096 |
Nulliparity | 53 (63.9) | 127 (58.3) | 94 (54.3) | 0.347 | 197 (83.1) | 367 (76.9) | 197 (84.2) | 0.033 |
Maternal health-related factors in early pregnancy, n (%) | ||||||||
Passive smoking | 22 (26.5) | 79 (36.2) | 58 (33.5) | 0.279 | 17 (7.2) | 49 (10.3) | 22 (9.4) | 0.404 |
Anemia | 8 (9.6) | 39 (17.9) | 33 (19.1) | 0.146 | 27 (11.4) | 48 (10.1) | 28 (12.0) | 0.713 |
Medication use | 34 (41.0) | 88 (40.4) | 75 (43.4) | 0.832 | 86 (36.3) | 138 (28.9) | 64 (27.4) | 0.067 |
Iron/folate supplements use | 59 (71.1) | 171 (78.4) | 133 (76.9) | 0.401 | 204 (86.1) | 423 (88.7) | 219 (93.6) | 0.027 |
Cases (N = 474) | Controls (N = 948) | |||||||
---|---|---|---|---|---|---|---|---|
Anti-Inflammatory Diet Group 1 (N = 83) | Intermediate Group 1 (N = 218) | Pro-Inflammatory Diet Group 1 (N = 173) | p 2 | Anti-Inflammatory Diet Group1 (N = 237) | Intermediate Group 1 (N = 477) | Pro-Inflammatory Diet Group 1 (N = 234) | p 2 | |
Food groups intake, median (25th percentile, 75th percentile), g/d | ||||||||
Grains and tubers | 352.0 (259.3, 463.6) | 244.2 (204.1, 313.8) | 186.1 (142.3, 241.3) | <0.001 | 335.8 (252.1, 440.5) | 204.5 (159.9, 280.4) | 133.2 (100.4, 163.0) | <0.001 |
Vegetables | 823.8 (590.4, 1084.3) | 365.3 (263.0, 448.0) | 178.0 (119.5, 214.7) | <0.001 | 784.3 (548.6, 1340.6) | 373.8 (260.8, 460.0) | 178.5 (111.6, 214.7) | <0.001 |
Fruits | 563.8 (347.9, 875.0) | 327.4 (216.6, 483.5) | 162.7 (107.5, 258.3) | <0.001 | 668.8 (405.6, 915.0) | 343.6 (242.6, 490.7) | 179.8 (132.9, 254.8) | <0.001 |
Dairy | 128.6 (28.6, 214.3) | 85.7 (14.1, 200.0) | 14.3 (0, 85.7) | <0.001 | 172.3 (128.6, 278.6) | 172.0 (85.7, 242.9) | 100.0 (42.9, 200.0) | <0.001 |
Legumes | 110.7 (60.7, 189.1) | 49.9 (24.0, 94.4) | 21.4 (8.8, 35.4) | <0.001 | 192.9 (106.1, 235.7) | 78.6 (44.5, 128.6) | 36.7 (25.0, 47.9) | <0.001 |
Meats | 78.1 (35.2, 128.6) | 38.0 (16.3, 78.6) | 20.0 (10.0, 41.0) | <0.001 | 96.2 (49.1, 156.9) | 57.1 (33.3, 92.1) | 28.1 (22.1, 41.9) | <0.001 |
Fish | 14.3 (4.0, 31.6) | 6.7 (1.3, 17.1) | 3.3 (0, 8.0) | <0.001 | 41.8 (18.3, 85.7) | 17.3 (10.1, 33.7) | 11.1 (6.7, 16.9) | <0.001 |
Eggs | 25.7 (8.6, 50.0) | 21.4 (4.3, 50.0) | 21.4 (3.3, 39.3) | <0.001 | 39.3 (21.4, 50.0) | 32.9 (21.4, 50.0) | 22.4 (8.5, 50.0) | <0.001 |
Nuts | 18.9 (8.1, 45.0) | 12.6 (4.6, 34.0) | 3.0 (1.3, 6.4) | <0.001 | 38.6 (14.1, 71.1) | 12.9 (5.5, 33.8) | 4.8 (3.3, 8.5) | <0.001 |
Dietary quality scores, median (25th percentile, 75th percentile) | ||||||||
MDS | 6.0 (5.0, 7.0) | 4.0 (3.0, 5.0) | 2.0 (1.0, 3.0) | <0.001 | 7.0 (6.0, 7.0) | 5.0 (4.0, 6.0) | 2.0 (2.0, 3.0) | <0.001 |
GDQS | 32.8 (29.5, 35.0) | 29.3 (26.5, 31.8) | 22.5 (20.5, 25.0) | <0.001 | 34.8 (32.8, 36.9) | 31.5 (29.3, 33.5) | 25.0 (23.0, 27.0) | <0.001 |
Anti-Inflammatory Diet Group 1 | Intermediate Group 1 | Pro-Inflammatory Diet Group 1 | p for Trend | Per 1 Higher Score | |
---|---|---|---|---|---|
Total congenital heart defects | |||||
Ncases/Ncontrols | 83/237 | 218/477 | 173/234 | 474/948 | 474/948 |
Unadjusted OR (95%CI) | 1 | 1.30 (0.97, 1.76) | 2.11 (1.54, 2.90) | <0.001 | 1.32 (1.16, 1.50) |
Adjusted OR (95%CI) 2 | 1 | 1.25 (0.89, 1.74) | 2.04 (1.42, 2.92) | <0.001 | 1.31 (1.14, 1.51) |
Ventricular septal defects | |||||
Ncases/Ncontrols | 39/237 | 100/477 | 83/234 | 222/948 | 222/948 |
Unadjusted OR (95%CI) | 1 | 1.26 (0.84, 1.90) | 2.10 (1.37, 3.21) | 0.001 | 1.30 (1.09, 1.55) |
Adjusted OR (95%CI) 2 | 1 | 1.17 (0.75, 1.81) | 2.00 (1.25, 3.19) | 0.007 | 1.29 (1.07, 1.55) |
Atrial septal defects | |||||
Ncases/Ncontrols | 42/237 | 100/477 | 76/234 | 218/948 | 218/948 |
Unadjusted OR (95%CI) | 1 | 1.18 (0.80, 1.75) | 1.83 (1.21, 2.78) | 0.009 | 1.24 (1.05, 1.47) |
Adjusted OR (95%CI) 2 | 1 | 1.13 (0.74, 1.73) | 1.92 (1.22, 3.03) | 0.011 | 1.25 (1.04, 1.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chang, Q.; Du, Q.; Dang, S.; Zeng, L.; Yan, H. Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects. Nutrients 2023, 15, 2262. https://doi.org/10.3390/nu15102262
Yang J, Chang Q, Du Q, Dang S, Zeng L, Yan H. Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects. Nutrients. 2023; 15(10):2262. https://doi.org/10.3390/nu15102262
Chicago/Turabian StyleYang, Jiaomei, Qianqian Chang, Qiancheng Du, Shaonong Dang, Lingxia Zeng, and Hong Yan. 2023. "Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects" Nutrients 15, no. 10: 2262. https://doi.org/10.3390/nu15102262
APA StyleYang, J., Chang, Q., Du, Q., Dang, S., Zeng, L., & Yan, H. (2023). Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects. Nutrients, 15(10), 2262. https://doi.org/10.3390/nu15102262