Erigeron annuus Extract Alleviates Insulin Resistance via Regulating the Expression of Mitochondrial Damage and Endoplasmic Reticulum Stress-Related Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HPLC Analysis of EAE
2.3. Zebrafish
2.4. Ethics Statement
2.5. Efficacy of EAE and CA in Treating Excess Insulin-Induced Pancreatic Islet Damage in Zebrafish
- Group 1: Control group (CON). Only treatment with 0.03% sea salt solution. n = 20.
- Group 2: Insulin-treated group (INS). Treatment with 0.03% sea salt solution after 10 μM insulin treatment for 48 h. n = 20.
- Group 3: Pioglitazone-treated group (PIO). Treatment with 0.1 μM pioglitazone for 24 h after 10 μM insulin treatment for 48 h. n = 20.
- Group 4: Erigeron annuus extract-treated group (EAE). Treatment with 1 μg/mL EAE for 24 h after 10 μM insulin treatment for 48 h. n = 20.
- Group 5: Chlorogenic acid-treated group (CA). Treatment with 0.1 μM CA for 24 h after 10 μM insulin treatment for 48 h. n = 20.
2.6. The 50% Effective Concentration (EC50) of EAE
2.7. The 50% Lethal Concentration (LC50) Values of EAE
2.8. Therapeutic Index (TI)
2.9. mRNA Sequencing and Pathway Analysis
2.10. RT-PCR
2.11. Statistical Analysis
3. Results
3.1. Phytochemcial Characterization of EAE
3.2. Efficacy of EAE and CA on Insulin-Treated Zebrafish Larvae
3.3. EC50 Values of EAE
3.4. LC50 Values of EAE
3.5. Therapeutic Index (TI)
3.6. The Quality Control of Sequencing Data
3.7. Differentially Expressed Genes by EAE in Insulin-Treated Zebrafish
3.8. Changes in Gene Expression by EAE in Insulin-Treated Zebrafish
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennington, C.C.; Stratton, D.A. Fine-grained spatial and temporal variation in selection does not maintain genetic variation in Erigeron annuus. Evolution 1998, 52, 678–691. [Google Scholar]
- Oh, H.; Lee, S.; Lee, H.S.; Lee, D.H.; Lee, S.Y.; Chung, H.T.; Kim, T.S.; Kwon, T.O. Germination inhibitory constituents from Erigeron annuus. Phytochemistry 2002, 61, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.I.; Won, K.J.; Kim, D.Y.; Kim, M.J.; Won, Y.L.; Kim, N.Y.; Kim, Y.G.; Kim, B.; Lee, H.M. Erigeron annuus flower absolute prolongs botulinum neurotoxin A-induced muscle paralysis and inhibits neurotransmitter release-linked responses. Nat. Prod. Res. 2022, 36, 6428–6432. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, M.; Han, Y.F.; Gao, K. New sesquiterpenes from Erigeron annus. Planta Med. 2005, 71, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Yoo, N.H.; Jang, D.S.; Yoo, J.L. Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J. Nat. Prod. 2008, 71, 713–715. [Google Scholar] [CrossRef]
- Iijima, T.; Yaoita, Y.; Kikuchi, M. Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) PERS., Erigeron philadelphicus L. and Erigeron sumatrensis RETZ. Chem. Pharm. Bull. 2003, 51, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Jung, S.J.; Chung, I.S.; Lee, Y.H.; Kim, D.K.; Kim, S.H.; Kwon, B.M.; Jeong, T.S.; Park, M.H.; Seoung, N.S.; et al. Ergosterol peroxide from flowers of Erigeron annuus L. as an anti-atherosclerosis agent. Arch. Pharm. Res. 2005, 28, 541–545. [Google Scholar] [CrossRef]
- Jeong, C.H.; Jeong, H.R.; Choi, G.N.; Kim, D.O.; Lee, U.; Heo, H.J. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chin. Med. 2011, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Hashidoko, Y. Pyromeconic acid and its glucosidic derivatives from leaves of Erigeron annuus, and the siderophile activity of pyromeconic acid. Biosci. Biotechnol. Biochem. 1995, 59, 886–890. [Google Scholar] [CrossRef]
- Cavaghan, M.K.; Ehrmann, D.A.; Polonsky, K.S. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Investig. 2000, 106, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Hebrok, M. Intercellular signals regulating pancreas development and function. Genes Dev. 2001, 15, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentki, M.; Nolan, C.J. Islet β cell failure in type 2 diabetes. J. Clin. Investig. 2006, 116, 1802–1812. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Flamment, M.; Hajduch, E.; Ferré, P.; Foufelle, F. New insights into ER stress-induced insulin resistance. Trends Endocrinol. Metab. 2012, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Petersen, K.F.; Shulman, G.I. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet 2010, 375, 2267–2277. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, L.; Tabas, I. Calcium signalling and ER stress in insulin resistance and atherosclerosis. J. Intern. Med. 2016, 280, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Kang, Q.; Hu, M.; Jia, J.; Bai, X.; Liu, C.; Wu, Z.; Chen, W.; Li, M. Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int. J. Mol. Sci. 2020, 21, 724. [Google Scholar] [CrossRef] [Green Version]
- Zang, L.; Shimada, Y.; Nishimura, N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci. Rep. 2017, 7, 1461. [Google Scholar] [CrossRef] [Green Version]
- Md Razip, N.N.; Mohd Noor, S.; Norazit, A.; Nordin, N.; Sakeh, N.M.; Khaza’ai, H. An Association between Insulin Resistance and Neurodegeneration in Zebrafish Larval Model (Danio rerio). Int. J. Mol. Sci. 2022, 23, 8290. [Google Scholar] [CrossRef]
- Nam, Y.H.; Rodriguez, I.; Shin, S.W.; Shim, J.H.; Kim, N.W.; Kim, M.C.; Jeong, S.Y.; Nuankaew, W.; Hong, B.N.; Kim, H.; et al. Characteristics of the New Insulin-Resistant Zebrafish Model. Pharmaceuticals 2021, 14, 642. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cheng, Z.; Tseng, Y.; White, M.F. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 2010, 21, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Ke, C.; Tang, W.; Yang, X.; Tang, C.; Qin, G.; Xu, R.; Li, T.; Chen, X.; Zuo, J.; et al. Isolation of chlorogenic acids and their derivatives from Stemona japonica by preparative HPLC and evaluation of their anti-AIV (H5N1) activity in vitro. Phytochem. Anal. 2007, 18, 213–218. [Google Scholar] [CrossRef]
- Šilarová, P.; Boulekbache-Makhlouf, L.; Pellati, F.; Česlová, L. Monitoring of chlorogenic acid and antioxidant capacity of Solanum melongena L.(eggplant) under different heat and storage treatments. Antioxidants 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinson, J.A.; Chen, X.; Garver, D.D. Determination of total chlorogenic acids in commercial green coffee extracts. J. Med. Food 2019, 22, 314–320. [Google Scholar] [CrossRef]
- Awwad, S.; Issa, R.; Alnsour, L.; Albals, D.; Al-Momani, I. Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels. Molecules 2021, 26, 7502. [Google Scholar] [CrossRef] [PubMed]
- Kemnitz, J.W.; Elson, D.F.; Roecker, E.B.; Baum, S.T.; Bergman, R.N.; Meglasson, M.D. Pioglitazone increase insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure in obese, insulin-resistant rhesus monkeys. Diabetes 1994, 43, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Matsuda, M.; DeFronzo, R.A. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 2002, 25, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of chlorogenic acid against diabetes mellitus and its complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Altern. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, K.W.; Hsu, A.; Tan, B.K. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial. Br. J. Nutr. 2018, 119, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.K.; Park, S.B.; Lee, D.R.; Lee, H.J.; Jin, Y.Y.; Yang, S.H.; Suh, J.W. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac. J. Trop. Med. 2016, 9, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.H.; Hong, B.N.; Rodriguez, I.; Ji, M.G.; Kim, K.; Kim, U.J.; Kang, T.H. Synergistic potentials of coffee on injured pancreatic islets and insulin action via KATP channel blocking in zebrafish. J. Agric. Food Chem. 2015, 63, 5612–5621. [Google Scholar] [CrossRef]
- Muller, P.; Milton, M. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Van der Schueren, B.; Vangoitsenhoven, R.; Geeraert, B.; De Keyzer, D.; Hulsmans, M.; Lannoo, M.; Huber, H.J.; Mathieu, C.; Holvoet, P. Low cytochrome oxidase 4I1 links mitochondrial dysfunction to obesity and type 2 diabetes in humans and mice. Int. J. Obes. 2015, 39, 1254–1263. [Google Scholar] [CrossRef]
- Rak, M.; Bénit, P.; Chrétien, D.; Bouchereau, J.; Schiff, M.; El-Khoury, R.; Tzagoloff, A.; Rustin, P. Mitochondrial cytochrome c oxidase deficiency. Clin. Sci. 2016, 130, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Herrema, H.; Guan, D.; Choi, J.W.; Feng, X.; Hernandez, M.A.S.; Faruk, F.; Auen, T.; Boudett, E.; Chun, R.T.; Ozcan, U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab. 2022, 34, 1004–1022. [Google Scholar] [CrossRef] [PubMed]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Go-palacharyulu, P.; et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 5523–5528. [Google Scholar] [CrossRef] [Green Version]
- Westermeier, F.; Navarro-Marquez, M.; López-Crisosto, C.; Bravo-Sagua, R.; Quiroga, C.; Bustamante, M.; Verdejo, H.E.; Zalaquett, R.; Ibacache, M.; Parra, V.; et al. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochim. Biophys. Acta 2015, 1853, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Hasnain, S.Z.; Prins, J.B.; McGuckin, M.A. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J. Mol. Endocrinol. 2016, 56, R33–R54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Archer, A.E.; Von Schulze, A.T.; Geiger, P.C. Exercise, heat shock proteins and insulin resistance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160529. [Google Scholar] [CrossRef] [Green Version]
- Kammoun, H.L.; Chabanon, H.; Hainault, I.; Luquet, S.; Magnan, C.; Koike, T.; Ferré, P.; Foufelle, F. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Investig. 2009, 119, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Bock, P.M.; Takahashi, H.K.; Homem De Bittencourt, P.I., Jr.; Newsholme, P. The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin. Sci. 2015, 128, 789–803. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′ to 3′) | NCBI Sequence |
---|---|---|---|
COX4I1 | Forward | CGTCTTGTTGGTAAACGG | NM_214701.1 |
Reverse | GGTAACAGGTGGACAAAC | ||
HSP70 | Forward | GTCCTGGTGAAGATGAAGG | NM_001113589.1 |
Reverse | CTCCACAGGATCTAGTGTTC | ||
Reverse | GAAGGAAGACGTGTAGGTG | ||
Reverse | GATCCTCTCCAGTTTCCTC | ||
β-actin | Forward | CGAGCAGGAGATGGGAACC | NM_131031.2 |
Reverse | CAACGGAAACGCTCATTGC |
Step | Temperature | Time | Number of Cycles |
---|---|---|---|
Initialization | 95 °C | 10 min | 1 |
Denaturation | 95 °C | 10 s | 40 |
Annealing | 60 °C | 60 s | |
Extension | 72 °C | 20 s | |
Final extension | 72 °C | 60 s | 1 |
Hold | 4 °C | Hold |
Compound | Retention Time (min) | R2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|
Chlorogenic acid | 17.2 | 0.9997 | 0.93 | 3.11 |
Compound | Concentration (μg/mL) | Intra-Day (n = 3) | Inter-Day (n = 3) | ||
---|---|---|---|---|---|
RSD (%) | Accuracy (%) | RSD (%) | Accuracy (%) | ||
Chlorogenic acid | 50 | 1.77 | 98.09 | 1.99 | 98.75 |
Compound | Spiking Amount (μg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|
Chlorogenic acid | 50 | 98.14 | 0.54 |
Raw Read Counts | Q30 (%) | Clean Read Counts | Clean Read (%) | |
---|---|---|---|---|
CON 1 | 80,681,844 | 96.24 | 77,675,166 | 96.27 |
CON 2 | 73,488,336 | 96.06 | 70,602,542 | 96.07 |
CON 3 | 117,477,450 | 94.94 | 113,192,176 | 96.35 |
INS 1 | 66,490,238 | 96.23 | 64,048,234 | 96.32 |
INS 2 | 88,797,948 | 96.55 | 85,268,344 | 96.02 |
INS 3 | 81,023,866 | 95.97 | 77,837,848 | 96.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.K.; Nam, Y.H.; Shin, S.W.; Kim, M.C.; An, J.I.; Kim, N.W.; Shim, J.H.; Srinath, S.; Hong, B.N.; Kwak, J.H.; et al. Erigeron annuus Extract Alleviates Insulin Resistance via Regulating the Expression of Mitochondrial Damage and Endoplasmic Reticulum Stress-Related Genes. Nutrients 2023, 15, 2685. https://doi.org/10.3390/nu15122685
Lee HK, Nam YH, Shin SW, Kim MC, An JI, Kim NW, Shim JH, Srinath S, Hong BN, Kwak JH, et al. Erigeron annuus Extract Alleviates Insulin Resistance via Regulating the Expression of Mitochondrial Damage and Endoplasmic Reticulum Stress-Related Genes. Nutrients. 2023; 15(12):2685. https://doi.org/10.3390/nu15122685
Chicago/Turabian StyleLee, Hyo Kyu, Youn Hee Nam, Sung Woo Shin, Min Cheol Kim, Jung In An, Na Woo Kim, Ji Heon Shim, Sunitha Srinath, Bin Na Hong, Jong Hwan Kwak, and et al. 2023. "Erigeron annuus Extract Alleviates Insulin Resistance via Regulating the Expression of Mitochondrial Damage and Endoplasmic Reticulum Stress-Related Genes" Nutrients 15, no. 12: 2685. https://doi.org/10.3390/nu15122685
APA StyleLee, H. K., Nam, Y. H., Shin, S. W., Kim, M. C., An, J. I., Kim, N. W., Shim, J. H., Srinath, S., Hong, B. N., Kwak, J. H., & Kang, T. H. (2023). Erigeron annuus Extract Alleviates Insulin Resistance via Regulating the Expression of Mitochondrial Damage and Endoplasmic Reticulum Stress-Related Genes. Nutrients, 15(12), 2685. https://doi.org/10.3390/nu15122685