The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Performance Tests and Measurements
2.3.1. Body Mass, Height, Composition, Resting Heart Rate and Blood Pressure
2.3.2. Jumping Performance
2.3.3. Sprint Performance
2.3.4. Agility T-Test (ATT)
2.3.5. Running-Based Anaerobic Sprint Test (RAST)
2.3.6. Yo-Yo Intermittent Recovery Test Level 1 and Blood Lactate Concentrations
2.3.7. Supplementation
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Resting Blood Pressure and Heart Rate
4.2. Jumping Performance
4.3. Sprinting Performance
4.4. Agility Performance
4.5. RAST Performance
4.6. Aerobic Performance
4.7. Side Effects
4.8. Study’s Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Trexler, E.T. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J. Strength Cond. Res. 2020, 34, 1480–1495. [Google Scholar] [CrossRef]
- Manaf, F.A.; Peiffer, J.J.; Maker, G.L.; Fairchild, T.J. Branched-chain amino acid supplementation improves cycling performance in untrained cyclists. J. Sci. Med. Sport 2020, 24, 412–417. [Google Scholar] [CrossRef]
- AbuMoh’d, M.F.; Matalqah, L.; Al-Abdulla, Z. Effects of Oral Branched-Chain Amino Acids (BCAAs) Intake on Muscular and Central Fatigue During an Incremental Exercise. J. Hum. Kinet. 2020, 72, 69–78. [Google Scholar] [CrossRef]
- Lazić, A.; Kocić, M.; Trajković, N.; Popa, C.; Peyré-Tartaruga, L.A.; Padulo, J. Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review. Nutrients 2022, 14, 1930. [Google Scholar] [CrossRef]
- Ojeda, H.; Cerda, C.T.; Salvatierra, M.F.P.; Barahona-Fuentes, G.; Aguilera, C.J. Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2490. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef]
- Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute Effects of Citrulline Supplemen-tation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 707–718. [Google Scholar] [CrossRef]
- Hormoznejad, R.; Zare Javid, A.; Mansoori, A. Effect of BCAA supplementation on central fatigue, energy metabolism sub-strate and muscle damage to the exercise: A systematic review with meta-analysis. Sport Sci. Health 2019, 15, 265–279. [Google Scholar] [CrossRef]
- Vårvik, F.T.; Bjørnsen, T.; Gonzalez, A.M. Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 350–358. [Google Scholar] [CrossRef]
- Master, P.B.Z.; Macedo, R.C.O. Effects of dietary supplementation in sport and exercise: A review of evidence on milk pro-teins and amino acids. Crit. Rev. Food Sci. Nutr. 2021, 61, 1225–1239. [Google Scholar] [CrossRef]
- Doma, K.; Singh, U.; Boullosa, D.; Connor, J.D. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: A systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 2021, 46, 1303–1313. [Google Scholar] [CrossRef]
- Jagim, A.R.; Jones, M.T.; Wright, G.A.; Antoine, C.S.; Kovacs, A.; Oliver, J.M. The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity. J. Int. Soc. Sports Nutr. 2016, 13, 11. [Google Scholar] [CrossRef]
- Gonzalez, A.M.; Walsh, A.L.; A Ratamess, N.; Kang, J.; Hoffman, J.R. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J. Sports Sci. Med. 2011, 10, 261–266. [Google Scholar]
- Spradley, B.D.; Crowley, K.R.; Tai, C.-Y.; Kendall, K.L.; Fukuda, D.H.; Esposito, E.N.; E Moon, S.; Moon, J.R. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr. Metab. 2012, 9, 28. [Google Scholar] [CrossRef]
- Panayi, S.; Galbraith, A. Acute Ingestion of a Commercially Available Pre-workout Supplement Improves Anaerobic Power Output and Reduces Muscular Fatigue. Int. J. Exerc. Sci. 2022, 15, 455–472. [Google Scholar]
- Martinez, N.; Campbell, B.; Franek, M.; Buchanan, L.; Colquhoun, R. The effect of acute pre-workout supplementation on power and strength performance. J. Int. Soc. Sports Nutr. 2016, 13, 29. [Google Scholar] [CrossRef]
- Figueiredo, C.; Lira, F.S.; Rossi, F.E.; Billaut, F.; Loschi, R.; Padilha, C.S. Multi-ingredient pre-workout supplementation changes energy system contribution and improves performance during high-intensity intermittent exercise in physically active individuals: A double-blind and placebo controlled study. J. Int. Soc. Sports Nutr. 2020, 17, 30. [Google Scholar] [CrossRef]
- Herbe, C.T.; Byrd, M.T.; Dinyer, T.K.; Wallace, B.J.; Bergstrom, H.C. The effects of pre-workout supplementation on anaerobic power and maintenance of power in college students. Int. J. Exerc. Sci. 2019, 12, 355–365. [Google Scholar]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Hoffman, M.W.; Tranchina, C.P.; Faigenbaum, A.D. Examination of a pre-exercise, high energy supplement on exercise performance. J. Int. Soc. Sports Nutr. 2009, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.T.; Byrd, M.T. Effects of Pre-Workout Supplements on Power Maintenance in Lower Body and Upper Body Tasks. J. Funct. Morphol. Kinesiol. 2018, 3, 11. [Google Scholar] [CrossRef]
- Kaczka, P.; Maciejczyk, M.; Batra, A.; Tabęcka-Łonczyńska, A.; Strzała, M. Acute Effect of Caffeine-Based Multi-Ingredient Supplement on Reactive Agility and Jump Height in Recreational Handball Players. Nutrients 2022, 14, 1569. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Ward, E.G.; Bach, C.W.; Arciero, P.J.; McKune, A.J.; Panton, L.B. The impact of a pre-loaded multi-ingredient performance supplement on muscle soreness and performance following downhill running. J. Int. Soc. Sports Nutr. 2015, 12, 2. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Soto, M.d.V.; Adams, D.P.; Gutiérrez-Abejón, E.; Seco-Calvo, J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021, 13, 3746. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Główka, N.; Grygiel, A. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: A randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2019, 16, 38. [Google Scholar] [CrossRef]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common Ingredient Profiles of Multi-Ingredient Pre-Workout Supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout sup-plements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sports Nutr. 2018, 15, 41. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Phys-iological Responses Encountered During Basketball Match-Play: A Systematic Review. Sport. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef]
- Read, P.J.; Hughes, J.; Stewart, P.; Chavda, S.; Bishop, C.; Edwards, M.; Turner, A.N. A Needs Analysis and Field-Based Testing Battery for Basketball. Strength Cond. J. 2014, 36, 13–20. [Google Scholar] [CrossRef]
- Ben Abdelkrim, N.; El Fazaa, S.; EL Ati, J.; Tabka, Z. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition Commentary. Br. J. Sports Med. 2007, 41, 69–75. [Google Scholar] [CrossRef]
- Mancha-Triguero, D.; García-Rubio, J.; Calleja-González, J.; Ibáñez, S.J. Physical fitness in basketball players: A systematic review. J. Sports Med. Phys. Fit. 2019, 59, 1513–1525. [Google Scholar] [CrossRef]
- Gottlieb, R.; Shalom, A.; Calleja-Gonzalez, J. Physiology of Basketball—Field Tests. Review Article. J. Hum. Kinet. 2021, 77, 159–167. [Google Scholar] [CrossRef]
- Çetin, O.; Yaşar, M.; Demirtaş, B.; Beyleroğlu, M.; Eker, S.; Gürkan, A. Acute effects of pre-workout supplement on aerobic and anaerobic performance in basketball players. Phys. Educ. Stud. 2018, 23, 16–22. [Google Scholar] [CrossRef]
- Kang, M.; Ragan, B.G.; Park, J.-H. Issues in Outcomes Research: An Overview of Randomization Techniques for Clinical Trials. J. Athl. Train. 2008, 43, 215–221. [Google Scholar] [CrossRef]
- Misra, S. Randomized double blind placebo control studies, the “Gold Standard” in intervention based studies. Indian J. Sex. Transm. Dis. AIDS 2012, 33, 131–134. [Google Scholar] [CrossRef]
- Kontou, E.I.; Berberidou, F.T.; Pilianidis, T.C.; Mantzouranis, N.I.; Methenitis, S. Acute Effect of Upper and Lower Body Postactivation Exercises on Shot Put Performance. J. Strength Cond. Res. 2018, 32, 970–982. [Google Scholar] [CrossRef]
- Kostikiadis, I.N.; Methenitis, S.; Tsoukos, A.; Veligekas, P.; Terzis, G.; Bogdanis, G.C. The Effect of Short-Term Sport-Specific Strength and Conditioning Training on Physical Fitness of Well-Trained Mixed Martial Arts Athletes. J. Sports Sci. Med. 2018, 17, 348–358. [Google Scholar]
- Methenitis, S.K.; Zaras, N.D.; Spengos, K.M.; Stasinaki, A.-N.E.; Karampatsos, G.P.; Georgiadis, G.V.; Terzis, G.D. Role of Muscle Morphology in Jumping, Sprinting, and Throwing Performance in Participants with Different Power Training Duration Experience. J. Strength Cond. Res. 2016, 30, 807–817. [Google Scholar] [CrossRef]
- Simitzi, V.; Tsoukos, A.; Kostikiadis, I.N.; Parotsidis, C.A.; Paizis, C.; Nassis, G.P.; Methenitis, S.K. The acute effects of different high-intensity conditioning activities on sprint performance differ between sprinters of different strength and power characteristics. Kinesiology 2021, 53, 193–205. [Google Scholar] [CrossRef]
- Ben Abdelkrim, N.; Chaouachi, A.; Chamari, K.; Chtara, M.; Castagna, C. Positional Role and Competitive-Level Differences in Elite-Level Men’s Basketball Players. J. Strength Cond. Res. 2010, 24, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.H.; Rebello Mendes, R.; Almeida, M.B.D.; Zanetti, M.C.; Leite, G.D.S.; Júnior, A.J.F. Relationship between physical fitness and game-related statistics in elite professional basketball players: Regular season vs. playoffs. Motriz 2017, 23, 02. [Google Scholar] [CrossRef]
- Pojskić, H.; Šeparović, V.; Muratović, M.; Užičanin, E. The relationship between physical fitness and shooting accuracy of professional basketball players. Mot. Rev. Educ. Física 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Semenick, D. Tests and measurements: The T-test. Strength Cond. J. 1990, 12, 36–37. [Google Scholar] [CrossRef]
- Gál-Pottyondy, A.; Petró, B.; Czétényi, A.; Négyesi, J.; Nagatomi, R.; Kiss, R.M. Collection and Advice on Basketball Field Tests—A Literature Review. Appl. Sci. 2021, 11, 8855. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Beck, W.R.; A Gobatto, C. Validity of the Running Anaerobic Sprint Test for Assessing Anaerobic Power and Predicting Short-Distance Performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef]
- Camargo, B.F.; De Araujo, G.G.; Vieira, N.A.; Messias, L.H.D.; Manchado-Gobatto, F.D.B.; Gobatto, C.A. Adaptação de protocolos invasivos e não invasivos para avaliações aeróbias e anaeróbias específicas ao basquetebol feminino. Rev. Bras. Med. Esporte 2013, 19, 171–175. [Google Scholar] [CrossRef]
- Gottlieb, R.; Shalom, A.; Alcaraz, P.E.; Calleja-González, J. Validity and reliability of a unique aerobic field test for estimating VO2max among basketball players. Sci. J. Sport Perform. 2022, 1, 112–123. [Google Scholar] [CrossRef]
- Grgic, J.; Oppici, L.; Mikulic, P.; Bangsbo, J.; Krustrup, P.; Pedisic, Z. Test–Retest Reliability of the Yo-Yo Test: A Systematic Review. Sports Med. 2019, 49, 1547–1557. [Google Scholar] [CrossRef]
- Castagna, C.; Impellizzeri, F.; Rampinini, E.; D’ottavio, S.; Manzi, V. The Yo–Yo intermittent recovery test in basketball players. J. Sci. Med. Sport 2008, 11, 202–208. [Google Scholar] [CrossRef]
- Crotty, N.M.; Boland, M.; Mahony, N.; Donne, B.; Fleming, N. Reliability and Validity of the Lactate Pro 2 Analyzer. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 202–211. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Rhea, M.R. Determining the Magnitude of Treatment Effects in Strength Training Research through the Use of the Effect Size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [CrossRef]
- Mort, J.R.; Kruse, H.R. Timing of Blood Pressure Measurement Related to Caffeine Consumption. Ann. Pharmacother. 2008, 42, 105–110. [Google Scholar] [CrossRef]
- Kephart, W.C.; Wachs, T.D.; Mac Thompson, R.; Mobley, C.B.; Fox, C.D.; McDonald, J.R.; Ferguson, B.S.; Young, K.C.; Nie, B.; Martin, J.S.; et al. Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids 2016, 48, 779–789. [Google Scholar] [CrossRef]
- Bloms, L.P.; Fitzgerald, J.S.; Short, M.W.; Whitehead, J.R. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes. J. Strength Cond. Res. 2016, 30, 1855–1861. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition 2019, 67–68, 110535. [Google Scholar] [CrossRef]
- Kalmar, J.M. The influence of caffeine on voluntary muscle activation. Med. Sci. Sport. Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Sim, A.; Kawabata, M.; Burns, S.F. A systematic review of the effects of caffeine on basketball performance outcomes. Biology 2022, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- VAN Thienen, R.; VAN Proeyen, K.; Eynde, B.V.; Puype, J.; Lefere, T.; Hespel, P. β-Alanine Improves Sprint Performance in Endurance Cycling. Med. Sci. Sports Exerc. 2009, 41, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Atakan, M.; Karavelioğlu, M.; Harmancı, H.; Cook, M.; Bulut, S. Short term creatine loading without weight gain improves sprint, agility and leg strength performance in female futsal players. Sci. Sports 2019, 34, 321–327. [Google Scholar] [CrossRef]
- Turcu, I.; Oancea, B.; Chicomban, M.; Simion, G.; Simon, S.; Negriu Tiuca, C.I.; Ordean, M.N.; Petrovici, A.G.; Nicolescu Șeușan, N.A.; Hăisan, P.L.; et al. Effect of 8-Week β-Alanine Supplementation on CRP, IL-6, Body Composition, and Bio-Motor Abilities in Elite Male Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 13700. [Google Scholar] [CrossRef]
- Hayat, Z.; Sharma, S.; Minhaj, T.M. Efficacy of caffeine on athletic performance: A systematic review and meta-analysis. Sci. Sports 2022, 37, 333–353. [Google Scholar] [CrossRef]
- Cox, G.; Mujika, I.; Tumilty, D.; Burke, L. Acute Creatine Supplementation and Performance during a Field Test Simulating Match Play in Elite Female Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 33–46. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef]
- Smirmaul, B.P.C.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2017, 117, 27–38. [Google Scholar] [CrossRef]
- Bailey, S.J.; Vanhatalo, A.; Winyard, P.G.; Jones, A.M. The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. Eur. J. Sport Sci. 2012, 12, 309–320. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Jakeman, P. Citrulline Malate Enhances Athletic Anaerobic Performance and Relieves Muscle Soreness. J. Strength Cond. Res. 2010, 24, 1215–1222. [Google Scholar] [CrossRef]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.-M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. J. Sport Heal. Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef]
- Chen, I.-F.; Wu, H.-J.; Chen, C.-Y.; Chou, K.-M.; Chang, C.-K. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2016, 13, 28. [Google Scholar] [CrossRef]
- Dorrell, H.F.; I Gee, T. The Acute Effects Different Quantities of Branched-Chain Amino Acids Have on Recovery of Muscle Function. Sports Nutr. Ther. 2016, 1, e115. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sport. Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Gills, J.L.; Glenn, J.M.; Gray, M.; Romer, B.; Lu, H. Acute citrulline-malate supplementation is ineffective during aerobic cycling and subsequent anaerobic performance in recreationally active males. Eur. J. Sport Sci. 2021, 21, 77–83. [Google Scholar] [CrossRef]
- Lutsch, D.J.; Camic, C.L.; Jagim, A.R.; Johnston, N.J.; Musgjerd, T.L. Acute Effects of a Multi-Ingredient Pre-Workout Supplement On 5-KM Running Performance in Recreationally-Trained Athletes. Int. J. Exerc. Sci. 2019, 12, 1045. [Google Scholar]
- Varanoske, A.N.; Stout, J.R.; Hoffman, J.R. Effects of β-Alanine Supplementation and Intramuscular Carnosine Content on Exercise Performance and Health. In Nutrition and Enhanced Sports Performance: Muscle Building, Endurance, and Strength; Academic Press: Cambridge, MA, USA, 2018; pp. 327–344. [Google Scholar] [CrossRef]
Pre-Workout Supplement (n = 15) | Placebo (n = 15) | |
---|---|---|
Age (yrs) | 23.7 ± 5.7 | 26.7 ± 7.2 |
Height (cm) | 183.8 ± 7.6 | 187.4 ± 5.5 |
Body Mass (kg) | 83.7 ± 14.2 | 87.9 ± 8.5 |
Fat-Free Mass (kg) | 14.1 ± 6.1 | 15.6 ± 4.8 |
Fat Mass (kg) | 69.5 ± 8.8 | 72.3 ± 6.9 |
Pre-Workout Supplement (n = 15) | Placebo (n = 15) | η2/p | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Time | Group | Time × Group Interaction | |
Body Composition, Resting Heart Rate and Blood Pressure | |||||||
Resting Systolic Blood Pressure (mmHg) | 123.3 ± 7.9 | 122.3 ± 7.1 | 124.0 ± 9.4 | 122.8 ± 7.2 | 0.092/0.089 | 0.003/0.763 | 0.007/0.669 |
Resting Diastolic Blood Pressure (mmHg) | 77.3 ± 10.4 | 76.10 ± 10.9 | 76.1 ± 9.3 | 76.3 ± 6.4 | <0.001/0.932 | <0.001/0.954 | 0.009/0.622 |
Resting Heart Rate (beats/min) | 66.3 ± 10.3 | 65.5 ± 8.7 | 66.7 ± 10.5 | 66.8 ± 9.3 | 0.038/0.302 | 0.002/0.826 | 0.014/0.538 |
Performance Indices | |||||||
Counter-movement Jump Height (cm) | 40.8 ± 5.6 | 42.5 ± 5.2 *# | 40.9 ± 4.8 | 41.3 ± 3.2 # | 0.146/0.037 | 0.005/0.714 | 0.136/0.045 |
20 m Sprint (s) | 3.12 ± 0.19 | 3.15 ± 0.16 | 3.26 ± 0.28 | 3.21 ± 0.25 | 0.003/0.773 | 0.056/0.208 | 0.056/0.209 |
Agility T-Test (s) | 10.55 ± 0.43 | 10.37 ± 0.32 *# | 10.56 ± 0.32 | 10.65 ± 0.35 # | 0.274/0.003 | 0.061/0.189 | 0.144/0.039 |
RAST Peak Power (W) | 358.6 ± 50.3 | 364.7 ± 52.2 | 336.2 ± 56.9 | 326.3 ± 54.5 | 0.004/0.734 | 0.054/0.217 | 0.004/0.733 |
RAST Minimum Power (W) | 238.8 ± 49.4 | 272.0 ± 55.2 *# | 237.1 ± 47.0 | 230.1 ± 67.1 # | 0.485/<0.001 | 0.013/0.541 | 0.290/0.041 |
RAST Average Power (W) | 294.6 ± 45.2 | 348.5 ± 50.8 *# | 288.0 ± 47.5 | 281.2 ± 63.2 # | 0.295/0.002 | 0.054/0.216 | 0.362/0.003 |
RAST Fatigue Index, FI (%) | 32.0 ± 6.4 | 24.1 ± 5.6 *# | 27.6 ± 8.9 | 26.3 ± 9.4 # | 0.376/<0.001 | <0.001/0.975 | 0.164/0.026 |
Yo-Yo IRL1 VO2max (mL/kg/min) | 43.4 ± 3.0 | 44.9 ± 4.3 | 43.7 ± 3.8 | 43.9 ± 4.2 | 0.117/0.064 | 0.002/0.802 | 0.064/0.178 |
Blood Lactate Concentration (mmol/L) | 15.2 ± 7.7 | 14.3 ± 5.4 | 16.4 ± 5.6 | 16.0 ± 4.5 | 0.027/0.388 | 0.013/0.556 | <0.001/0.907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douligeris, A.; Methenitis, S.; Lazou, A.; Panayiotou, G.; Feidantsis, K.; Voulgaridou, G.; Manios, Y.; Jamurtas, A.Z.; Giaginis, C.; Papadopoulou, S.K. The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes. Nutrients 2023, 15, 2304. https://doi.org/10.3390/nu15102304
Douligeris A, Methenitis S, Lazou A, Panayiotou G, Feidantsis K, Voulgaridou G, Manios Y, Jamurtas AZ, Giaginis C, Papadopoulou SK. The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes. Nutrients. 2023; 15(10):2304. https://doi.org/10.3390/nu15102304
Chicago/Turabian StyleDouligeris, Athanasios, Spyridon Methenitis, Antonia Lazou, George Panayiotou, Konstantinos Feidantsis, Gavriela Voulgaridou, Yannis Manios, Athanasios Z. Jamurtas, Constantinos Giaginis, and Sousana K. Papadopoulou. 2023. "The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes" Nutrients 15, no. 10: 2304. https://doi.org/10.3390/nu15102304
APA StyleDouligeris, A., Methenitis, S., Lazou, A., Panayiotou, G., Feidantsis, K., Voulgaridou, G., Manios, Y., Jamurtas, A. Z., Giaginis, C., & Papadopoulou, S. K. (2023). The Effect of Acute Pre-Workout Supplement Ingestion on Basketball-Specific Performance of Well-Trained Athletes. Nutrients, 15(10), 2304. https://doi.org/10.3390/nu15102304