The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Vitamin A
3.2. Vitamin B
3.3. Vitamin C
3.4. Vitamin D
3.5. Antioxidant Supplementation in COPD
3.6. Polyunsaturated Fatty Acids (PUFAs)
3.7. Magnesium and Sodium Nitrate
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fekete, M.; Szollosi, G.; Tarantini, S.; Lehoczki, A.; Nemeth, A.N.; Bodola, C.; Varga, L.; Varga, J.T. Metabolic syndrome in patients with COPD: Causes and pathophysiological consequences. Physiol. Int. 2022, 109, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Angelis, N.; Porpodis, K.; Zarogoulidis, P.; Spyratos, D.; Kioumis, I.; Papaiwannou, A.; Pitsiou, G.; Tsakiridis, K.; Mpakas, A.; Arikas, S.; et al. Airway inflammation in chronic obstructive pulmonary disease. J. Thorac. Dis. 2014, 6 (Suppl. 1), S167–S172. [Google Scholar]
- Fekete, M.; Pákó, J.; Szőllősi, G.; Tóth, K.; Szabó, M.; Horváth, D.; Varga, J.T. Significance of nutritional status in chronic obstructive pulmonary disease: A survey. Orv. Hetil. 2020, 161, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Fazekas-Pongor, V.; Szőllősi, G.; Varga, J.T. Metabolic consequences of chronic obstructive pulmonary disease. Orv. Hetil. 2021, 162, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Quaderi, S.A.; Hurst, J.R. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 2018, 3, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontsevich, R.A.; Adonina, A.V.; Vovk, Y.R.; Batisheva, G.A.; Cherenkova, O.V.; Ketova, G.G.; Barysheva, V.O.; Luchinina, E.V.; Pokrovskaia, T.G. Management of Chronic Obstructive Pulmonary Disease. Arch. Razi. Inst. 2022, 77, 439–447. [Google Scholar]
- Fekete, M.; Fazekas-Pongor, V.; Balazs, P.; Tarantini, S.; Nemeth, A.N.; Varga, J.T. Role of new digital technologies and telemedicine in pulmonary rehabilitation: Smart devices in the treatment of chronic respiratory diseases. Wien. Klin. Wochenschr. 2021, 133, 1201–1207. [Google Scholar] [CrossRef]
- Farkas, Á.; Szipőcs, A.; Horváth, A.; Horváth, I.; Gálffy, G.; Varga, J.; Galambos, K.; Kugler, S.; Nagy, A.; Szalai, Z. Establishment of relationships between native and inhalation device specific spirometric parameters as a step towards patient tailored inhalation device selection. Respir. Med. 2019, 154, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Heris, J.A.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.-A.; et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Dosa, N.; Lehoczki, A.; Tarantini, S.; Varga, J.T. COVID-19 infection in patients with chronic obstructive pulmonary disease: From pathophysiology to therapy. Mini-review. Physiol. Int. 2022, 109, 9–19. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Kováts, Z.; Müller, V.; Varga, J.T. Outpatient rehabilitation programs for COVID-19 patients. Orv. Hetil. 2021, 162, 1671–1677. [Google Scholar] [CrossRef]
- Collins, P.F.; Yang, I.A.; Chang, Y.C.; Vaughan, A. Nutritional support in chronic obstructive pulmonary disease (COPD): An evidence update. J. Thorac. Dis. 2019, 11 (Suppl. 17), S2230–S2237. [Google Scholar] [CrossRef] [Green Version]
- Scoditti, E.; Massaro, M.; Garbarino, S.; Toraldo, D.M. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients 2019, 11, 1357. [Google Scholar] [CrossRef] [Green Version]
- Fekete, M.; Fazekas-Pongor, V.; Balazs, P.; Tarantini, S.; Szollosi, G.; Pako, J.; Nemeth, A.; Varga, J. Effect of malnutrition and body composition on the quality of life of COPD patients. Physiol. Int. 2021, 108, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, A.; Palange, P. Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance. Nutrients 2023, 15, 1786. [Google Scholar] [CrossRef] [PubMed]
- Gozzi-Silva, S.C.; Teixeira, F.M.E.; Duarte, A.; Sato, M.N.; Oliveira, L.M. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front. Nutr. 2021, 8, 674258. [Google Scholar] [CrossRef]
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I. Antioxidant therapies in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2006, 1, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Lehoczki, A.; Tarantini, S.; Varga, J.T. Effects of omega-3 supplementation on quality of life, nutritional status, inflammatory parameters, lipid profile, exercise tolerance and inhaled medications in chronic obstructive pulmonary disease. Ann. Palliat. Med. 2022, 11, 2819–2829. [Google Scholar] [CrossRef]
- Rosenwasser, Y.; Berger, I.; Loewy, Z.G. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022, 11, 1513. [Google Scholar] [CrossRef]
- Islam, S.; Sarkar, N.K.; A Mujahid, A.; Bennoor, K.S.; Hossain, S.S.; Attar, M.M.; Jahan, R.; A Hossain, M.; A Chowdhury, H.; Ali, L. Association of Serum Vitamin D (25OHD) Level with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mymensingh Med. J. 2019, 28, 441–448. [Google Scholar]
- Varga, J.; Madurka, I.; Boros, E. COVID-19 betegek komplex rehabilitációja. Szakmai Protokoll 2020. [Google Scholar]
- Rawal, G.; Yadav, S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Int. Med. 2015, 3, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Kerti, M.; Balogh, Z.; Kelemen, K.; Varga, J.T. The relationship between exercise capacity and different functional markers in pulmonary rehabilitation for COPD. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Varga, J.; Palinkas, A.; Lajko, I.; Horváth, I.; Boda, K.; Somfay, A. Pulmonary Arterial Pressure Response During Exercise in COPD: A Correlation with C-Reactive Protein (hsCRP). Open Respir. Med. J. 2016, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vézina, F.A.; Cantin, A.M. Antioxidants and Chronic Obstructive Pulmonary Disease. Chronic Obstr. Pulm. Dis. 2018, 5, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Fekete, M.; Pongor, V.; Fehér, Á.; Veresné Bálint, M.; Varga, J.T.; Horváth, I. Relationship of chronic obstructive pulmonary disease and nutritional status—Clinical observations. Orv. Hetil. 2019, 160, 908–913. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Ilari, S.; Vitiello, L.; Russo, P.; Proietti, S.; Milić, M.; Muscoli, C.; Cardaci, V.; Tomino, C.; Bonassi, G.; Bonassi, S. Daily Vegetables Intake and Response to COPD Rehabilitation. The Role of Oxidative Stress, Inflammation and DNA Damage. Nutrients 2021, 13, 2787. [Google Scholar] [CrossRef] [PubMed]
- Furulund, E.; Bemanian, M.; Berggren, N.; Madebo, T.; Rivedal, S.H.; Lid, T.G.; Fadnes, L.T. Effects of Nutritional Interventions in Individuals with Chronic Obstructive Lung Disease: A Systematic Review of Randomized Controlled Trials. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 3145–3156. [Google Scholar] [CrossRef] [PubMed]
- Salo, P.M.; Mendy, A.; Wilkerson, J.; Molsberry, S.A.; Feinstein, L.; London, S.J.; Fessler, M.B.; Thorne, P.S.; Zeldin, D.C. Serum antioxidant vitamins and respiratory morbidity and mortality: A pooled analysis. Respir. Res. 2022, 23, 150. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Hu, Y.; Ruan, Z.; Zang, G.; Chen, X.; Qiu, Z. Association between B-vitamins intake and frailty among patients with chronic obstructive pulmonary disease. Aging Clin. Exp. Res. 2023, 35, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Paulin, F.V.; Goelzer, L.S.; Müller, P.T. Vitamin B(12) Supplementation and NT-proBNP Levels in COPD Patients: A Secondary Analysis of a Randomized and Controlled Study in Rehabilitation. Front. Neurosci. 2020, 14, 740. [Google Scholar] [CrossRef]
- Dey, D.; Sengupta, S.; Bhattacharyya, P. Long-term use of Vitamin-C in chronic obstructive pulmonary disease: Early pilot observation. Lung India Off. Organ. Indian Chest Soc. 2021, 38, 500–501. [Google Scholar]
- Abuhajar, S.M.; Taleb, M.H.; Ellulu, M.S. Vitamin C deficiency and risk of metabolic complications among adults with chronic respiratory diseases: A case-control study. Clin. Nutr. ESPEN 2021, 43, 448–455. [Google Scholar] [CrossRef]
- Ahmadi, A.; Eftekhari, M.H.; Mazloom, Z.; Masoompour, M.; Fararooei, M.; Eskandari, M.H.; Mehrabi, S.; Bedeltavana, A.; Famouri, M.; Zare, M.; et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: A single-blind, randomized clinical trial. Respir. Res. 2020, 21, 216. [Google Scholar] [CrossRef]
- Al-Azzawi, M.A.; AboZaid, M.M.N.; Ibrahem, R.A.L.; Sakr, M.A. Therapeutic effects of black seed oil supplementation on chronic obstructive pulmonary disease patients: A randomized controlled double blind clinical trial. Heliyon 2020, 6, e04711. [Google Scholar] [CrossRef]
- Hureau, T.J.; Weavil, J.C.; Sidhu, S.K.; Thurston, T.S.; Reese, V.R.; Zhao, J.; Nelson, A.D.; Birgenheier, N.M.; Richardson, R.S.; Amann, M. Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. J. Appl. Physiol. 2021, 130, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, R.; Aleva, F.E.; Schrumpf, J.A.; Daniels, J.M.; Bet, P.M.; Boersma, W.G.; Bresser, P.; Spanbroek, M.; Lips, P.; van den Broek, T.J.; et al. Vitamin D supplementation in chronic obstructive pulmonary disease patients with low serum vitamin D: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A., Jr.; Toop, L.; Sluyter, J.; Lawes, C.M.M.; Waayer, D.; Khaw, K.T.; Martineau, A.R.; Scragg, R. Effect of Monthly Vitamin D Supplementation on Preventing Exacerbations of Asthma or Chronic Obstructive Pulmonary Disease in Older Adults: Post Hoc Analysis of a Randomized Controlled Trial. Nutrients 2021, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Alavi Foumani, A.; Mehrdad, M.; Jafarinezhad, A.; Nokani, K.; Jafari, A. Impact of vitamin D on spirometry findings and quality of life in patients with chronic obstructive pulmonary disease: A randomized, double-blinded, placebo-controlled clinical trial. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.J.; Moll, M.; Hayden, L.P.; Bon, J.; Regan, E.; Hersh, C.P. Vitamin D deficiency is associated with respiratory symptoms and airway wall thickening in smokers with and without COPD: A prospective cohort study. BMC Pulm. Med. 2020, 20, 123. [Google Scholar] [CrossRef]
- Janssen, R.; Serré, J.; Piscaer, I.; Zaal, R.; van Daal, H.; Mathyssen, C.; Zanen, P.; Ouweland, J.M.V.D.; Janssens, W. Post hoc analysis of a randomised controlled trial: Effect of vitamin D supplementation on circulating levels of desmosine in COPD. ERJ Open Res. 2020, 6, 4. [Google Scholar] [CrossRef]
- Dastan, F.; Salamzadeh, J.; Pourrashid, M.H.; Edalatifard, M.; Eslaminejad, A. Effects of High-Dose Vitamin D Replacement on the Serum Levels of Systemic Inflammatory Biomarkers in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. COPD J. Chronic. Obstr. Pulm. Dis. 2019, 16, 278–283. [Google Scholar] [CrossRef]
- Mølmen, K.S.; Hammarström, D.; Pedersen, K.; Lie, A.C.L.; Steile, R.B.; Nygaard, H.; Khan, Y.; Hamarsland, H.; Koll, L.; Hanestadhaugen, M.; et al. Vitamin D(3) supplementation does not enhance the effects of resistance training in older adults. J. Cachex-Sarcopenia Muscle 2021, 12, 599–628. [Google Scholar] [CrossRef]
- De Benedetto, F.; Pastorelli, R.; Ferrario, M.; de Blasio, F.; Marinari, S.; Brunelli, L.; Wouters, E.F.M.; Polverino, F.; Celli, B.R.; on behalf ofInterdisciplinary Association for Research in Lung Disease (AIMAR) Study Group. Supplementation with Qter® and Creatine improves functional performance in COPD patients on long term oxygen therapy. Respir. Med. 2018, 142, 86–93. [Google Scholar] [CrossRef]
- Beijers, R.J.; Gosker, H.R.; Sanders, K.J.; de Theije, C.; Kelders, M.; Clarke, G.; Cryan, J.F.; Borst, B.v.D.; Schols, A.M. Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clin. Nutr. 2020, 39, 2989–2997. [Google Scholar] [CrossRef]
- Ghobadi, H.; Abdollahi, N.; Madani, H.; Aslani, M.R. Effect of Crocin From Saffron (Crocus sativus L.) Supplementation on Oxidant/Antioxidant Markers, Exercise Capacity, and Pulmonary Function Tests in COPD Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Pharmacol. 2022, 13, 884710. [Google Scholar] [CrossRef] [PubMed]
- Gouzi, F.; Maury, J.; Héraud, N.; Molinari, N.; Bertet, H.; Ayoub, B.; Blaquière, M.; Bughin, F.; De Rigal, P.; Poulain, M.; et al. Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial. Oxid. Med. Cell. Longev. 2019, 2019, 5496346. [Google Scholar] [CrossRef] [PubMed]
- De Brandt, J.; Derave, W.; Vandenabeele, F.; Pomiès, P.; Blancquaert, L.; Keytsman, C.; Barusso-Grüninger, M.S.; de Lima, F.F.; Hayot, M.; Spruit, M.A. Efficacy of 12 weeks oral beta-alanine supplementation in patients with chronic obstructive pulmonary disease: A double-blind, randomized, placebo-controlled trial. J. Cachexia Sarcopenia Muscle 2022, 13, 2361–2372. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.C.; Yang, M.D.; Li, P.C.; Fang, H.Y.; Huang, H.Y.; Chan, Y.C.; Bau, D.T. Effect of Oligomeric Proanthocyanidin on the Antioxidant Status and Lung Function of Patients with Chronic Obstructive Pulmonary Disease. In Vivo 2018, 32, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; A Barreto, T.; Martinez, F.J.; Comstock, A.T.; Sajjan, U.S. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respir. Res. 2020, 7, e000392. [Google Scholar] [CrossRef] [Green Version]
- Aslani, M.R.; Abdollahi, N.; Matin, S.; Zakeri, A.; Ghobadi, H. Effect of crocin of Crocus sativus L. on serum inflammatory markers (IL-6 and TNF-α) in chronic obstructive pulmonary disease patients: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Lemoine, S.C.; Brigham, E.P.; Woo, H.; Hanson, C.K.; McCormack, M.C.; Koch, A.; Putcha, N.; Hansel, N.N. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm. Med. 2019, 19, 97. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Thomashow, M.A.; Yip, N.H.; Burkart, K.M.; Lo Cascio, C.M.; Shimbo, D.; Barr, R.G. Randomization to Omega-3 Fatty Acid Supplementation and Endothelial Function in COPD: The COD-Fish Randomized Controlled Trial. Chronic Obstr. Pulm. Dis. 2021, 8, 41–53. [Google Scholar] [CrossRef]
- Engelen, M.; Jonker, R.; Sulaiman, H.; Fisk, H.L.; Calder, P.C.; Deutz, N.E.P. ω-3 polyunsaturated fatty acid supplementation improves postabsorptive and prandial protein metabolism in patients with chronic obstructive pulmonary disease: A randomized clinical trial. Am. J. Clin. Nutr. 2022, 116, 686–698. [Google Scholar] [CrossRef]
- Ogasawara, T.; Marui, S.; Miura, E.; Sugiura, M.; Matsuyama, W.; Aoshima, Y.; Kasamatsu, N.; Ogiku, M.; Ikematsu, Y. Effect of eicosapentaenoic acid on prevention of lean body mass depletion in patients with exacerbation of chronic obstructive pulmonary disease: A prospective randomized controlled trial. Clin. Nutr. ESPEN 2018, 28, 67–73. [Google Scholar] [CrossRef]
- Zanforlini, B.M.; Ceolin, C.; Trevisan, C.; Alessi, A.; Seccia, D.M.; Noale, M.; Maggi, S.; Guarnieri, G.; Vianello, A.; Sergi, G. Clinical trial on the effects of oral magnesium supplementation in stable-phase COPD patients. Aging Clin. Exp. Res. 2022, 34, 167–174. [Google Scholar] [CrossRef]
- Beijers, R.; Huysmans, S.M.D.; van de Bool, C.; Kingma, B.R.M.; Verdijk, L.B.; van Loon, L.J.C.; Meex, S.J.R.; Gosker, H.R.; Schols, A.M.W.J. The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin. Nutr. 2018, 37 Pt A, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K.; Breitner, S.; Wolf, K.; Cyrys, J.; Kastenmüller, G.; Wang-Sattler, R.; Schneider, A.; Peters, A. Short-term NO2 exposure is associated with long-chain fatty acids in prospective cohorts from Augsburg, Germany: Results from an analysis of 138 metabolites and three exposures. Int. J. Epidemiol. 2016, 45, 1528–1538. [Google Scholar] [CrossRef] [Green Version]
- Boukhenouna, S.; Wilson, M.A.; Bahmed, K.; Kosmider, B. Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease. Oxid. Med. Cell. Longev. 2018, 2018, 5730395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marton, J.; Farkas, G.; Takacs, T.; Nagy, Z.; Szasz, Z.; Varga, J.; Jarmay, K.; Balogh, A.; Lonovics, J. Beneficial effects of pentoxifylline treatment of experimental acute pancreatitis in rats. Res. Exp. Med. 1998, 197, 293–299. [Google Scholar] [CrossRef]
- Victoni, T.; Barreto, E.; Lagente, V.; Carvalho, V.F. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? Oxid. Med. Cell. Longev. 2021, 2021, 6646923. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.S.; Saini, M. Evaluation of Systemic Antioxidant Level and Oxidative Stress in Relation to Lifestyle and Disease Progression in Asthmatic Patients. J. Med. Biochem. 2016, 35, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegedűs, B.; Varga, J.; Somfay, A. Interdisciplinary rehabilitation in patients with ankylosing spondylitis. Orv. Hetil. 2016, 157, 1126–1132. [Google Scholar] [CrossRef] [Green Version]
- Lázár, G., Jr.; Varga, J.; Lázár, G.; Duda, E.; Takács, T.; Balogh, A.; Lonovics, J. The effects of glucocorticoids and a glucocorticoid antagonist (RU 38486) on experimental acute pancreatitis in rat. Acta Chir. Hung. 1997, 36, 190–191. [Google Scholar]
- Fazekas-Pongor, V.; Fekete, M.; Balazs, P.; Árva, D.; Pénzes, M.; Tarantini, S.; Urbán, R.; Varga, J.T. Health-related quality of life of COPD patients aged over 40 years. Physiol. Int. 2021, 108, 261–273. [Google Scholar] [CrossRef]
- Varga, J.T. Smoking and pulmonary complications: Respiratory prehabilitation. J. Thorac. Dis. 2019, 11 (Suppl. 5), S639–S644. [Google Scholar] [CrossRef]
- Fekete, M.; Kerti, M.; Fazekas-Pongor, V.; Balazs, P.; Csizmadia, Z.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Effect of interval training with non-invasive ventilation in severe chronic obstructive pulmonary disease-a prospective cohort study with matched control group. Ann. Palliat. Med. 2021, 10, 5289–5298. [Google Scholar] [CrossRef]
- Szucs, B.; Szucs, C.; Petrekanits, M.; Varga, J.T. Molecular Characteristics and Treatment of Endothelial Dysfunction in Patients with COPD: A Review Article. Int. J. Mol. Sci. 2019, 20, 4329. [Google Scholar] [CrossRef] [Green Version]
- Szucs, B.; Petrekanits, M.; Varga, J. Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease. J. Thorac. Dis. 2018, 10, 6482–6490. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Pako, J.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Prevalence of influenza and pneumococcal vaccination in chronic obstructive pulmonary disease patients in association with the occurrence of acute exacerbations. J. Thorac. Dis. 2020, 12, 4233–4242. [Google Scholar] [CrossRef] [PubMed]
- Márton, J.; Farkas, G.; Nagy, Z.; Takács, T.; Varga, J.; Szász, Z.; Balogh, A.; Lonovics, J. Plasma levels of TNF and IL-6 following induction of acute pancreatitis and pentoxifylline treatment in rats. Acta Chir. Hung 1997, 36, 223–225. [Google Scholar] [PubMed]
- Osler, M.; Tjønneland, A.; Suntum, M.; Thomsen, B.; Stripp, C.; Grønbæk, M.; Overvad, K. Does the association between smoking status and selected healthy foods depend on gender? A population-based study of 54 417 middle-aged Danes. Eur. J. Clin. Nutr. 2002, 56, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Shameem, M.; Husain, Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2013, 17, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef]
- Keranis, E.; Makris, D.; Rodopoulou, P.; Martinou, H.; Papamakarios, G.; Daniil, Z.; Zintzaras, E.; Gourgoulianis, K.I. Impact of dietary shift to higher-antioxidant foods in COPD: A randomised trial. Eur. Respir. J. 2010, 36, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Hejazi, M.E.; Modarresi-Ghazani, F.; Entezari-Maleki, T. A review of Vitamin D effects on common respiratory diseases: Asthma, chronic obstructive pulmonary disease, and tuberculosis. J. Res. Pharm. Pract. 2016, 5, 7–15. [Google Scholar]
- Gascón-Vila, P.; Ribas, L.; García-Closas, R.; Farrán Codina, A.; Serra-Majem, L. Dietary sources of vitamin A, C, E and beta-carotene in a adult Mediterranean population. Gac. Sanit. 1999, 13, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Surman, S.L.; Penkert, R.R.; Sealy, R.E.; Jones, B.G.; Marion, T.N.; Vogel, P.; Hurwitz, J.L. Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death. Int. J. Mol. Sci. 2020, 21, 5570. [Google Scholar] [CrossRef]
- Baybutt, R.C.; Molteni, A. Vitamin A and emphysema. Vitam. Horm. 2007, 75, 385–401. [Google Scholar]
- Shen, T.; Bimali, M.; Faramawi, M.; Orloff, M.S. Consumption of Vitamin K and Vitamin A Are Associated With Reduced Risk of Developing Emphysema: NHANES 2007–2016. Front. Nutr. 2020, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, T.; Lu, T.; Yu, H.; Su, X.; Zhang, C.; Zhu, L.; Yang, K.; Liu, J. Efficacy of Vitamin C Supplementation on Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 2201–2216. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Tunstall-Pedoe, H.; Bolton-Smith, C.; Hannah, M.K.; Morrison, C. Association of dietary antioxidants and waist circumference with pulmonary function and airway obstruction. Am. J. Epidemiol. 2001, 153, 157–163. [Google Scholar] [CrossRef]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef]
- Çalikoğlu, M.; Ünlü, A.; Tamer, L.; Ercan, B.; Buğdayci, R.; Atik, U. The levels of serum vitamin C malonyldialdehyde and erythrocyte reduced glutathione in chronic obstructive pulmonary disease and in healthy smokers. Clin. Chem. Lab. Med. 2002, 40, 1028–1031. [Google Scholar] [CrossRef]
- Peh, H.Y.; Tan, W.D.; Chan, T.K.; Pow, C.W.; Foster, P.S.; Wong, W.F. Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radic. Biol. Med. 2017, 110, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Mete, B.; Pehlivan, E.; Gülbaş, G.; Günen, H. Prevalence of malnutrition in COPD and its relationship with the parameters related to disease severity. Int. J. Chronic. Obstr. Pulm. Dis. 2018, ume 13, 3307–3312. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigare, R.; Dekhuijzen, P.N.R.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An official American Thoracic Society/European Respiratory Society statement: Update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, I.; Biswas, S.K.; Kode, A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol. 2006, 533, 222–239. [Google Scholar] [CrossRef]
- Hanson, C.; Lyden, E.; Furtado, J.; Campos, H.; Sparrow, D.; Vokonas, P.; Litonjua, A.A. Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study. Clin. Nutr. 2016, 35, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guertin, K.A.; Grant, R.K.; Arnold, K.B.; Burwell, L.; Hartline, J.; Goodman, P.J.; Minasian, L.M.; Lippman, S.M.; Klein, E.; Cassano, P.A. Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic. Biol. Med. 2016, 95, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Su, Y.; Chen, Q.; Xiao, L.; Zhao, X.; Wang, F.; Peng, Z.; Zhang, H. Association of Dietary intake of vitamin E with chronic obstructive pulmonary disease events in US adults: A cross-sectional study of NHANES 2013-2018. Front. Nutr. 2023, 10, 1124648. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Chen, L.; Zhang, H.; Yu, L.; Chi, Y.; Chen, M.; Cai, Y. Efficacy of vitamin D supplementation on COPD and asthma control: A systematic review and meta-analysis. J. Glob. Health 2022, 12, 04100. [Google Scholar] [CrossRef]
- Lokesh, K.S.; Chaya, S.K.; Jayaraj, B.S.; Praveena, A.S.; Krishna, M.; Madhivanan, P.; Mahesh, P.A. Vitamin D deficiency is associated with chronic obstructive pulmonary disease and exacerbation of COPD. Clin. Respir. J. 2021, 15, 389–399. [Google Scholar] [CrossRef]
- Yang, H.; Sun, D.; Wu, F.; Xu, X.; Liu, X.; Wang, Z.; Zhou, L. Effects of Vitamin D on Respiratory Function and Immune Status for Patients with Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. Comput. Math. Methods Med. 2022, 2022, 2910782. [Google Scholar] [CrossRef]
- Nannini, L.J.; Poole, P.; Milan, S.J.; Kesterton, A. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013, 2013, Cd006826. [Google Scholar]
- Fletcher, J.M.; Basdeo, S.A.; Allen, A.C.; Dunne, P.J. Therapeutic use of vitamin D and its analogues in autoimmunity. Recent Pat. Inflamm. Allergy Drug Discov. 2012, 6, 22–34. [Google Scholar] [CrossRef]
- Pál, É.; Ungvári, Z.; Benyó, Z.; Várbíró, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Shin, S.H.; Choi, H.S.; Im, Y.; Kim, B.G.; Song, J.Y.; Lee, D.; Park, H.Y.; Lim, J.H. Association Between Vitamin D Level and Respiratory Symptoms in Patients with Stable Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 579–590. [Google Scholar] [CrossRef]
- García de Tena, J.; El Hachem Debek, A.; Hernández Gutiérrez, C.; Izquierdo Alonso, J.L. The role of vitamin D in chronic obstructive pulmonary disease, asthma and other respiratory diseases. Arch. Bronconeumol. 2014, 50, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, M.; Plesa, M.; Mogas, A.; Jalaleddine, N.; Hamid, Q.; Al Heialy, S. Recent advances in vitamin D implications in chronic respiratory diseases. Respir. Res. 2022, 23, 252. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Khan, D.M.; Ullah, A.; Randhawa, F.A.; Iqtadar, S.; Butt, N.F.; Waheed, K. Role of Vitamin D in reducing number of acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) patients. Pak. J. Med. Sci. 2017, 33, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, J.; Yu, M.; Sun, J. The efficacy of vitamin D therapy for patients with COPD: A meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2020, 9, 286–297. [Google Scholar] [CrossRef]
- Carson, E.L.; Pourshahidi, L.K.; Madigan, S.M.; Baldrick, F.R.; Kelly, M.G.; Laird, E.; Healy, M.; Strain, J.; Mulhern, M.S. Vitamin D status is associated with muscle strength and quality of life in patients with COPD: A seasonal prospective observation study. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2613–2622. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Valle, M.S.; Casabona, A.; Spicuzza, L.; Sambataro, G.; Malaguarnera, L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines 2022, 10, 898. [Google Scholar] [CrossRef]
- Kokturk, N.; Baha, A.; Oh, Y.M.; Ju, J.Y.; Jones, P.W. Vitamin D deficiency: What does it mean for chronic obstructive pulmonary disease (COPD)? a compherensive review for pulmonologists. Clin. Respir. J. 2018, 12, 382–397. [Google Scholar] [CrossRef] [Green Version]
- Bahar-Shany, K.; Ravid, A.; Koren, R. Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by vitamin D. J. Cell Physiol. 2010, 222, 729–737. [Google Scholar]
- Zhu, M.; Wang, T.; Wang, C.; Ji, Y. The association between vitamin D and COPD risk, severity, and exacerbation: An updated systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2597–2607. [Google Scholar] [CrossRef] [Green Version]
- Mekov, E.; Slavova, Y.; Tsakova, A.; Genova, M.; Kostadinov, D.; Minchev, D.; Marinova, D.; Tafradjiiska, M. Vitamin D Deficiency and Insufficiency in Hospitalized COPD Patients. PLoS ONE 2015, 10, e0129080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [Green Version]
- Saleem, A.; Sharif, S.; Jarvis, S.; Madouros, N.; Koumadoraki, E.; Khan, S. A Comprehensive Review on Vitamin D as a Novel Therapeutic Agent in Chronic Obstructive Pulmonary Disease. Cureus 2021, 13, e13095. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Flouris, A.D.; Tsatsakis, A.; Kafatos, A.G.; Saris, W.H. Does adherence to the Mediterranean diet have a protective effect against active and passive smoking? Public Health 2011, 125, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Uppin, V.; Acharya, P.; Talahalli, R.R. Modulatory Potentials of N-3 Polyunsaturated Fatty Acids in Inflammatory Diseases; IntechOpen: London, UK, 2020. [Google Scholar]
- Pizzini, A.; Lunger, L.; Sonnweber, T.; Weiss, G.; Tancevski, I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018, 10, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- de Batlle, J.; Sauleda, J.; Balcells, E.; Gómez, F.P.; Méndez, M.; Rodriguez, E.; Barreiro, E.; Ferrer, J.J.; Romieu, I.; Gea, J.; et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. J. Nutr. Biochem. 2012, 23, 817–821. [Google Scholar] [CrossRef] [PubMed]
- van de Bool, C.; Rutten, E.P.A.; van Helvoort, A.; Franssen, F.M.E.; Wouters, E.F.M.; Schols, A. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J. Cachexia Sarcopenia Muscle 2017, 8, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Frontela-Saseta, C.; González-Bermúdez, C.A.; García-Marcos, L. Diet: A Specific Part of the Western Lifestyle Pack in the Asthma Epidemic. J. Clin. Med. 2020, 9, 2063. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/ Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Abuhajar SM et al. [38] | case–control study | - | Gaza Strip, Palestine | 52 + 52 | 44.17 ± 12.98; 43.40 ± 12.39 | 53.8%/46.2% | - | CRD patients had significantly lower plasma concentrations of vitamins C and CRP than controls (18.43 ± 11.93 μgm/mL vs. 24.06 ± 11.19 μgm/mL, p = 0.025); CRP (5.98 ± 8.84 mg/L vs. 1.87 ± 1.96 mg/L, p = 0.001). |
Ahmadi A et al. [39] | single-blind, randomized trial study | 8 weeks | Shiraz, Iran | 23 + 23 | 63.47 ± 7.24; 62.08 ± 7.0 | 100% male | Received 250 mL of whey beverage fortified with magnesium and vitamin C, daily | IL-6 levels were significantly reduced in the intervention group compared to the control group, and an improvement in health-related quality of life was observed in the intervention group. |
Al-Azzawi MA et al. [40] | randomized, controlled, double-blind clinical trial | 3 months | Egypt | 44 + 47 | 53.74 ± 4.68; 55.18 ± 4.27 | 69.2%/ 30.8% | Oral administration of 1 g of 100% pure, cold-pressed black seed oil twice daily in addition to standard COPD medication | Significant reduction in oxidant and inflammatory markers; TBARS, PC content, IL-6, TNF-α a significant increase in antioxidants; SOD, CAT, GSH, GPx vitamins C and E, and a significant improvement in PFTs versus control group and baseline levels. |
Hureau TJ et al. [41] | cross-sectional study | no follow-up | Utah, United States | 8 | 65 ± 3 | no data available | Intravenous VitC (2 g) during cycling exercise | VitC increased superoxide dismutase by 129% and mitigated CRP in the plasma during exercise, but failed to alter the exercise-induced increase in lipid peroxidation and free radicals. |
Dey D et al. [37] | pilot study | 6 months | India | 12 + 14 | 63.40 ± 8.44; 66.18 ± 8.29 | no data available | 2 g/day vitamin C supplementation | Exacerbation rates were found to be higher (OR: 5.26 [2.44–11.31], p < 0.0001) in standard therapy alone. |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Rafiq R et al. [42] | double-blind, randomized, controlled trial | 1 year | The Netherlands | 155 | 67 ± 9; 65 ± 9 | 65.2%/34.8% | 16,800 IU vitamin D3 once a week for 1 year | Vitamin D supplementation did not affect exacerbation rate: IRR: 0.90; 95% CI: 0.67–1.21. |
Camargo CA Jr et al. [43] | randomized, double-blinded, placebo-controlled trial | 3.3 years | New Zealand | 5110 | 67 | 56%/44% | Monthly, high-dose vitamin D supplementation | Vitamin D supplementation had no effect on the exacerbation risk (HR: 1.08; 95% CI 0.84–1.39), but evidence of a probable benefit was found in those with severe vitamin D deficiency. |
Alavi Foumani A et al. [44] | randomized, double-blinded clinical trial | 4 months | Iran | 63 | 67.9 ± 7.9; 68.4 ± 7.8 | 95.2%/4.8% | 50,000 IU vitamin D3 once a week for 8 weeks and then once a month for 4 months | In the intervention group, a significant difference was observed in quality of life at 2 months (p < 0.001) and 6 months (p < 0.001). |
Ghosh AJ et al. [45] | multicenter, longitudinal, observational study | 5 years | United States | 1544 | 57.07 ± 7.92; 62.09 ± 8.67 | 46.8%/53.2% | - | In adult smokers with and without COPD, vitamin D deficiency was associated with increased respiratory symptoms and poorer health-related quality of life at baseline, as well as increased frequency of exacerbations and airway wall thickening on chest CT scans. |
Janssen R et al. [46] | double-blind, randomized, placebo-controlled trial | 1 year | Belgium | 142 | 68 ± 9; 68 ± 8 | 85.2%/14.8% | 100,000 IU vitamin D3 supplementation every 4 weeks for 1 year | Vitamin D supplementation did not have a significant overall effect on elastin degradation compared to placebo. |
Dastan F et al. [47] | randomized, double-blind, placebo-controlled trial | 6 days | Iran | 67 | 64.42 ± 7.58; 63.24 ± 8.41 | 85%/15% | 300,000 IU of intramuscular vitamin D | IL-6 levels significantly decreased in the vitamin D vs. placebo group on the 6th day (p = 0.02); however, no significant differences were observed in IL-8 (p = 0.15) and hs-CRP (p = 0.24) levels, mMRC scale (p = 0.45) and mortality rates (p = 0.61). |
Mølmen KS et al. [48] | double-blind, randomized clinical trial | 28 weeks | Norway | 95 | 68 ± 5 | 46.3%/53.7% | An initial 2 weeks with 10,000 IU/day, succeeded by 10 weeks with 2000 IU/day | Vitamin D3 supplementation did not affect muscular responses to resistance training in older adults with COPD. |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
De Benedetto F et al. [49] | double-blind, randomized, placebo-controlled clinical study | 2 months | Italy | 90 | 73 ± 7 | 76%/24% | Coenzyme Q10 (QTer®) and Creatine supplementation | Supplemented patients showed improvements in 6MWT (51 ± 69 versus 15 ± 91 m, p < 0.05), body cell mass and phase angle, sodium/potassium ratio, dyspnea indices and ADL score. |
Beijers RJ et al. [50] | double-blind, randomized, placebo-controlled proof-of-concept study | 4 weeks | The Netherlands | 21 | 67 ± 9 | 57%/43% | Resveratrol supplementation (150 mg/day) | Plasma high-sensitivity C-reactive protein and kynurenine did not change after resveratrol supplementation. Muscle mitochondrial biogenesis regulators AMPK, SIRT1 and PGC-1α, mitochondrial respiration, Oxphos complexes, oxidative enzyme activities, and kynurenine aminotransferases were not improved by resveratrol. |
Ghobadi H et al. [51] | randomized, double-blind, placebo-controlled clinical trial | 12 weeks | Iran | 46 | 62.04 ± 8.83 | 100% male | Crocin supplementation (30 mg/day) | COPD patients had decreased serum levels of TOS and NF-κB, and increased TAOC and 6MWD. |
Gouzi F et al. [52] | randomized, double-blind, placebo-controlled clinical trial | 28 days | France | 57 | 62.4 ± 6.5 | 49%/51% | Antioxidant supplementation: α-tocopherol: 30 mg/day, ascorbate: 180 mg/day, zinc gluconate: 15 mg/day, selenomethionine: 50 μg/day | Supplementation increased the α-tocopherol/γ-tocopherol ratio and selenium, muscle strength (+11 ± 3%, p < 0.001), and serum total proteins (+7 ± 2%, p < 0.001), and it tended to increase the type I fiber proportion (+32 ± 17%, p = 0.07). |
De Brandt J et al. [53] | double-blind, randomized, placebo-controlled trial | 12 weeks | Belgium | 40 | 65 ± 6 | 75%/25% | Beta-alanine supplementation | Beta-alanine supplementation increased muscle carnosine levels (+2.82 [1.49–4.14]; p < 0.001). However, accompanied beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress were not observed. |
Lu MC et al. [54] | randomized, double-blind clinical trial | 8 weeks | Taiwan | 27 | 71 ± 2 | - | Oligomeric proanthocyanidins extracted from grape seeds 150 mg/day suppl. | OPC supplementation significantly reduced the concentration of malondialdehyde, superoxide dismutase, and the total cholesterol/high-density lipoprotein cholesterol ratio. |
Al-Azzawi MA et al. [40] | randomized, controlled, double-blind clinical trial | 3 months | Egypt | 91 | 55.18 ± 4.27 | 69%/31% | Treated with 1 g of 100% pure cold-pressed black seed oil, orally, twice daily, in addition to standard COPD medication | Significant reduction in oxidant and inflammatory markers: TBARS, PC content, IL-6, TNF-α. A significant increase in antioxidants SOD, CAT, GSH, GPx vitamin C, and E, and a significant improvement in PFTs versus control group and baseline levels. |
Han MK et al. [55] | randomized clinical trial | 1 week | Michigan | 9 | 68 ± 6 | 56%/64% | Quercetin at 500, 1000 or 2000 mg/day | Quercetin was safely tolerated up to 2000 mg/day based on lung function tests, blood profiles, and COPD assessment test questionnaires. |
Aslani MR et al. [56] | randomized, double-blind, placebo-controlled trial | 12 weeks | Iran | 57 | 61 ± 8 | 100% male | Crocin supplementation 15 mg twice daily | Crocin improved PFT (p < 0.05) and 6MWD (p < 0.001) and increased serum levels of IL-6 and TNF-alfa. |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Kim JS et al. [58] | prospective, randomized, placebo-controlled, double-blinded superiority trial | 6 months | Columbia | 40 | 67.5 (6.5) | 55%/45% | Daily administration of high-dose fish oil capsules for 6 months | Randomization of n-3 PUFAs for 6 months did not change systemic endothelial function in COPD. More participants in the fish oil arm reported at least a 4 point improvement in the SGRQ. |
Engelen M et al. [59] | randomized, double-blind, placebo-controlled 3-group design study trial | 4 weeks | USA | 32 | - | - | High dose (3.5 g) of EPA + DHA, a low dose (2.0 g) of EPA + DHA, or placebo via gel capsules | Daily n-3 PUFA supplementation induces a shift toward a positive daily protein homeostasis in patients with COPD in a partially dose-dependent way. Extremity lean mass increased, but muscle function did not. |
Ogasawara T et al. [60] | prospective, randomized, controlled trial | 12.6 ± 4.9 days | Japan | 45 | 77.4 ± 9.7 | 91%/9% | Oral administration of 1 g/day of EPA-enriched nutrition supplementation | Insignificant increase in LBMI and SMI in the EPA group compared with the control group. The change in the SMI was significantly correlated with the length of hospitalization in the EPA group. |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Zanforlini BM et al. [61] | double-blind, randomized, controlled clinical study | 6 months | Italy | 49 | 72.6 ± 9.9 | 77.6%/22.4% | 300 mg/day magnesium citrate | Oral magnesium supplementation may have a potential anti-inflammatory role, CRP (β = −3.2, 95% CI −6.0, −0.4, p = 0.03). |
Beijers RJHCG et al. [62] | double-blind, randomized, cross-over, placebo-controlled trial | 7 days | The Netherlands | 20 | 66.6 ± 7.5 | 72.2%/27.8% | Sodium nitrate (8 mmol/day) | Acute as well as 7-day sodium nitrate supplementation does not alter mechanical efficiency, blood pressure or cardiac biomarkers in mild-to-moderate COPD patients. |
Exogenous Agents | Reactive Oxygen Species | Endogenous Agents |
---|---|---|
Cigarette smoke | Superoxide anion | Inflammation |
Pollutants | Hydrogen peroxide | Organelle damage |
Radiation | Hydroxyl radical | Mitochondria |
Drugs | Hypochlorous acid | Cell metabolism |
Foods | Hydroxide ion | Peroxisomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review. Nutrients 2023, 15, 2741. https://doi.org/10.3390/nu15122741
Fekete M, Csípő T, Fazekas-Pongor V, Fehér Á, Szarvas Z, Kaposvári C, Horváth K, Lehoczki A, Tarantini S, Varga JT. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review. Nutrients. 2023; 15(12):2741. https://doi.org/10.3390/nu15122741
Chicago/Turabian StyleFekete, Mónika, Tamás Csípő, Vince Fazekas-Pongor, Ágnes Fehér, Zsófia Szarvas, Csilla Kaposvári, Krisztián Horváth, Andrea Lehoczki, Stefano Tarantini, and János Tamás Varga. 2023. "The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review" Nutrients 15, no. 12: 2741. https://doi.org/10.3390/nu15122741
APA StyleFekete, M., Csípő, T., Fazekas-Pongor, V., Fehér, Á., Szarvas, Z., Kaposvári, C., Horváth, K., Lehoczki, A., Tarantini, S., & Varga, J. T. (2023). The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review. Nutrients, 15(12), 2741. https://doi.org/10.3390/nu15122741