Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Supplementation
2.3. Biochemical and Anthropometric Measurements
2.4. Food Consumption
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics and Recruitment
3.2. Dietary Assessment
3.3. Body Composition
3.4. Other Follow-Up Data
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Josiak, K.; Jankowska, E.A.; Piepoli, M.F.; Banasiak, W.; Ponikowski, P. Skeletal myopathy in patients with chronic heart failure: Significance of anabolic-androgenic hormones. J. Cachexia Sarcopenia Muscle 2014, 5, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Ni, W.; Yuan, X.; Zhang, H.; Li, P.; Xu, J.; Zhao, Z. Sarcopenia in heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2021, 8, 1007–1017. [Google Scholar] [CrossRef]
- Hotta, K.; Taniguchi, R.; Nakayama, H.; Yamaguchi, F.; Sato, Y. The Effects of an Oral Nutritional Supplement with Whey Peptides and Branched-Chain Amino Acids for Cardiac Rehabilitation of Patients with Chronic Heart Failure. Int. Heart J. 2021, 62, 1342–1347. [Google Scholar] [CrossRef]
- Lena, A.; Anker, M.S.; Springer, J. Muscle Wasting and Sarcopenia in Heart Failure-The Current State of Science. Int. J. Mol. Sci. 2020, 21, 6549. [Google Scholar] [CrossRef]
- von Haehling, S.; Ebner, N.; Dos Santos, M.R.; Springer, J.; Anker, S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017, 14, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Dos Santos, M.R.; Ebner, N.; Emami, A.; Konishi, M.; Ishida, J.; Valentova, M.; Sandek, A.; Doehner, W.; Anker, S.D.; et al. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: Insights from Studies Investigating Co-morbidities Aggravating Heart Failure. Wien. Klin. Wochenschr. 2016, 128, 497–504. [Google Scholar] [CrossRef]
- Anker, S.D.; Ponikowski, P.; Varney, S.; Chua, T.P.; Clark, A.L.; Webb-Peploe, K.M.; Harrington, D.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997, 349, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.; Walrand, S.; Beelen, M.; Gijsen, A.P.; Kies, A.K.; Boirie, Y.; Saris, W.H.; van Loon, L.J. Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men. J. Nutr. 2009, 139, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. [Google Scholar] [CrossRef]
- Koopman, R.; Wagenmakers, A.J.; Manders, R.J.; Zorenc, A.H.; Senden, J.M.; Gorselink, M.; Keizer, H.A.; van Loon, L.J. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E645–E653. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Tipton, K.D.; Ferrando, A.A.; Wolfe, R.R. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am. J. Physiol. 1999, 276, E118–E124. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Chalé, A.; Cloutier, G.J.; Hau, C.; Phillips, E.M.; Dallal, G.E.; Fielding, R.A. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 682–690. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef]
- Haß, U.; Kochlik, B.; Herpich, C.; Rudloff, S.; Norman, K. Effects of an Omega-3 Supplemented, High-Protein Diet in Combination with Vibration and Resistance Exercise on Muscle Power and Inflammation in Old Adults: A Pilot Randomized Controlled Trial. Nutrients 2022, 14, 4274. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Rondanelli, M.; Klersy, C.; Terracol, G.; Talluri, J.; Maugeri, R.; Guido, D.; Faliva, M.A.; Solerte, B.S.; Fioravanti, M.; Lukaski, H.; et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am. J. Clin. Nutr. 2016, 103, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Opasich, C.; Verri, M.; Boschi, F.; Febo, O.; Pasini, E.; Pastoris, O. Is nutritional intake adequate in chronic heart failure patients? J. Am. Coll. Cardiol. 2003, 42, 1218–1223. [Google Scholar] [CrossRef]
- Rohde, L.E.P.; Montera, M.W.; Bocchi, E.A.; Clausell, N.O.; Albuquerque, D.C.; Rassi, S.; Colafranceschi, A.S.; Freitas, A.F.J.; Ferraz, A.S.; Biolo, A.; et al. Diretriz Brasileira de Insuficiência Cardíaca Crônica e Aguda. Arq. Bras. Cardiol. 2018, 111, 436–539. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef]
- Rao, V.N.; Zhao, D.; Allison, M.A.; Guallar, E.; Sharma, K.; Criqui, M.H.; Cushman, M.; Blumenthal, R.S.; Michos, E.D. Adiposity and Incident Heart Failure and its Subtypes: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Heart Fail. 2018, 6, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, J.; Wang, Y.; Jiang, B.; Xu, X.; Lan, Y.; Wang, J.; Lin, X. Prevalence of sarcopenia and its association with clinical outcomes in heart failure: An updated meta-analysis and systematic review. Clin. Cardiol. 2023, 46, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Narumi, T.; Watanabe, T.; Kadowaki, S.; Takahashi, T.; Yokoyama, M.; Kinoshita, D.; Honda, Y.; Funayama, A.; Nishiyama, S.; Takahashi, H.; et al. Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure. Eur. J. Intern. Med. 2015, 26, 118–122. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Tomczak, C.R.; Scott, J.M.; Paterson, D.I.; Kitzman, D.W. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J. Appl. Physiol. 2015, 119, 739–744. [Google Scholar] [CrossRef]
- Vest, A.R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, Obesity, and Cachexia in Patients With Heart Failure: A Consensus Statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef]
- Page, I.H.; Stare, F.J.; Corcoran, A.C.; Pollack, H.; Wilkinson, C.F., Jr. Atherosclerosis and the fat content of the diet. J. Am. Med. Assoc. 1957, 164, 2048–2051. [Google Scholar] [CrossRef]
- Lima, T.; Silva, D.G.D.; Barreto, I.D.C.; Oliveira, J.C.; Oliveira, L.C.S.; Arcelino, L.A.M.; Sousa, A.C.S.; Barreto Filho, J.A.S. Quality of Intra-Hospital Nutritional Counseling in Patients with STEMI in the Public and Private Health Networks of Sergipe: The VICTIM Register. Arq. Bras. Cardiol. 2019, 113, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, H.E.; Hummel, S.L.; Carbone, S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef]
- Carbone, S.; Canada, J.M.; Buckley, L.F.; Trankle, C.R.; Billingsley, H.E.; Dixon, D.L.; Mauro, A.G.; Dessie, S.; Kadariya, D.; Mezzaroma, E.; et al. Dietary Fat, Sugar Consumption, and Cardiorespiratory Fitness in Patients With Heart Failure With Preserved Ejection Fraction. JACC Basic Transl. Sci. 2017, 2, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Testa, G.; Liguori, I.; Papillo, M.; Flocco, V.; Panicara, V.; Galizia, G.; Della-Morte, D.; Gargiulo, G.; Cacciatore, F.; et al. Sarcopenia and Heart Failure. Nutrients 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.Y.; Park, S.; Smeets, E.; Schutzler, S.; Azhar, G.; Wei, J.Y.; Ferrando, A.A.; Wolfe, R.R. Consumption of a Specially-Formulated Mixture of Essential Amino Acids Promotes Gain in Whole-Body Protein to a Greater Extent than a Complete Meal Replacement in Older Women with Heart Failure. Nutrients 2019, 11, 1360. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Amiya, E.; Watanabe, M.; Hosoya, Y.; Nakayama, A.; Fujiwara, T.; Taya, M.; Oguri, G.; Hyodo, K.; Takayama, N.; et al. An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc. Disord. 2017, 17, 205. [Google Scholar] [CrossRef]
- Niccoli, S.; Kolobov, A.; Bon, T.; Rafilovich, S.; Munro, H.; Tanner, K.; Pearson, T.; Lees, S.J. Whey Protein Supplementation Improves Rehabilitation Outcomes in Hospitalized Geriatric Patients: A Double Blinded, Randomized Controlled Trial. J. Nutr. Gerontol. Geriatr. 2017, 36, 149–165. [Google Scholar] [CrossRef]
- Azhar, G.; Raza, S.; Pangle, A.; Coleman, K.; Dawson, A.; Schrader, A.; Wolfe, R.R.; Wei, J.Y. Potential Beneficial Effects of Dietary Protein Supplementation and Exercise on Functional Capacity in a Pilot Study of Individuals with Heart Failure with Preserved Ejection Fraction. Gerontol. Geriatr. Med. 2020, 6, 2333721420982808. [Google Scholar] [CrossRef] [PubMed]
- Sepandi, M.; Samadi, M.; Shirvani, H.; Alimohamadi, Y.; Taghdir, M.; Goudarzi, F.; Akbarzadeh, I. Effect of whey protein supplementation on weight and body composition indicators: A meta-analysis of randomized clinical trials. Clin. Nutr. ESPEN 2022, 50, 74–83. [Google Scholar] [CrossRef]
- Wirunsawanya, K.; Upala, S.; Jaruvongvanich, V.; Sanguankeo, A. Whey Protein Supplementation Improves Body Composition and Cardiovascular Risk Factors in Overweight and Obese Patients: A Systematic Review and Meta-Analysis. J. Am. Coll. Nutr. 2018, 37, 60–70. [Google Scholar] [CrossRef]
- Evangelista, L.S.; Heber, D.; Li, Z.; Bowerman, S.; Hamilton, M.A.; Fonarow, G.C. Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: A feasibility study. J. Cardiovasc. Nurs. 2009, 24, 207–215. [Google Scholar] [CrossRef] [PubMed]
WPI (n = 17) | Placebo (n = 16) | p-Value | |
---|---|---|---|
Age (years) | 64 (61–67) | 61 (58–78) | 0.466 |
Male | 13 (76.5) | 13 (81.3) | 0.737 |
Hypertension | 13 (76.5) | 10 (62.5) | 0.383 |
Diabetes | 8 (47.1) | 10 (62.5) | 0.373 |
Dyslipidemia | 12 (70.6) | 9 (56.3) | 0.392 |
Overweight/obesity | 15 (88.2) | 11 (68.8) | 0.171 |
Prior myocardial infarction | 17 (100.0) | 14 (87.5) | 0.133 |
Percutaneous coronary intervention | 7 (41.2) | 5 (31.3) | 0.554 |
Coronary artery bypass grafting | 10 (58.8) | 5 (31.3) | 0.112 |
NYHA I | 15 (88.2) | 12 (75.0) | 0.325 |
LVEF (%) | 42.0 ± 9.0 | 44.0 ± 7.5 | 0.479 |
Smoking/former smoking | 13 (76.5) | 14 (87.5) | 0.616 |
BMI (kg/m2) | 28.6 ± 4.6 | 26.8 ± 3.5 | 0.221 |
WC (cm) | 101.7 ± 13.2 | 100.4 ± 9.2 | 0.742 |
Glycemia (mg/dL) | 107 (100.0–138.0) | 123 (98.0–154.8) | 0.605 |
Triglycerides (mg/dL) | 156.4 ± 58.5 | 176.7 ± 94.2 | 0.458 |
Total cholesterol (mg/dL) | 159.6 ± 28.3 | 170.4 ± 41.1 | 0.382 |
HDL-cholesterol (mg/dL) | 43.9 ± 11.3 | 40.6 ± 11.8 | 0.414 |
LDL-cholesterol (mg/dL) | 102 (71.0–125.5) | 100 (86.5–130.2) | 0.874 |
Total fat mass (kg) | 28.9 (23.9–34.7) | 27.6 (18.6–30.9) | 0.367 |
% Body fat | 34.9 ± 8.3 | 32.3 ± 7.8 | 0.361 |
SMM (kg) | 28.2 ± 5.3 | 28.6 ± 5.1 | 0.789 |
MMI (kg/m2) | 10.1 ± 1.2 | 9.8 ± 1.1 | 0.487 |
Handgrip strength (kgf) | |||
Men | 31.8 ± 8.0 | 31.8 ± 6.9 | 0.979 |
Women | 13.2 ± 3.1 | 22.3 ± 11.0 | 0.169 |
Sarcopenia | 7 (41.2%) | 10 (62.5%) | 0.690 |
Moderate-severe sarcopenia | 7 (41.2%) | 10 (62.5%) | 0.690 |
Whey Protein (n = 15) | Placebo (n = 10) | |||||
---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value | Baseline | 12 Weeks | p-Value | |
Energy intake, kcal/d | 1408.4 (840.2–1605.2) | 1056.6 (989.6–1565.0) | 0.826 | 1295.0 (965.2–1902.7) | 1259.0 (812.2–1673.3) | 0.445 |
Protein, % of energy | 18.1 (16.0–22.1) | 19.0 (14.8–30.5) | 0.363 | 19.9 (16.8–24.7) | 17.6 (14.3–21.5) | 0.445 |
Protein, g.kg BW–1. d–1 | 0.8 (0.5–1.0) | 0.8 (0.6–1.3) | 0.363 | 0.9 (0.4–1.1) | 0.7 (0.5–1.0) | 0.203 |
Carbohydrate, % of energy | 60.6 (49.5–65.7) | 59.9 (51.3–70.2) | 0.397 | 58.2 (53.2–60.6) | 54.3 (49.4–59.7) | 0.508 |
Fat, % of energy | 20.4 (14.4–28.5) | 18.2 (11.0–22.2) | 0.056 | 23 (16.1–28.4) | 26 (21.4–31.5) | 0.333 |
SFA, % of energy | 8.3 (4.1–10.8) | 5.0 (4.2–8.3) | 0.056 | 8.1 (4.7–12.6) | 8.5 (6.7–11.1) | 0.799 |
MUFA, % of energy | 5.0 (3.2–7.0) | 4.3 (3.2–7.2) | 0.683 | 7.7 (3.2–8.6) | 7.5 (5.1–9.3) | 0.445 |
PUFA, % of energy | 1.7 (1.4–2.8) | 2.0 (1.3–3.3) | 0.638 | 2.3 (1.4–3.7) | 2.5 (2.1–3.8) | 0.721 |
n-3 PUFA, g | 0.4 (0.2–0.8) | 0.3 (0.2–0.8) | 0.875 | 0.6 (0.2–0.7) | 0.4 (0.3–0.5) | 0.203 |
n-6 PUFA, g | 2.3 (1.1–4.8) | 2.4 (1.2–3.3) | 0.198 | 2.4 (1.1–7.0) | 3.1 (1.9–4.8) | 0.508 |
Trans fatty acids, g | 1.1 (0.2–2.0) | 0.4 (0.1–1.6) | 0.133 | 0.4 (0.1–0.5) | 0.8 (0.2–1.8) | 0.074 |
Cholesterol, mg | 137.6 (71.3–176.0) | 157.5 (66.7–242.3) | 0.331 | 123 (64.4–217.2) | 164.8 (80.7–207.8) | 0.333 |
Total fiber, g | 12.5 (8.8–22.2) | 14.6 (11.0–24.2) | 0.925 | 16 (7.1–20.9) | 14.6 (8.0–23.6) | 0.878 |
Vitamin A, μg | 339.7 (204.0–1191.9) | 735.6 (227.0–1867.8) | 0.551 | 696 (301.0–1300.1) | 1577.8 (459.6–2443.3) | 0.131 |
Vitamin C, mg | 55.4 (9.2–182.4) | 54.5 (21.9–134.4) | 0.826 | 32.2 (15.7–67.6) | 85.1 (8.1–190.7) | 0.333 |
Vitamin E, mg | 1.1 (0.3–2.3) | 1.3 (0.8–1.9) | 0.778 | 1.3 (0.7–4.1) | 2.4 (1.2–3.5) | 0.646 |
Sodium, mg | 1495 (810.5–1979.6) | 933 (567.4–1547.4) | 0.041 * | 1249.9 (686.3–2099) | 1159.5 (873.7–1369.1) | 0.594 |
Zinc, mg | 4.0 (2.2–7.6) | 5.3 (3.4–7.3) | 0.124 | 8.0 (3.8–8.9) | 4.1 (2.5–9.9) | 0.214 |
Whey Protein (n = 15) | Placebo (n = 10) | |||||
---|---|---|---|---|---|---|
Baseline | 12 Weeks | p-Value | Baseline | 12 Weeks | p-Value | |
Glucose (mg/dL) | 107 (100.0–138.0) | 119 (101.0–137.0) | 0.570 | 123 (98.0–154.7) | 103.5 (96.5–149.3) | 0.674 |
TC (mg/dL) | 157.3 ± 29.3 | 156.1 ± 41.2 | 0.826 | 165.8 ± 36.8 | 154.7 ± 22.1 | 0.318 |
Creatinine (mg/dL) | 0.98 ± 0.21 | 1.06 ± 0.17 | 0.126 | 1.08 ± 0.25 | 1.18 ± 0.53 | 0.632 |
Urea (mg/dL) | 40 ± 12.8 | 47.2 ± 22.0 | 0.045 * | 38.6 ± 7.9 | 43 ± 29.3 | 0.435 |
TG (mg/dL) | 147.5 ± 44.8 | 143.3 ± 57.5 | 0.785 | 162.2 ± 36.8 | 218.3 ± 94.0 | 0.081 |
HDL-c (mg/dL) | 43.2 ± 11.7 | 44.7 ± 11.5 | 0.327 | 41.2 ± 13.8 | 39.2 ± 12.5 | 0.244 |
LDL-c (mg/dL) | 96.9 ± 28.4 | 99.7 ± 37.0 | 0.597 | 108.6 ± 27.5 | 91.5 ± 10.5 | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, E.M.; Moreira, A.S.B.; Huguenin, G.V.B.; Tibiriça, E.; De Lorenzo, A. Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial. Nutrients 2023, 15, 2320. https://doi.org/10.3390/nu15102320
dos Santos EM, Moreira ASB, Huguenin GVB, Tibiriça E, De Lorenzo A. Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial. Nutrients. 2023; 15(10):2320. https://doi.org/10.3390/nu15102320
Chicago/Turabian Styledos Santos, Elisa M., Annie S. B. Moreira, Grazielle V. B. Huguenin, Eduardo Tibiriça, and Andrea De Lorenzo. 2023. "Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial" Nutrients 15, no. 10: 2320. https://doi.org/10.3390/nu15102320
APA Styledos Santos, E. M., Moreira, A. S. B., Huguenin, G. V. B., Tibiriça, E., & De Lorenzo, A. (2023). Effects of Whey Protein Isolate on Body Composition, Muscle Mass, and Strength of Chronic Heart Failure Patients: A Randomized Clinical Trial. Nutrients, 15(10), 2320. https://doi.org/10.3390/nu15102320