Influence of Meal Sequence and Number of Teeth Present on Nutrient Intake Status: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Examinations
2.3. Diet and Nutrient Intake Examination
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Health, Labor and Welfare. Overview of the Dietary Reference Intakes for Japanese (2020); Ministry of Health, Labor and Welfare: Tokyo, Japan, 2020.
- Shukla, A.P.; Dickison, M.; Coughlin, N.; Karan, A.; Mauer, E.; Truong, W.; Casper, A.; Emiliano, A.B.; Kumar, R.B.; Saunders, K.H.; et al. The impact of food order on postprandial glycaemic excursions in prediabetes. Diabetes Obes. Metab. 2019, 21, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Fukui, M.; Kajiyama, S. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes. J. Clin. Biochem. Nutr. 2014, 54, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Fukui, M.; Ozasa, N.; Ozeki, T.; Kurokawa, M.; Komatsu, T.; Kajiyama, S. Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet. Med. 2013, 30, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Tricò, D.; Filice, E.; Baldi, S.; Frascerra, S.; Mari, A.; Natali, A. Sustained effects of a protein and lipid preload on glucose tolerance in type 2 diabetes patients. Diabetes Metab. 2016, 42, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef]
- Wu, T.; Little, T.J.; Bound, M.J.; Borg, M.; Zhang, X.; Deacon, C.F.; Horowitz, M.; Jones, K.L.; Rayner, C.K. A Protein Preload Enhances the Glucose-Lowering Efficacy of Vildagliptin in Type 2 Diabetes. Diabetes Care 2016, 39, 511–517. [Google Scholar] [CrossRef]
- Hung, H.C.; Willett, W.; Ascherio, A.; Rosner, B.A.; Rimm, E.; Joshipura, K.J. Tooth loss and dietary intake. J. Am. Dent. Assoc. 2003, 134, 1185–1192. [Google Scholar] [CrossRef]
- Hung, H.C.; Colditz, G.; Joshipura, K.J. The association between tooth loss and the self-reported intake of selected CVD-related nutrients and foods among US women. Commun. Dent. Oral Epidemiol. 2005, 33, 167–173. [Google Scholar] [CrossRef]
- Nowjack-Raymer, R.E.; Sheiham, A. Numbers of natural teeth, diet, and nutritional status in US adults. J. Dent. Res. 2007, 86, 1171–1175. [Google Scholar] [CrossRef]
- Braud, A.; Lourtioux, F.; Picouet, P.; Maitre, I. Food-related oral discomfort: A cross-sectional survey assessing the sensory dimension of oral discomfort in French independently living adults. J. Oral Rehabil. 2021, 48, 916–926. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hirano, H.; Ohara, Y.; Motokawa, K. The association of oral function with dietary intake and nutritional status among older adults: Latest evidence from epidemiological studies. Jpn. Dent. Sci. Rev. 2021, 57, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Santonocito, S.; Polizzi, A.; Palazzo, G.; Indelicato, F.; Isola, G. Dietary Factors Affecting the Prevalence and Impact of Periodontal Disease. Clin. Cosmet. Investig. Dent. 2021, 13, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Almas, K. The Role of Nutrition in Periodontal Health: An Update. Nutrients 2016, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, A.; Komagamine, Y.; Kanazawa, M.; Hama, Y.; Kojo, A.; Minakuchi, S. The Association between Dietary Habits and Periodontal Disease in Young Adult Women. J. Nutr. Sci. Vitaminol. 2021, 67, 48–56. [Google Scholar] [CrossRef]
- Nesse, W.; Abbas, F.; van der Ploeg, I.; Spijkervet, F.K.; Dijkstra, P.U.; Vissink, A. Periodontal inflamed surface area: Quantifying inflammatory burden. J. Clin. Periodontol. 2008, 35, 668–673. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Shukla, A.P.; Andono, J.; Touhamy, S.H.; Casper, A.; Iliescu, R.G.; Mauer, E.; Shan Zhu, Y.; Ludwig, D.S.; Aronne, L.J. Carbohydrate-last meal pattern lowers postprandial glucose and insulin excursions in type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000440. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Hildebrandt, G.H.; Dominguez, B.L.; Schork, M.A.; Loesche, W.J. Functional units, chewing, swallowing, and food avoidance among the elderly. J. Prosthet. Dent. 1997, 77, 588–595. [Google Scholar] [CrossRef]
- Yoshihara, A.; Watanabe, R.; Nishimuta, M.; Hanada, N.; Miyazaki, H. The relationship between dietary intake and the number of teeth in elderly Japanese subjects. Gerodontology 2005, 22, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Chrepa, V.; Shivappa, N.; Wirth, M.; Hébert, J.; Koyanagi, A.; Tyrovolas, S. Diet-borne systemic inflammation is associated with prevalent tooth loss. Clin. Nutr. 2018, 37, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Jauhiainen, L.M.; Ylöstalo, P.V.; Knuuttila, M.; Männistö, S.; Kanerva, N.; Suominen, A.L. Poor diet predicts periodontal disease development in 11-year follow-up study. Commun. Dent. Oral Epidemiol. 2020, 48, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.B.; Kowalski, C.D.; Leuthold, S.; Vach, K.; Ratka-Krüger, P.; Woelber, J.P. What is the impact of the adjunctive use of omega-3 fatty acids in the treatment of periodontitis? A systematic review and meta-analysis. Lipids Health Dis. 2020, 19, 100. [Google Scholar] [CrossRef]
- Varela-López, A.; Giampieri, F.; Bullón, P.; Battino, M.; Quiles, J.L. A Systematic Review on the Implication of Minerals in the Onset, Severity and Treatment of Periodontal Disease. Molecules 2016, 21, 1183. [Google Scholar] [CrossRef]
- Rajaram, S.S.; Nisha, S.; Ali, N.M.; Shashikumar, P.; Karmakar, S.; Pandey, V. Influence of a Low-Carbohydrate and Rich in Omega-3 Fatty Acids, Ascorbic Acid, Antioxidants, and Fiber Diet on Clinical Outcomes in Patients with Chronic Gingivitis: A Randomized Controlled Trial. J. Int. Soc. Prev. Commun. Dent. 2021, 11, 58–67. [Google Scholar]
- Woelber, J.P.; Bremer, K.; Vach, K.; König, D.; Hellwig, E.; Ratka-Krüger, P.; Al-Ahmad, A.; Tennert, C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans—A randomized controlled pilot study. BMC Oral Health 2016, 17, 28. [Google Scholar] [CrossRef]
- Tabe, S.; Nakayama, Y.; Kobayashi, R.; Oyama, K.; Kitano, D.; Ogihara, J.; Senpuku, H.; Ogata, Y. Association between Dietary Habit and Clinical Parameters in Patients with Chronic Periodontitis Undergoing Supportive Periodontal Therapy. Nutrients 2022, 14, 4993. [Google Scholar] [CrossRef]
- Kanazawa, M.; Suzuki, H.; Komagamine, Y.; Iwaki, M.; Amagai, N.; Minakuchi, S. Combined effects of new complete denture fabrication and simplified dietary advice on nutrient intake in edentulous elderly patients for 6 months. Clin. Oral Investig. 2019, 23, 2245–2252. [Google Scholar] [CrossRef]
- Kubota, S.; Liu, Y.; Iizuka, K.; Kuwata, H.; Seino, Y.; Yabe, D. A Review of Recent Findings on Meal Sequence: An Attractive Dietary Approach to Prevention and Management of Type 2 Diabetes. Nutrients 2020, 12, 2502. [Google Scholar] [CrossRef]
- Yabe, D.; Kuwata, H.; Fujiwara, Y.; Sakaguchi, M.; Moyama, S.; Makabe, N.; Murotani, K.; Asano, H.; Ito, S.; Mishima, H.; et al. Dietary instructions focusing on meal-sequence and nutritional balance for prediabetes subjects: An exploratory, cluster-randomized, prospective, open-label, clinical trial. J. Diabetes Complicat. 2019, 33, 107450. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Huang, W.; Sun, Y.; Xiang, C.; Trahair, L.; Jones, K.L.; Horowitz, M.; Rayner, C.K.; Wu, T. Disparities in the glycaemic and incretin responses to intraduodenal glucose infusion between healthy young men and women. J. Clin. Endocrinol. Metab. 2023, dgad176. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Huang, W.; Watson, L.E.; Soenen, S.; Young, R.L.; Jones, K.L.; Horowitz, M.; Rayner, C.K.; Wu, T. Plasma GLP-1 Response to Oral and Intraduodenal Nutrients in Health and Type 2 Diabetes-Impact on Gastric Emptying. J. Clin. Endocrinol. Metab. 2022, 107, e1643–e1652. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.E.; Xie, C.; Wang, X.; Li, Z.; Phillips, L.K.; Sun, Z.; Jones, K.L.; Horowitz, M.; Rayner, C.K.; Wu, T. Gastric Emptying in Patients with Well-Controlled Type 2 Diabetes Compared with Young and Older Control Subjects without Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 3311–3319. [Google Scholar] [CrossRef]
- Okami, Y.; Tsunoda, H.; Watanabe, J.; Kataoka, Y. Efficacy of a meal sequence in patients with type 2 diabetes: A systematic review and meta-analysis. BMJ Open Diabetes Res. Care 2022, 10, e002534. [Google Scholar] [CrossRef]
- Ministry of Health. National Health and Nutrition Survey for Japanese (2016); Ministry of Health: Tokyo, Japan, 2016.
- Zhu, Y.; Hollis, J.H. Tooth loss and its association with dietary intake and diet quality in American adults. J. Dent. 2014, 42, 1428–1435. [Google Scholar] [CrossRef]
- Savoca, M.R.; Arcury, T.A.; Leng, X.; Chen, H.; Bell, R.A.; Anderson, A.M.; Kohrman, T.; Gilbert, G.H.; Quandt, S.A. Association between dietary quality of rural older adults and self-reported food avoidance and food modification due to oral health problems. J. Am. Geriatr. Soc. 2010, 58, 1225–1232. [Google Scholar] [CrossRef]
- Iwasaki, M.; Manz, M.C.; Moynihan, P.; Yoshihara, A.; Muramatsu, K.; Watanabe, R.; Miyazaki, H. Relationship between saturated fatty acids and periodontal disease. J. Dent. Res. 2011, 90, 861–867. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okuda, N.; Turin, T.C.; Fujiyoshi, A.; Okamura, T.; Hayakawa, T.; Yoshita, K.; Miura, K.; Ueshima, H. Fatty acids intakes and serum lipid profiles: NIPPON DATA90 and the national nutrition monitoring. J. Epidemiol. 2010, 20, S544–S548. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
Awareness | Unawareness | ||
---|---|---|---|
Variable | n = 177 | n = 61 | p |
Age | 68 (60.0–74.5) | 74 (67.0–80.5) | <0.0001 |
Sex * | f 123: m 54 | f 33: m 28 | 0.029 |
BMI (kg/mm2) | 22.7 (20.3–24.6) | 24.2 (20.5–25.5) | 0.029 |
HbA1c (%) | 5.7 (5.4–6.0) | 5.7 (5.4–6.0) | 0.376 |
Teeth number | 25 (23–27) | 23 (15–26) | 0.001 |
PISA (mm2) | 143.4 (74.5–245.2) | 159.45 (78.8–297.3) | 0.448 |
Gummy occlusion | 6 (5–7) | 5 (3–6) | 0.002 |
Occlusal ability | 191 (150–235) | 180 (149.8–242.8) | 0.569 |
Tongue pressure | 32.1 (27.5–37.8) | 34.55 (26.3–39.2) | 0.745 |
Oral moisture | 26.5 (24.6–27.9) | 26.2 (24.6–27.6) | 0.512 |
Awareness | Unawareness | ||
---|---|---|---|
Variables | n = 177 | n = 61 | p |
Protein (%/1day-kcal) | 18.53 (16.15–20.76) | 17.33 (15.26–20.16) | 0.179 |
Lipid (%/1day-kcal) | 31.17 (28.47–34.71) | 30.42 (25.72–33.08) | 0.037 |
Saturated fatty acid (%/1day-kcal) | 8.21 (7.21–9.63) | 8.21 (7.19–9.13) | 0.426 |
n-3 Fatty acids (g/1000 kcal/day) | 1.85 (1.54–2.24) | 1.71 (1.33–2.20) | 0.086 |
n-6 Fatty acids (g/1000 kcal/day) | 6.48 (5.75–7.40) | 6.07 (5.20–6.99) | 0.013 |
Carbohydrates (%/1day-kcal) | 50.00 (45.78–54.69) | 53.35 (47.81–57.39) | 0.024 |
Total dietary fiber (g/day) | 8.11 (6.74–9.57) | 7.29 (5.62–8.83) | 0.004 |
Potassium (mg/1000 kcal/day) | 1762.3 (1515.8–2081.0) | 1589.0 (1250.6–1863.4) | 0.001 |
Calcium (mg/1000 kcal/day/) | 392.0 (315.6–467.6) | 363.2 (294.0–409.3) | 0.014 |
Iron (mg/1000 kcal/day) | 5.35 (4.63–6.28) | 5.02 (4.19–5.85) | 0.008 |
Vitamin C (mg/1000 kcal/day) | 87.97 (67.58–112.73) | 71.86 (44.96–102.78) | 0.003 |
Folic acid (μg/1000 kcal/day) | 246.9 (200.3–293.0) | 218.5 (155.2–262.2) | 0.002 |
Magnesium (mg/1000 kcal/day) | 166.9 (14.5–195.6) | 156.3 (131.6–179.1) | 0.009 |
Zinc (mg/1000 kcal/day) | 4.99 (4.64–5.48) | 4.79 (4.32–5.29) | 0.024 |
Phosphorus (mg/1000 kcal/day) | 697.7 (607.9–785.6) | 679.3 (583.0–766.1) | 0.175 |
Retinol (µg/1000 kcal/day) | 487.9 (350.1–626.3) | 447.4 (316.0–583.1) | 0.253 |
Vitamin D (µg/1000 kcal/day) | 9.17 (6.59–14.95) | 11.95 (7.36–16.08) | 0.213 |
Alpha-tocopherol (mg/1000 kcal/day) | 5.09 (4.51–5.77) | 4.47 (3.74–5.55) | 0.001 |
Vitamin K (µg/1000 kcal/day) | 228.3 (167.3–295.1) | 171.2 (111.6–246.1) | 0.001 |
Vitamin B1 (mg/1000 kcal/day) | 0.52 (0.46–0.59 | 0.49 (0.40–0.54) | 0.002 |
Vitamin B2 (mg/1000 kcal/day) | 0.94 (0.80–1.06) | 0.83 (0.74–0.96) | 0.002 |
Vitamin B6 (mg/1000 kcal/day) | 0.87 (0.75–0.99 | 0.82 (0.67–0.96) | 0.033 |
Vitamin B12 (mg/1000 kcal/day) | 6.55 (4.84–9.42) | 7.12 (4.68–9.85) | 0.708 |
Salt (g/1000 kcal/day) | 6.24 (5.43–7.18) | 6.43 (5.58–7.40) | 0.506 |
Model 1 | Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Non-Standardized | Non-Standardized | ||||||||
Target Variable | Explanatory Variable | B | SE | Standardized β | p | B | SE | Standardized β | p |
Protein (%/1day-kcal) | Meal sequence | 0.951 | 0.511 | 0.119 | 0.064 | 0.949 | 0.528 | 0.119 | 0.073 |
Teeth number | 0.000 | 0.042 | 0.001 | 0.992 | |||||
Lipid (%/1day-kcal) | Meal sequence | 2.358 | 0.888 | 0.176 | 0.009 | 2.738 | 0.912 | 0.204 | 0.003 |
Teeth number | −0.122 | 0.072 | −0.123 | 0.091 | |||||
Saturated fatty acid (%/1day-kcal) | Meal sequence | 0.405 | 0.285 | 0.095 | 0.157 | 0.551 | 0.292 | 0.129 | 0.060 |
Teeth number | −0.047 | 0.023 | −0.148 | 0.043 | |||||
n-3 Fatty acids (g/1000 kcal/day) | Meal sequence | 0.182 | 0.078 | 0.152 | 0.022 | 0.210 | 0.081 | 0.176 | 0.010 |
Teeth number | −0.009 | 0.006 | −0.104 | 0.147 | |||||
n-6 Fatty acids (g/1000 kcal/day) | Meal sequence | 0.555 | 0.214 | 0.173 | 0.010 | 0.589 | 0.221 | 0.184 | 0.008 |
Teeth number | −0.011 | 0.017 | −0.047 | 0.523 | |||||
Carbohydrates (%/1day-kcal) | Meal sequence | −3.309 | 1.192 | −0.180 | 0.006 | −3.688 | 1.228 | −0.201 | 0.003 |
Teeth number | 0.122 | 0.097 | 0.090 | 0.211 | |||||
Total dietary fiber (g/day) | Meal sequence | 1.098 | 0.355 | 0.197 | 0.002 | 1.083 | 0.367 | 0.194 | 0.004 |
Teeth number | 0.005 | 0.029 | 0.012 | 0.866 | |||||
Potassium (mg/1000 kcal/day) | Meal sequence | 240.703 | 64.082 | 0.234 | 0.000 | 244.132 | 66.245 | 0.238 | 0.000 |
Teeth number | −1.102 | 5.232 | −0.014 | 0.833 | |||||
Calcium (mg/1000 kcal/day) | Meal sequence | 58.109 | 17.646 | 0.205 | 0.001 | 63.580 | 18.185 | 0.224 | 0.001 |
Teeth number | −1.758 | 1.436 | −0.084 | 0.222 | |||||
Iron (mg/1000 kcal/day) | Meal sequence | 0.578 | 0.182 | 0.200 | 0.002 | 0.599 | 0.188 | 0.207 | 0.002 |
Teeth number | −0.007 | 0.015 | −0.031 | 0.651 | |||||
Vitamin C (mg/1000 kcal/day) | Meal sequence | 16.953 | 4.929 | 0.215 | 0.001 | 17.777 | 5.091 | 0.225 | 0.001 |
Teeth number | −0.265 | 0.402 | −0.045 | 0.511 | |||||
Folic acid (µg/1000 kcal/day) | Meal sequence | 38.638 | 11.475 | 0.215 | 0.001 | 39.171 | 11.863 | 0.218 | 0.001 |
Teeth number | −0.171 | 0.937 | −0.013 | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kida, S.; Aoyama, N.; Fujii, T.; Taniguchi, K.; Yata, T.; Iwane, T.; Yamamoto, T.; Tamaki, K.; Minabe, M.; Komaki, M. Influence of Meal Sequence and Number of Teeth Present on Nutrient Intake Status: A Cross-Sectional Study. Nutrients 2023, 15, 2602. https://doi.org/10.3390/nu15112602
Kida S, Aoyama N, Fujii T, Taniguchi K, Yata T, Iwane T, Yamamoto T, Tamaki K, Minabe M, Komaki M. Influence of Meal Sequence and Number of Teeth Present on Nutrient Intake Status: A Cross-Sectional Study. Nutrients. 2023; 15(11):2602. https://doi.org/10.3390/nu15112602
Chicago/Turabian StyleKida, Sayuri, Norio Aoyama, Toshiya Fujii, Kentaro Taniguchi, Tomomi Yata, Taizo Iwane, Tatsuo Yamamoto, Katsushi Tamaki, Masato Minabe, and Motohiro Komaki. 2023. "Influence of Meal Sequence and Number of Teeth Present on Nutrient Intake Status: A Cross-Sectional Study" Nutrients 15, no. 11: 2602. https://doi.org/10.3390/nu15112602
APA StyleKida, S., Aoyama, N., Fujii, T., Taniguchi, K., Yata, T., Iwane, T., Yamamoto, T., Tamaki, K., Minabe, M., & Komaki, M. (2023). Influence of Meal Sequence and Number of Teeth Present on Nutrient Intake Status: A Cross-Sectional Study. Nutrients, 15(11), 2602. https://doi.org/10.3390/nu15112602