Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Bariatric Surgical Procedures
2.3. Anthropometric Measurements
2.4. Blood Collection and Analysis
2.5. Dietary Intake
2.6. Statistical Analysis
3. Results
3.1. Anthropometric Measurements
3.2. Anthropometric Parameters and Type of Bariatric Surgery
3.3. Biochemical Blood Tests
3.4. Biochemical Parameters and Anthropometric Parameters
3.5. Biochemical Parameters and Type of Bariatric Surgery
3.6. Energy and Selected Nutrient Intake
3.7. Energy, Selected Nutrient Intake, and Anthropometric Parameters
3.8. Energy, Selected Nutrient Intake, and Biochemical Parameters
3.9. Energy, Selected Nutrient Intake, and Type of Bariatric Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 April 2023).
- World Obesity Day 2022—Accelerating Action to Stop Obesity World Obesity Day 2022—Accelerating Action to Stop Obesity. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 2 April 2023).
- Rubino, F.; Logue, J.; Bøgelund, M.; Madsen, M.E.; Cancino, A.P.; Høy, M.; Panton, U.H. Attitudes about the treatment of obesity among healthcare providers involved in the care of obesity-related diseases: A survey across medical specialties in multiple European countries. Obes. Sci. Pract. 2021, 21, 7, 659–668. [Google Scholar] [CrossRef] [PubMed]
- WHO European Regional Obesity Report 2022. Copenhagen: WHO Regional Office for Europe; 2022. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 2 April 2023).
- De Luca, M.; Angrisani, L.; Himpens, J.; Busetto, L.; Scopinaro, N.; Weiner, R.; Sartori, A.; Stier, C.; Lakdawala, M.; Bhasker, A.G.; et al. Indications for Surgery for Obesity and Weight-Related Diseases: Position Statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes. Surg. 2016, 26, 1659–1696. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar]
- Shiau, J.; Biertho, L. Canadian Adult Obesity Clinical Practice Guidelines: Bariatric Surgery: Postoperative Management. Available online: https://obesitycanada.ca/guidelines/postop (accessed on 3 April 2023).
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Obesity Management Task Force of the European Association for the Study of Obesity Released “Practical Recommendations for the Post-Bariatric Surgery Medical Management”. Obes. Surg. 2018, 28, 2117–2121. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. Obes. Facts 2017, 10, 597–632. [Google Scholar] [CrossRef] [PubMed]
- Sherf Dagan, S.; Goldenshluger, A.; Globus, I.; Schweiger, C.; Kessler, Y.; Kowen Sandbank, G.; Ben-Porat, T.; Sinai, T. Nutritional Recommendations for Adult Bariatric Surgery Patients: Clinical Practice. Adv. Nutr. 2017, 8, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Tabesh, M.R.; Maleklou, F.; Ejtehadi, F.; Alizadeh, Z. Nutrition, Physical Activity, and Prescription of Supplements in Pre- and Post-bariatric Surgery Patients: A Practical Guideline. Obes. Surg. 2019, 29, 3385–3400. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update. Obes. Rev. 2020, 21, e13087. [Google Scholar] [CrossRef]
- El Ansari, W.; Elhag, W. Weight Regain and Insufficient Weight Loss After Bariatric Surgery: Definitions, Prevalence, Mechanisms, Predictors, Prevention and Management Strategies, and Knowledge Gaps-a Scoping Review. Obes. Surg. 2021, 31, 1755–1766. [Google Scholar] [CrossRef]
- Moize, V.L.; Pi-Sunyer, X.; Mochari, H.; Vidal, J. Nutrition pyramid for post-bariatric bypass patients. Obes. Surg. 2010, 20, 1133–1141. [Google Scholar] [CrossRef]
- Sarkar, S.; Anokye-Danso, F.; Tronieri, J.S.; Millar, J.S.; Alamuddin, N.; Wadden, T.A.; Ahima, R.S. Differential Effects of Roux-en-Y Gastric Bypass Surgery and Laparoscopic Sleeve Gastrectomy on Fatty Acid Levels. Obes. Surg. 2019, 29, 3941–3947. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.B.; Gomes, D.L.; de Carvalho, K.M. Poor diet quality and postoperative time are independent risk factors for weight regain after Roux-en-Y gastric bypass. Nutrition 2016, 32, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.D.; Norris, A.; Fernandez, A. Changes in nutrients and food groups intake following laparoscopic Roux-en-Y gastric bypass (RYGB). Obes. Surg. 2014, 24, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Zarshenas, N.; Tapsell, L.C.; Neale, E.P.; Batterham, M.; Talbot, M.L. The Relationship Between Bariatric Surgery and Diet Quality: A Systematic Review. Obes. Surg. 2020, 30, 1768–1792. [Google Scholar] [CrossRef]
- Hierons, S.J.; Abbas, K.; Sobczak, A.I.S.; Cerone, M.; Smith, T.K.; Ajjan, R.A.; Stewart, A.J. Changes in plasma free fatty acids in obese patients before and after bariatric surgery highlight alterations in lipid metabolism. Sci. Rep. 2022, 12, 15337. [Google Scholar] [CrossRef]
- Chou, J.J.; Lee, W.J.; Almalki, O.; Chen, J.C.; Tsai, P.L.; Yang, S.H. Dietary Intake and Weight Changes 5 Years after Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2017, 27, 3240–3246. [Google Scholar] [CrossRef] [PubMed]
- Coupaye, M.; Sami, O.; Calabrese, D.; Flamant, M.; Ledoux, S. Prevalence and Determinants of Nutritional Deficiencies at Mid-Term After Sleeve Gastrectomy. Obes. Surg. 2020, 30, 2165–2172. [Google Scholar] [CrossRef]
- Janmohammadi, P.; Sajadi, F.; Alizadeh, S.; Daneshzad, E. Comparison of Energy and Food Intake between Gastric Bypass and Sleeve Gastrectomy: A Meta-analysis and Systematic Review. Obes. Surg. 2019, 29, 1040–1048. [Google Scholar] [CrossRef]
- Kanerva, N.; Larsson, I.; Peltonen, M.; Lindroos, A.K.; Carlsson, L.M. Changes in total energy intake and macronutrient composition after bariatric surgery predict long-term weight outcome: Findings from the Swedish Obese Subjects (SOS) study. Am. J. Clin. Nutr. 2017, 106, 136–145. [Google Scholar] [CrossRef]
- Forbes, R.; Gasevic, D.; Watson, E.M.; Ziegler, T.R.; Lin, E.; Burgess, J.R.; Gletsu-Miller, N. Essential Fatty Acid Plasma Profiles Following Gastric Bypass and Adjusted Gastric Banding Bariatric Surgeries. Obes. Surg. 2016, 26, 1237–1246. [Google Scholar] [CrossRef]
- Biertho, L.; Hong, D.; Gagner, M. Canadian Adult Obesity Clinical Practice Guidelines: Bariatric Surgery: Surgical Options and Outcomes. Available online: https://obesitycanada.ca/guidelines/surgeryoptions (accessed on 12 May 2023).
- WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry (1993: Geneva, Switzerland) & World Health Organization. Physical status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. World Health Organization. 1995. Available online: https://apps.who.int/iris/handle/10665/37003/ (accessed on 9 April 2023).
- WHO Consultation on Obesity (1999: Geneva, Switzerland) & World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. World Health Organization. 2000. Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 30 March 2023).
- Brethauer, S.A.; Kim, J.; El Chaar, M.; Papasavas, P.; Eisenberg, D.; Rogers, A.; Ballem, N.; Kligman, M.; Kothari, S.; ASMBS Clinical Issues Committee. Standardized outcomes reporting in metabolic and bariatric surgery. Obes. Surg. 2015, 25, 587–606. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008. World Health Organization. 2011. Available online: https://apps.who.int/iris/handle/10665/44583 (accessed on 28 March 2023).
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute: Warsaw, Poland, 2000. [Google Scholar]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Bąk-Sosnowska, M.; Białkowska, M.; Bogdański, P.; Chomiuk, T.; Gałązka-Sobotka, M.; Holecki, M.; Jarosińska, A.; Jezierska, M.; Kamiński, P.; Kłoda, K.; et al. Zalecenia kliniczne dotyczące postępowania u chorych na otyłość 2022—Stanowisko Polskiego Towarzystwa Leczenia Otyłości. Med. Prakt. Wyd. Specj. 2022, 5, 1–87. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Standards of Nutrition for the Polish Population; The National Institute of Public Health—National Institute of Hygiene: Warsaw, Poland, 2020. [Google Scholar]
- Diabetes Poland. Clinical recommendations for the management of patients with diabetes 2022. A Position of Diabetes Poland. Curr. Top. Diabetes 2022, 2, 1–134. [Google Scholar]
- Diniz Mde, F.; Passos, V.M.; Barreto, S.M.; Linares, D.B.; de Almeida, S.R.; Rocha, A.L.; Diniz, M.T. Different criteria for assessment of Roux-en-Y gastric bypass success: Does only weight matter? Obes. Surg. 2009, 19, 1384–1392. [Google Scholar] [CrossRef]
- Kang, J.H.; Le, Q.A. Effectiveness of bariatric surgical procedures: A systematic review and network meta-analysis of randomized controlled trials. Medicine 2017, 96, e8632. [Google Scholar] [CrossRef]
- Grönroos, S.; Helmiö, M.; Juuti, A.; Tiusanen, R.; Hurme, S.; Löyttyniemi, E.; Ovaska, J.; Leivonen, M.; Peromaa-Haavisto, P.; Mäklin, S.; et al. Effect of Laparoscopic Sleeve Gastrectomy vs Roux-en-Y Gastric Bypass on Weight Loss and Quality of Life at 7 Years in Patients with Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. JAMA Surg. 2021, 56, 137–146. [Google Scholar] [CrossRef]
- Bettencourt-Silva, R.; Neves, J.S.; Pedro, J.; Guerreiro, V.; Ferreira, M.J.; Salazar, D.; Souteiro, P.; Magalhães, D.; Oliveira, S.C.; Queirós, J.; et al. Comparative Effectiveness of Different Bariatric Procedures in Super Morbid Obesity. Obes. Surg. 2019, 29, 281–291. [Google Scholar] [CrossRef]
- Artero, A.; Martinez-Ibañez, J.; Civera, M.; Martínez-Valls, J.F.; Ortega-Serrano, J.; Real, J.T.; Ascaso, J.F. Anthropometric parameters and permanent remission of comorbidities 10 years after open gastric bypass in a cohort with high prevalence of super-obesity. Endocrinol. Diabetes Nutr. 2017, 64, 310–316. [Google Scholar] [CrossRef]
- Uno, K.; Seki, Y.; Kasama, K.; Wakamatsu, K.; Umezawa, A.; Yanaga, K.; Kurokawa, Y. A Comparison of the Bariatric Procedures that Are Performed in the Treatment of Super Morbid Obesity. Obes. Surg. 2017, 27, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Sharples, A.J.; Mahawar, K. Systematic Review and Meta-Analysis of Randomised Controlled Trials Comparing Long-Term Outcomes of Roux-En-Y Gastric Bypass and Sleeve Gastrectomy. Obes. Surg. 2020, 30, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Corcelles, R.; Boules, M.; Froylich, D.; Hag, A.; Daigle, C.R.; Aminian, A.; Brethauer, S.A.; Burguera, B.; Schauer, P.R. Total Weight Loss as the Outcome Measure of Choice After Roux-en-Y Gastric Bypass. Obes. Surg. 2016, 26, 1794–1798. [Google Scholar] [CrossRef]
- Carvajal, C.; Savino, P.; Ramirez, A.; Grajales, M.; Nassar, R.; Zundel, N. Anthropometric Assessment for Bariatric Procedures in the Private Practice of a Registered Dietitian in Colombia. Obes. Surg. 2017, 27, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Zazai, R.; Wilms, B.; Ernst, B.; Thurnheer, M.; Schultes, B. Waist circumference and related anthropometric indices are associated with metabolic traits in severely obese subjects. Obes. Surg. 2014, 24, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Wei, Y.F.; Wu, H.D.; Chang, C.Y.; Huang, C.K.; Tai, C.M.; Hung, C.M.; Tseng, W.K.; Wu, C.C. The impact of various anthropometric measurements of obesity on pulmonary function in candidates for surgery. Obes. Surg. 2010, 20, 589–594. [Google Scholar] [CrossRef]
- Coupaye, M.; Rivière, P.; Breuil, M.C.; Castel, B.; Bogard, C.; Dupré, T.; Flamant, M.; Msika, S.; Ledoux, S. Comparison of nutritional status during the first year after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes. Surg. 2014, 24, 276–283. [Google Scholar] [CrossRef]
- Moizé, V.; Andreu, A.; Flores, L.; Torres, F.; Ibarzabal, A.; Delgado, S.; Lacy, A.; Rodriguez, L.; Vidal, J. Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a mediterranean population. J Acad. Nutr. Diet. 2013, 113, 400–410. [Google Scholar] [CrossRef]
- Coluzzi, I.; Raparelli, L.; Guarnacci, L.; Paone, E.; Del Genio, G.; le Roux, C.W.; Silecchia, G. Food Intake and Changes in Eating Behavior after Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2016, 26, 2059–2067. [Google Scholar] [CrossRef]
- Pinto, S.L.; Juvanhol, L.L.; Bressan, J. Increase in Protein Intake after 3 Months of RYGB Is an Independent Predictor for the Remission of Obesity in the First Year of Surgery. Obes. Surg. 2019, 29, 3780–3785. [Google Scholar] [CrossRef] [PubMed]
- El Labban, S.; Safadi, B.; Olabi, A. The Effect of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery on Dietary Intake, Food Preferences, and Gastrointestinal Symptoms in Post-Surgical Morbidly Obese Lebanese Subjects: A Cross-Sectional Pilot Study. Obes. Surg. 2015, 25, 2393–2399. [Google Scholar] [CrossRef] [PubMed]
- Via, M.A.; Mechanick, J.I. Nutritional and Micronutrient Care of Bariatric Surgery Patients: Current Evidence Update. Curr. Obes. Rep. 2017, 6, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Schoemacher, L.A.H.M.; Abel, A.B.; Thijsselink, M.M.R.; Aarts, E.O. The Relationship between Energy Intake and Weight Loss in Bariatric Patients. Obes. Surg. 2019, 29, 3874–3881. [Google Scholar] [CrossRef]
- Ito, M.K.; Gonçalves, V.S.S.; Faria, S.L.C.M.; Moizé, V.; Porporatti, A.L.; Guerra, E.N.S.; De Luca Canto, G.; de Carvalho, K.M.B. Effect of Protein Intake on the Protein Status and Lean Mass of Post-Bariatric Surgery Patients: A Systematic Review. Obes. Surg. 2017, 27, 502–512. [Google Scholar] [CrossRef]
- Faria, S.L.; de Oliveira Kelly, E.; Lins, R.D.; Faria, O.P. Nutritional management of weight regain after bariatric surgery. Obes. Surg. 2010, 20, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Giusti, V.; Theytaz, F.; Di Vetta, V.; Clarisse, M.; Suter, M.; Tappy, L. Energy and macronutrient intake after gastric bypass for morbid obesity: A 3-y observational study focused on protein consumption. Am. J. Clin. Nutr. 2016, 103, 18–24. [Google Scholar] [CrossRef]
- Verger, E.O.; Aron-Wisnewsky, J.; Dao, M.C.; Kayser, B.D.; Oppert, J.M.; Bouillot, J.L.; Torcivia, A.; Clément, K. Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: A 1-year Follow-up. Obes. Surg. 2016, 26, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.L.; Faria, O.P.; Buffington, C.; de Almeida Cardeal, M.; Ito, M.K. Dietary protein intake and bariatric surgery patients: A review. Obes. Surg. 2011, 21, 1798–1805. [Google Scholar] [CrossRef]
- Steenackers, N.; Gesquiere, I.; Matthys, C. The relevance of dietary protein after bariatric surgery: What do we know? Curr. Opin. Clin. Metab. Care 2018, 21, 58–63. [Google Scholar] [CrossRef]
- Zerrweck, C.; Zurita, L.; Álvarez, G.; Maydón, H.G.; Sepúlveda, E.M.; Campos, F.; Amaya Caviedes, A.; Guilbert, L. Taste and Olfactory Changes Following Laparoscopic Gastric Bypass and Sleeve Gastrectomy. Obes. Surg. 2016, 26, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, A.E.; Karschin, J.; Meile, T.; Küper, M.A.; Königsrainer, A.; Bischoff, S.C. Impact of protein supplementation after bariatric surgery: A randomized controlled double-blind pilot study. Nutrition 2016, 32, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Lopes Gomes, D.; Moehlecke, M.; Lopes da Silva, F.B.; Dutra, E.S.; D’Agord Schaan, B.; Baiocchi de Carvalho, K.M. Whey Protein Supplementation Enhances Body Fat and Weight Loss in Women Long after Bariatric Surgery: A Randomized Controlled Trial. Obes. Surg. 2017, 27, 424–431. [Google Scholar] [CrossRef]
- Faria, S.L.; Faria, O.P.; Lopes, T.C.; Galvão, M.V.; de Oliveira Kelly, E.; Ito, M.K. Relation between carbohydrate intake and weight loss after bariatric surgery. Obes. Surg. 2009, 19, 708–716. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Bouzas, C.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Predimed-Plus Investigators. Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk. Nutrients 2019, 11, 1493. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Lim, H.; Jeong, G.A.; Cho, G.S.; Lee, M.H.; Kim, S. Changes in fat intake, body fat composition and intra-abdominal fat after bariatric surgery. Clin. Nutr. Res. 2014, 3, 157–161. [Google Scholar] [CrossRef]
- Cambiaggi, L.; Chakravarty, A.; Noureddine, N.; Hersberger, M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int. J. Mol. Sci. 2023, 24, 6110. [Google Scholar] [CrossRef]
- Venø, S.K.; Schmidt, E.B.; Bork, C.S. Polyunsaturated Fatty Acids and Risk of Ischemic Stroke. Nutrients 2019, 11, 1467. [Google Scholar] [CrossRef]
- Dutkowska, A.; Rachoń, D. Rola kwasów tłuszczowych n-3 oraz n-6 w prewencji chorób układu sercowo-naczyniowego. Chor. Serca Naczyń. 2015, 12, 154–159. [Google Scholar]
- Chalut-Carpentier, A.; Pataky, Z.; Golay, A.; Bobbioni-Harsch, E. Involvement of dietary Fatty acids in multipl biological and psychological functions, in morbidly obese subjects. Obes. Surg. 2015, 25, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Claycombe, K.J.; Moustaid-Moussa, N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights. Adv. Nutr. 2011, 2, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Sioen, I.; van Lieshout, L.; Eilander, A.; Fleith, M.; Lohner, S.; Szommer, A.; Petisca, C.; Eussen, S.; Forsyth, S.; Calder, P.C.; et al. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations—Focus on Specific Population Groups. Ann. Nutr. Metab. 2017, 70, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Våge, V.; Mjøs, S.A.; Kvalheim, O.M. Changes in Serum Fatty Acid Levels During the First Year after Bariatric Surgery. Obes. Surg. 2016, 26, 1735–1742. [Google Scholar] [CrossRef]
Energy and Nutritional Value | Reference Values | References |
---|---|---|
Energy | ≥1200 kcal/day | European Guidelines for Obesity Management in Adults [32], AACE/TOS/ASMBS [6] |
Proteins | 15–30% of the total calorie intake/day 60–80 g/day | Diabetes Poland [35] AACE/TOS/ASMBS/EASO/OMTF [6] |
Fats | 25–40% of the total calorie intake/day | Diabetes Poland [35] |
Saturated fats (SAFAs) | <10% of the total calorie intake/day | Diabetes Poland [35] |
Monounsaturated fats (MUFAs) | >20% of the total calorie intake/day | Diabetes Poland [35] |
Polyunsaturated fats (PUFAs)
| 6–10% of the total calorie intake/24 h 4% of the total calorie Intake/day 0.5% of the total calorie intake/day 250 mg/day | Diabetes Poland [35] Standards of Nutrition for the Polish Population (The National Institute of Public Health—National Institute of Hygiene or NIPH–NIH) [34] |
Cholesterol | <300 mg/day | Diabetes Poland [35] |
Carbohydrates | 45–60% of the total calorie intake/day | Diabetes Poland [35] |
Sucrose | <10% of the total calorie intake/day | Diabetes Poland [35] |
Dietary fiber | Min. 25 g/day or 15 g/1000 kcal | Diabetes Poland [35] |
Anthropometric Parameters | Stage of the Study | M | Mdn | SD | Min | Max | t | df | p |
---|---|---|---|---|---|---|---|---|---|
BW | 1st | 134.66 | 127.75 | 26.77 | 88.00 | 204.00 | 23.6 | 69 | 0.001 |
2nd | 92.68 | 90.75 | 21.63 | 51.10 | 143.30 | ||||
BMI (kg/m2) | 1st | 47.36 | 46.35 | 7.35 | 35.25 | 66.29 | 25.59 | 69 | 0.001 |
2nd | 32.60 | 33.22 | 6.59 | 19.00 | 52.64 | ||||
WC (cm) | 1st | 130.23 | 129.50 | 16.97 | 98.00 | 177.00 | 26.85 | 69 | 0.001 |
2nd | 98.66 | 98.50 | 16.41 | 66.00 | 138.00 | ||||
WHR | 1st | 0.93 | 0.93 | 0.09 | 0.73 | 1.18 | 8.47 | 69 | 0.001 |
2nd | 0.89 | 0.87 | 0.09 | 0.66 | 1.08 | ||||
WHtR | 1st | 0.77 | 0.77 | 0.09 | 0.62 | 0.98 | 27.19 | 69 | 0.001 |
2nd | 0.59 | 0.59 | 0.09 | 0.40 | 0.77 |
Biochemical Parameters | Stage of the Study | M | Mdn | SD | Min | Max | t/Z | df | p | d |
---|---|---|---|---|---|---|---|---|---|---|
FBG (mg/dL) | 1st | 117.61 | 105.50 | 40.77 | 78.00 | 316.00 | ||||
2nd | 91.77 | 88.00 | 16.05 | 68.00 | 174.00 | −6.75 | - | 0.001 | 0.73 | |
TC (mg/dL) | 1st | 203.56 | 205.50 | 38.81 | 126.00 | 340.00 | ||||
2nd | 183.61 | 180.50 | 37.11 | 94.00 | 307.00 | 5.47 | 69 | 0.001 | 0.65 | |
TG (mg/dL) | 1st | 161.31 | 144.50 | 72.88 | 63.00 | 355.00 | ||||
2nd | 102.27 | 86.50 | 61.68 | 36.00 | 423.00 | −6.03 | - | 0.001 | 0.76 | |
HDL-C (mg/dL) | 1st | 46.64 | 45.00 | 11.60 | 28.00 | 74.00 | ||||
2nd | 60.58 | 57.00 | 14.40 | 34.90 | 99.00 | −9.38 | 69 | 0.001 | 1.12 | |
LDL-C (mg/dL) | 1st | 120.60 | 120.50 | 31.08 | 56.00 | 212.00 | ||||
2nd | 103.46 | 104.00 | 34.76 | 31.00 | 203.00 | 4.90 | 69 | 0.001 | 0.59 |
Biochemical Parameters | ||||||
---|---|---|---|---|---|---|
Anthropometric Parameters | Stage of the Study | FBG (mg/dL) | TC (mg/dL) | TG (mg/dL) | HDL-C (mg/dL) | LDL-C (mg/dL) |
BW (kg) | 1st | 0.312 ** | 0.031 | 0.184 | −0.312 ** | 0.070 |
2nd | 0.492 ** | 0.110 | 0.489 ** | −0.367 ** | 0.182 | |
BMI (kg/m2) | 1st | 0.391 ** | 0.084 | 0.078 | -0.146 | 0.096 |
2nd | 0.471 ** | 0.257 * | 0.497 ** | −0.280 * | 0.301 * | |
WC (cm) | 1st | 0.494 ** | 0.048 | 0.144 | −0.253 * | 0.051 |
2nd | 0.562 ** | 0.174 | 0.538 ** | −0.370 ** | 0.208 | |
WHR | 1st | 0.251 * | −0.012 | 0.244 * | −0.297 * | −0.024 |
2nd | 0.486 ** | 0.090 | 0.432 ** | −0.303 * | 0.079 | |
WHtR | 1st | 0.541 ** | 0.081 | 0.059 | -0.107 | 0.053 |
2nd | 0.548 ** | 0.271 * | 0.526 ** | −0.299 * | 0.279 * | |
EWL | 2nd | −0.547 ** | −0.282 * | −0.581 ** | 0.269 * | −0.267 * |
ΔBMI | 2nd | −0.443 ** | −0.088 | −0.392 ** | 0.031 | 0.045 |
%EBMIL | 2nd | −0.547 ** | −0.282 * | −0.581 ** | 0.269* | −0.267 * |
Biochemical Parameters | F | df | p | η2 |
---|---|---|---|---|
TC (mg/dL) | 4.15 | 2.67 | 0.020 | 0.11 |
HDL-C (mg/dL) | 1.13 | 2.67 | 0.330 | 0.03 |
LDL-C (mg/dL) | 5.97 | 2.67 | 0.004 | 0.15 |
Nutrients | Stage of the Study | M | Mdn | SD | Min | Max | t/Z | df | p |
---|---|---|---|---|---|---|---|---|---|
Energy (kcal/) | 1st | 4278.40 | 3939.0 | 1287.81 | 2304.00 | 9061.00 | 20.03 | 69 | 0.001 |
2nd | 1355.17 | 1296.50 | 328.07 | 737.00 | 2627.00 | ||||
Proteins (g) | 1st | 150.73 | 140.50 | 47.84 | 66.80 | 341.90 | 15.49 | 69 | 0.001 |
2nd | 62.79 | 61.00 | 17.89 | 29.10 | 136.80 | ||||
Proteins (% of the total calorie intake) | 1st | 14.54 | 14.60 | 2.91 | 8.40 | 24.20 | −7.15 | 69 | 0.001 |
2nd | 19.20 | 18.95 | 4.80 | 10.40 | 32.00 | ||||
Fats (% of the total calorie intake) | 1st | 42.43 | 42.20 | 6.51 | 27.10 | 56.30 | 6.47 | 69 | 0.001 |
2nd | 35.49 | 34.15 | 7.30 | 21.90 | 54.40 | ||||
SAFA (% of the total calorie intake) | 1st | 19.96 | 16.38 | 3.57 | 10.03 | 30.90 | 5.55 | 69 | 0.001 |
2nd | 14.11 | 13.72 | 3.53 | 6.93 | 23.68 | ||||
MUFA (% of the total calorie intake) | 1st | 17.54 | 17.43 | 3.74 | 9.31 | 25.61 | 1.12 | 69 | 0.268 |
2nd | 16.56 | 14.73 | 6.94 | 7.18 | 38.36 | ||||
PUFA (% of the total calorie intake) | 1st | 5.91 | 6.04 | 1.96 | 1.82 | 9.66 | 1.67 | 69 | 0.100 |
2nd | 5.31 | 4.77 | 2.41 | 1.78 | 11.14 | ||||
LA (% of the total calorie intake) | 1st | 4.95 | 5.01 | 1.69 | 1.52 | 8.76 | 1.30 | 69 | 0.197 |
2nd | 4.52 | 4.04 | 2.18 | 1.37 | 10.70 | ||||
ALA (% of the total calorie intake) | 1st | 0.87 | 0.83 | 0.43 | 0.22 | 1.96 | −2.46 | - | 0.014 |
2nd | 0.69 | 0.55 | 0.36 | 0.27 | 1.78 | ||||
EPA + DHA (mg) | 1st | 142.46 | 43.00 | 648.33 | 0.00 | 5380.00 | −2.95 | - | 0.003 |
2nd | 52.90 | 9.50 | 139.62 | 0.00 | 913.00 | ||||
Carbohydrates (g) | 1st | 485.30 | 475.05 | 164.88 | 125.90 | 863.70 | −7.26 | - | 0.001 |
2nd | 163.15 | 164.25 | 40.74 | 64.70 | 268.00 | ||||
Sucrose (g) | 1st | 122.39 | 102.00 | 82.87 | 8.57 | 362.17 | 8.29 | 69 | 0.001 |
2nd | 38.22 | 38.32 | 18.58 | 1.42 | 85.22 | ||||
Sucrose (% of the total calorie intake) | 1st | 11.23 | 10.28 | 6.44 | 1.09 | 28.95 | −0.16 | 69 | 0.876 |
2nd | 11.38 | 11.86 | 5.23 | 0.60 | 24.92 | ||||
Dietary fiber (g) | 1st | 30.90 | 28.90 | 10.53 | 13.60 | 57.80 | 13.02 | 69 | 0.001 |
2nd | 14.20 | 13.50 | 5.36 | 4.60 | 32.20 | ||||
Carbohydrates (% of total energy intake) | 1st | 42.80 | 43.45 | 7.77 | 19.00 | 62.30 | −1.75 | 69 | 0.085 |
2nd | 44.86 | 45.50 | 7.36 | 21.90 | 64.70 | ||||
Cholesterol (mg) | 1st | 664.30 | 593.00 | 363.08 | 294.30 | 2748.30 | - | - | 0.001 |
2nd | 214.03 | 174.15 | 117.39 | 62.30 | 583.90 |
Energy/ Nutrients | Stage of the Study | Anthropometric Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
BW | BMI | %EWL | ΔBMI | %EBMIL | WC | WHR | WHtR | ||
Energy (kcal) | 1st | 0.456 ** | 0.267 * | 0.382 ** | 0.252 * | 0.220 | |||
2nd | 0.313 ** | 0.233 | −0.307 ** | −0.253* | −0.307 ** | 0.391 ** | 0.375 ** | 0.335 ** | |
Proteins (g) | 1st | 0.399 ** | 0.212 | 0.409 ** | 0.329 ** | 0.265 * | |||
2nd | 0.087 | 0.026 | −0.056 | −0.099 | −0.056 | 0.140 | 0.150 | 0.102 | |
Proteins (% of the total calorie intake) | 1st | −0.062 | −0.072 | 0.075 | 0.144 | 0.094 | |||
2nd | −0.199 | −0.197 | 0.212 | 0.099 | 0.212 | -0.210 | −0.166 | −0.203 | |
Fats (% of the total calorie intake) | 1st | 0.317 ** | 0.390 ** | 0.256 * | −0.089 | 0.286 * | |||
2nd | 0.320 ** | 0.225 | −0.349 ** | −0.337 ** | −0.349 ** | 0.467 ** | 0.528 ** | 0.410 ** | |
SAFA (% of the total calorie intake) | 1st | 0.185 | 0.191 | 0.155 | −0.136 | 0.152 | |||
2nd | 0.026 | 0.093 | −0.128 | -0.154 | -0.128 | 0.101 | 0.056 | 0.152 | |
MUFA (% of the total calorie intake) | 1st | 0.286 * | 0.362 ** | 0.224 | −0.008 | 0.255 * | |||
2nd | 0.313 ** | 0.189 | −0.304 * | −0.230 | −0.304 * | 0.422 ** | 0.488 ** | 0.340 ** | |
PUFA (% of the total calorie intake) | 1st | 0.106 | 0.182 | 0.034 | −0.070 | 0.071 | |||
2nd | 0.212 | 0.082 | −0.077 | −0.063 | −0.077 | 0.284 * | 0.349 ** | 0.201 | |
LA (% of the total calorie intake) | 1st | 0.094 | 0.182 | 0.013 | −0.119 | 0.056 | |||
2nd | 0.212 | 0.084 | −0.072 | −0.060 | −0.072 | 0.272 * | 0.315 ** | 0.191 | |
ALA (% of the total calorie intake) | 1st | 0.009 | 0.034 | −0.028 | 0.088 | −0.018 | |||
2nd | 0.143 | 0.061 | −0.100 | −0.078 | −0.100 | 0.238 * | 0.352 ** | 0.186 | |
EPA + DHA (mg) | 1st | −0.135 | 0.045 | 0.026 | 0.050 | 0.125 | |||
2nd | −0.043 | −0.062 | 0.058 | 0.047 | 0.058 | −0.001 | 0.119 | 0.010 | |
Carbohydrates (g) | 1st | 0.247 * | 0.066 | 0.195 | 0.209 | 0.049 | |||
2nd | 0.132 | 0.124 | −0.108 | −0.036 | −0.108 | 0.115 | 0.057 | 0.101 | |
Sucrose (g) | 1st | −0.015 | −0.079 | −0.126 | −0.016 | −0.183 | |||
2nd | −0.042 | 0.059 | −0.046 | 0.056 | −0.046 | −0.014 | −0.103 | 0.055 | |
Sucrose (% of the total calorie intake) | 1st | −0.245 * | −0.229 | −0.335 ** | −0.129 | −0.322 ** | |||
2nd | −0.177 | −0.067 | 0.117 | 0.225 | 0.117 | −0.200 | −0.287 * | −0.123 | |
Dietary fiber (g) | 1st | 0.303 * | 0.202 | 0.360 ** | 0.146 | 0.278 * | |||
2nd | -0.024 | −0.060 | 0.039 | −0.043 | 0.039 | −0.060 | −0.022 | −0.092 | |
Carbohydrates (% of the total calorie intake) | 1st | −0.261 * | −0.306 ** | −0.266 * | −0.014 | −0.289 * | |||
2nd | −0.195 | −0.098 | 0.247 * | 0.332 ** | 0.247 * | −0.333 ** | −0.438 ** | −0.277 * | |
Cholesterol (mg) | 1st | 0.448 ** | 0.309 ** | 0.551 ** | 0.304 * | 0.424 ** | |||
2nd | 0.187 | 0.091 | −0183 | −0.150 | −0.183 | 0.292 | 0.396 | 0.230 |
Energy/Nutrients | Stage of the Study | Biochemical Parameters | ||||
---|---|---|---|---|---|---|
FBG (mg/dL) | TC (mg/dL) | TG (mg/dL) | HDL-C (mg/dL) | LDL-C (mg/dL) | ||
Energy (kcal) | 1st | −0.061 | 0.033 | 0.047 | −0.309 ** | 0.112 |
2nd | 0.152 | 0.079 | 0.367 ** | 0.011 | −0.033 | |
Proteins (g) | 1st | 0.029 | 0.038 | 0.025 | −0.134 | 0.076 |
2nd | 0.135 | −0.049 | −0.015 | 0.178 | −0.137 | |
Proteins (% of the total calorie intake) | 1st | 0.115 | −0.018 | −0.008 | 0.239 * | −0.079 |
2nd | −0.019 | −0.121 | −0.308 ** | 0.203 | −0.122 | |
Fats (% of the total calorie intake) | 1st | 0.284 * | −0.101 | 0.029 | −0.084 | −0.110 |
2nd | 0.196 | 0.174 | 0.279 * | −0.103 | 0.110 | |
SAFA (% of the total calorie intake) | 1st | 0.162 | −0.101 | 0.039 | 0.002 | −0.137 |
2nd | 0.165 | 0.049 | −0.075 | 0.136 | −0.070 | |
MUFA (% of the total calorie intake) | 1st | 0.232 | −0.083 | 0.032 | −0.164 | −0.065 |
2nd | 0.150 | 0.218 | 0.401 ** | −0.089 | 0.152 | |
PUFA (% of the total calorie intake) | 1st | −0.033 | −0.031 | −0.040 | −0.003 | −0.014 |
2nd | 0.019 | 0.098 | 0.172 | −0.172 | 0.197 | |
LA (% of the total calorie intake) | 1st | 0.010 | −0.034 | −0.046 | −0.002 | −0.020 |
2nd | 0.006 | 0.053 | 0.156 | −0.171 | 0.159 | |
ALA (% of the total calorie intake) | 1st | −0.107 | −0.056 | −0.023 | −0.023 | −0.035 |
2nd | 0.010 | 0.302 * | 0.228 | −0.124 | 0.329 ** | |
EPA + DHA (mg) | 1st | −0.219 | −0.065 | −0.096 | 0.200 | −0.039 |
2nd | 0.053 | 0.032 | −0.056 | 0.042 | 0.042 | |
Carbohydrates (g) | 1st | −0.129 | 0.048 | −0.006 | −0.266 * | 0.142 |
2nd | −0.013 | 0.030 | 0.272 * | −0.059 | −0.010 | |
Sucrose (g) | 1st | −0.349 ** | −0.034 | −0.010 | −0.158 | 0.047 |
2nd | −0.064 | 0.135 | 0.173 | 0.002 | 0.044 | |
Sucrose (% of the total calorie intake) | 1st | −0.393 ** | 0.006 | −0.009 | −0.046 | 0.049 |
2nd | −0.183 | 0.067 | −0.041 | 0.012 | 0.036 | |
Dietary fiber (g) | 1st | 0.032 | 0.010 | −0.066 | −0.216 | 0.073 |
2nd | −0.021 | 0.087 | 0.023 | 0.000 | 0.126 | |
Carbohydrates (% of the total calorie intake) | 1st | −0.324 ** | 0.106 | −0.047 | 0.007 | 0.139 |
2nd | −0.192 | −0.100 | −0.019 | −0.077 | −0.022 | |
Cholesterol (mg) | 1st | 0.193 | −0.108 | 0.071 | −0.164 | −0.010 |
2nd | 0.198 | 0.043 | 0.152 | −0.073 | −0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniecka, I.; Czerwonogrodzka-Senczyna, A.; Jeznach-Steinhagen, A.; Paśnik, K.; Szostak-Węgierek, D.; Zeair, S. Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients. Nutrients 2023, 15, 2479. https://doi.org/10.3390/nu15112479
Boniecka I, Czerwonogrodzka-Senczyna A, Jeznach-Steinhagen A, Paśnik K, Szostak-Węgierek D, Zeair S. Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients. Nutrients. 2023; 15(11):2479. https://doi.org/10.3390/nu15112479
Chicago/Turabian StyleBoniecka, Iwona, Aneta Czerwonogrodzka-Senczyna, Anna Jeznach-Steinhagen, Krzysztof Paśnik, Dorota Szostak-Węgierek, and Samir Zeair. 2023. "Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients" Nutrients 15, no. 11: 2479. https://doi.org/10.3390/nu15112479
APA StyleBoniecka, I., Czerwonogrodzka-Senczyna, A., Jeznach-Steinhagen, A., Paśnik, K., Szostak-Węgierek, D., & Zeair, S. (2023). Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients. Nutrients, 15(11), 2479. https://doi.org/10.3390/nu15112479