Relationships of Body Mass Index, Relative Fat Mass Index, and Waist Circumference with Serum Concentrations of Parameters of Chronic Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Project
2.2. Anthropometric Measurements
- Waist and hip circumference were measured to the nearest 0.01 m using a flexible tape measure (SECA 711). Waist circumference (WC) was measured as the horizontal distance around the abdomen at the level of the navel. Hip circumference (HC) was measured as the horizontal distance across the two upper hip bones (ilia).
- Body weight and height were measured using a legalized medical scale with an integrated SECA 711 height meter in accordance with a standardized procedure with an accuracy of 0.1 kg and 0.1 cm, respectively. Participants stood with their backs straight, heels together, barefoot, in light clothing.
2.3. Indicators of Obesity
- body mass index (BMI) was calculated by the formula: BMI = body weight (kg)/height (m)2. BMI was divided into the following categories according to the Centers for Disease Control and Prevention (CDC): underweight (BMI < 18.5), normal weight (BMI = 18.5–24.9), overweight (BMI = 25.0–29.9) and obesity (BMI ≥ 30) [35];
- waist circumference (WC): abdominal (central) obesity was diagnosed when WC ≥ 80 cm (for women in Europe) [36];
- relative fat mass (RFM) index was calculated by the formula: RFM = 76 − (20 × (height (m)/waist circumference (m))). The result of the RFM equation is written as a percentage—it reflects the approximate fat content in the human body. For an obese person, the percentage of body fat (PBF) is ≥ 32% for women [37];
- visceral adipose index (VAI) was calculated by the formula: VAI = [WC/39.68 + (1.88 × BMI)] × (TG/1.03) × (1.31/HDL). This index helps to assess visceral adipose dysfunction and cardiometabolic risk [37].
- waist to height ratio (WHtR) was calculated according to the formula: WHtR = (WC) (cm)/height (cm).
2.4. Blood Pressure Measurement
2.5. Blood Collection
2.6. Determination of IL-6 Level
2.7. Classification of Respondents
- (1)
- Menopausal status [6]:
- perimenopausal women—immediately before menopause, with endocrinological, biological, and clinical symptoms of approaching menopause;
- postmenopausal women—the last menstruation at least 12 months before the study.
- (2)
- Metabolic Syndrome (MetS): based on the latest criteria proposed by the International Diabetes Federation (IDF) and the modified National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) [43]; MetS is diagnosed in women if three out of the following five risk factors are present:
- WC ≥ 80 cm or treatment for this lipid abnormality;
- TG > 150 mg/dL (1.7 mmol/L) or treatment for this lipid abnormality;
- HDL < 50 mg/dL (1.3 mmol/L) or treatment for this lipid abnormality;
- elevated blood pressure (BP): systolic blood pressure (SBP) ≥ 130 or diastolic blood pressure (DBP) ≥ 85 mmHg or treatment for hypertension;
- fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) or a diagnosis of type 2 diabetes. If FPG > 100 mg/dL (5.6 mmol/L), it is strongly recommended to perform the oral glucose tolerance test (OGTT).
- (3)
- abdominal obesity diagnosed in women if WC ≥ 80 cm;
- general obesity diagnosed in women if BMI ≥ 30 kg/m2.
2.8. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Interrelationships between Selected Parameters of Chronic Systemic Inflammation
3.3. Relationships of BMI, WC, RFM, VAI, and WHtR with Selected Parameters of Chronic Systemic Inflammation
3.4. Relationships between Anthropometric Parameters (BMI, WC, RFM, VAI, WHtR) and Selected Parameters of Chronic Systemic Inflammation in the Subgroups Defined by BMI, Smoking Status, and MetS
3.5. Relationships between Plasma Adiponectin Levels and Cardiovascular Risk Factors
4. Discussion
4.1. Interrelationships between Selected Parameters of Chronic Systemic Inflammation
4.2. Relationships of BMI, WC, RFM, VAI, and WHtR with Selected Parameters of Chronic Systemic Inflammation
5. Conclusions
6. Limitation and Strength
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Word Health Organization. Research on the Menopause in the 1990s; Word Health Organization: Geneva; Switzerland, 1996; Volume 866, pp. 1–107.
- Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat mass changes during menopause: A metaanalysis. Am. J. Obstet. Gynecol. 2019, 221, 393–409.e50. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.G.; Anekwe, C.; Washington, K.; Akam, E.Y.; Wang, E.; Stanford, F.C. Weight regulation in menopause. Menopause 2021, 28, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Antza, C.; Trakatelli, C.; Lambrinoudaki, I.; Goulis, D.G.; Kotsis, V. The effect of menopause on lipoprotein (a) concentrations: A systematic review and meta-analysis. Maturitas 2023, 167, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; STRAW 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc Kinlay, S.M. The normal menopause transition: An overview. Maturitas 1996, 23, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Prakapenka, A.V.; Bimonte-Nelson, H.A. Memory and menopause: An unsolved puzzle. Aging 2018, 10, 2541–2543. [Google Scholar] [CrossRef]
- Cybulska, A.M.; Szkup, M.; Schneider-Matyka, D.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Jurczak, A.; Wieder-Huszla, S.; Karakiewicz, B.; Grochans, E. Depressive Symptoms among Middle-Aged Women-Understanding the Cause. Brain Sci. 2020, 11, 26. [Google Scholar] [CrossRef]
- Canning, K.L.; Brown, R.E.; Jamnik, V.K.; Kuk, J.L. Relationship between obesity and obesity-related morbidities weakens with aging. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Farahmand, M.; Bahri Khomamid, M.; Rahmati, M.; Azizi, F.; Ramezani Tehrani, F. Aging and changes in adiposity indices: The impact of menopause. J. Endocrinol. Investig. 2022, 45, 69–77. [Google Scholar] [CrossRef]
- Santos, J.L.; Albala, C.; Lera, L.; García, C.; Arroyo, P.; Pérez-Bravo, F.; Angel, B.; Peláez, M. Anthropometric measurements in the elderly population of Santiago; Chile. Nutrition 2014, 20, 452–457. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology; epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Giuliani, N.; Sansoni, P.; Girasole, G.; Vescovini, R.; Passeri, G.; Passeri, M.; Pedrazzoni, M. Serum interleukin-6; soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp. Gerontol. 2001, 36, 547–557. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation; metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Cybulska, A.M.; Rachubińska, K.; Szkup, M.; Schneider-Matyka, D.; Baranowska-Bosiacka, I.; Chlubek, D.; Lubkowska, A.; Panczyk, M.; Sołek-Pastuszka, J.; Grochans, E. Serum levels of proinflammatory cytokines and selected bioelements in perimenopausal women with regard to body mass index. Aging 2021, 13, 25025–25037. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Sowers, M.R.; Wildman, R.P.; Mancuso, P.; Eyvazzadeh, A.D.; Karvonen-Gutierrez, C.A.; Rillamas-Sun, E.; Jannausch, M.L. Change in adipocytokines and ghrelin with menopause. Maturitas 2008, 59, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Lobo, R.A. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef]
- Lee, C.G.; Carr, M.C.; Murdoch, S.J.; Mitchell, E.; Woods, N.F.; Wener, M.H.; Chandler, W.L.; Boyko, E.J.; Brunzell, J.D. Adipokines; inflammation; and visceral adiposity across the menopausal transition: A prospective study. J. Clin. Endocrinol. Metab. 2009, 94, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- Pfeilschifter, J.; Köditz, R.; Pfohl, M.; Schatz, H. Changes in proinflammatory cytokine activity after menopause. Endocr. Rev. 2002, 23, 90–119. [Google Scholar] [CrossRef]
- Taleb-Belkadi, O.; Chaib, H.; Zemour, L.; Fatah, A.; Chafi, B.; Mekki, K. Lipid profile; inflammation; and oxidative status in peri- and postmenopausal women. Gynecol. Oncol. 2016, 32, 982–985. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, M.; Esposito, K.; Vietri, M.T.; Gazzerro, P.; D’Auria, A.; Ardovino, I.; Puca, G.A.; Molinari, A.M. Cytokine pattern in postmenopause. Maturitas 2002, 41, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Maegawa, M.; Tomita, J.; Miyatani, Y.; Yamada, M.; Uemura, H.; Matsuzaki, T.; Kuwahara, A.; Kamada, M.; Tsuchiya, N.; et al. Changes in serum cytokine concentrations during the menopausal transition. Maturitas 2007, 56, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration; Kaptoge, S.; Di, A.E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-reactive protein concentration and risk of coronary heart disease; stroke; and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Manson, J.E.; Rossouw, J.E.; Siscovick, D.S.; Mouton, C.P.; Rifai, N.; Wallace, R.B.; Jackson, R.D.; Pettinger, M.B.; Ridker, P.M. Inflammatory biomarkers; hormone replacement therapy; and incident coronary heart disease: Prospective analysis from the Women’s health initiative observational study. J. Am. Med. Assoc. 2002, 288, 980–987. [Google Scholar] [CrossRef]
- Crandall, C.J.; Barrett-Connor, E. Endogenous sex steroid levels and cardiovascular disease in relation to the menopause: A systematic review. Endocrinol. Metab. Clin. N. Am. 2013, 42, 227–253. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Thurston, R.C. Cardiovascular implications of the menopause transition: Endogenous sex hormones and vasomotor symptoms. Obstet. Gynecol. Clin. N. Am. 2018, 45, 641–661. [Google Scholar] [CrossRef]
- Ko, S.H.; Kim, H.S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Corbatón Anchuelo, A.; Martínez-Larrad, M.T.; Serrano-García, I.; Fernandez Perez, C.; Serrano-Rios, M. Body fat anthropometric indexes: Which of those identify better high cardiovascular risk subjects? A comparative study in Spanish population. PLoS ONE 2019, 14, e0216877. [Google Scholar] [CrossRef]
- Hong, S.H.; Hwang, S.Y.; Kim, J.A.; Lee, Y.B.; Roh, E.; Kim, N.H.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, K.M.; et al. Comparison of anthropometric indices for the screening of nonalcoholic fatty liver disease in pre- and postmenopausal women. Menopause 2020, 27, 88–94. [Google Scholar] [CrossRef]
- Tehrani, F.R.; Minooee, S.; Azizi, F. Comparison of various adiposity indexes in women with polycystic ovary syndrome and normo-ovulatory non-hirsute women: A population-based study. Eur. J. Endocrinol. 2014, 171, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Maessen, M.F.; Eijsvogels, T.M.; Verheggen, R.J.; Hopman, M.T.; Verbeek, A.L.; de Vegt, F. Entering a new era of body indices: The feasibility of a body shape index and body roundness index to identify cardiovascular health status. PLoS ONE 2014, 9, e107212. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Body Mass Index. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 7 November 2022).
- WHO Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. Available online: https://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/ (accessed on 7 November 2022).
- Koszowska, A.; Brończyk-Puzoń, A. Basic anthropometric measurements and derived indicators in dietary counseling: Part two. Pielęgniarstwo Zdr. Publiczne 2018, 8, 297–303. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104, Erratum in: Eur. Heart J. 2019, 40, 475. [Google Scholar] [CrossRef] [Green Version]
- True, C. Recommended Standards for Assessing Blood Pressure in Human Research Where Blood Pressure or Hypertension Is a Major Focus. Kidney Int. Rep. 2017, 2, 733–738. [Google Scholar] [CrossRef]
- Morrow, C.B. Badania Laboratoryjne i Obrazowe dla Pielęgniarek, 1st ed.; PZWL Wyd. Lekarskie: Warszawa, Poland, 2006. [Google Scholar]
- GUS. Population. Size and Structure and Vital Statistics in Poland by Territorial Division in 2020. As of 31 December. Available online: http://eregion.wzp.pl/sites/default/files/ludnosc._stan_i_struktura_oraz_ruch_naturalny_w_przekroju_terytorialnym_na_31.12.2020_0.pdf (accessed on 7 November 2022).
- Parikh, R.M.; Mohan, V. Changing definitions of metabolic syndrome. Indian J. Endocrinol. Metab. 2012, 16, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Vidigal, F.D.C.; Ribeiro, A.Q.; Babio, N.; Salas-Salvadó, J.; Bressan, J. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol. Metab. Syndr. 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ferreira, D.L.S.; Nelson, S.M.; Sattar, N.; Ala-Korpela, M.; Lawlor, D.A. Metabolic characterization of menopause: Cross-sectional and longitudinal evidence. BMC Med. 2018, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Matthews, K.A.; Crawford, S.L.; Chae, C.U.; Everson-Rose, S.A.; Sowers, M.F.; Sternfeld, B.; Sutton-Tyrrell, K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 2009, 54, 2366–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmjou, S.; Bastard, J.P.; Doucet, E.; Rabasa-Lhoret, R.; Fellahi, S.; Lavoie, J.M.; Prud’homme, D. Effect of the menopausal transition and physical activity energy expenditure on inflammatory markers: A MONET group study. Menopause 2016, 23, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, C.A.; Johnson, R.L.; Freeman, E.W.; Sammel, M.D.; Epperson, C.N. Influences of the menopause transition and adverse childhood experiences on peripheral basal inflammatory markers. Brain Behav. Immun. Health 2021, 15, 100280. [Google Scholar] [CrossRef] [PubMed]
- Sites, C.K.; Toth, M.J.; Cushman, M.; L’Hommedieu, G.D.; Tchernof, A.; Tracy, R.P.; Poehlman, E.T. Menopause-related differences in inflammation markers and their relationship to body fat distribution and insulin-stimulated glucose disposal. Fertil. Steril. 2002, 77, 128–135. [Google Scholar] [CrossRef]
- Vural, P.; Akgul, C.; Canbaz, M. Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol. Res. 2006, 54, 298–302. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Yannakoulia, M.; Chrysohoou, C.; Stefanadis, C. The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis 2005, 183, 308–315. [Google Scholar] [CrossRef]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP TNF-alpha and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef]
- Piché, M.E.; Lemieux, S.; Weisnagel, S.J.; Corneau, L.; Nadeau, A.; Bergeron, J. Relation of high-sensitivity C-reactive protein; interleukin-6; tumor necrosis factor-alpha; and fibrinogen to abdominal adipose tissue; blood pressure; and cholesterol and triglyceride levels in healthy postmenopausal women. Am. J. Cardiol. 2005, 96, 92–97. [Google Scholar] [CrossRef]
- Thorand, B.; Baumert, J.; Döring, A.; Herder, C.; Kolb, H.; Rathmann, W.; Giani, G.; Koenig, W.; KORA Group. Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis 2006, 184, 216–224. [Google Scholar] [CrossRef]
- Yudkin, J.S.; Stehouwer, C.D.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity; insulin resistance; and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 1999, 19, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Schlecht, I.; Fischer, B.; Behrens, G.; Leitzmann, M.F. Relations of Visceral and Abdominal Subcutaneous Adipose Tissue; Body Mass Index; and Waist Circumference to Serum Concentrations of Parameters of Chronic Inflammation. Obes. Facts 2016, 9, 144–157. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Sattar, N.; McKeigue, P.M. Relation of C-reactive protein to body fat distribution and features of the metabolic syndrome in Europeans and South Asians. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1327–1331. [Google Scholar] [CrossRef] [Green Version]
- Saijo, Y.; Kiyota, N.; Kawasaki, Y.; Miyazaki, Y.; Kashimura, J.; Fukuda, M.; Kishi, R. Relationship between C-reactive protein and visceral adipose tissue in healthy Japanese subjects. Diabetes Obes. Metab. 2004, 6, 249–258. [Google Scholar] [CrossRef]
- Beasley, L.E.; Koster, A.; Newman, A.B.; Javaid, M.K.; Ferrucci, L.; Kritchevsky, S.B.; Kuller, L.H.; Pahor, M.; Schaap, L.A.; Visser, M.; et al. Health ABC study. Inflammation and race and gender differences in computerized tomography-measured adipose depots. Obesity 2009, 17, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.F., Jr.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Murata, M.; Otani, T.; Tamemoto, H.; Kawakami, M.; Ishikawa, S.E. Association of subcutaneous and visceral fat mass with serum concentrations of adipokines in subjects with type 2 diabetes mellitus. Endocr. J. 2012, 59, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette smoking and variations in systemic immune and inflammation markers. J. Natl. Cancer Inst. 2014, 106, dju294. [Google Scholar] [CrossRef]
- Margues-Vidal, P.; Bochud, M.; Bastardot, F.; Lüscher, T.; Ferrero, F.; Gaspoz, J.M.; Paccaud, F.; Urwyler, A.; von Känel, R.; Hock, C.; et al. Association between inflammatory and obesity markers in a Swiss population-based sample (CoLaus Study). Obes. Facts 2012, 5, 734–744. [Google Scholar] [CrossRef] [Green Version]
Variables | Premenopausal (n = 44) | Postmenopausal (n = 128) | All (n = 172) | tdf = 233 | p-Value * | |||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||
Age (years) | 48.70 | 2.85 | 56.48 | 3.90 | 54.49 | 4.99 | −12.152 | <0.001 |
Menopausal age (years) | - | - | 48.54 | 4.46 | 48.54 | 4.46 | - | - |
Time since menopause (years) | - | - | 7.94 | 5.09 | 7.94 | 5.09 | - | - |
Body mass (kg) | 75.86 | 19.08 | 75.05 | 13.52 | 75.26 | 15.14 | 0.301 | 0.7639 |
BMI (kg/m2) | 28.44 | 6.72 | 28.66 | 5.38 | 28.60 | 5.73 | −0.217 | 0.829 |
WC (cm) | 88.43 | 12.41 | 90.20 | 13.11 | 89.75 | 12.92 | −0.785 | 0.433 |
WHtR | 0.54 | 0.08 | 0.56 | 0.09 | 0.55 | 0.08 | −1.085 | 0.279 |
RFM | 38.41 | 5.13 | 39.33 | 5.59 | 39.09 | 5.48 | −0.961 | 0.338 |
VAI | 1.60 | 1.89 | 1.56 | 1.08 | 1.57 | 1.33 | 0.196 | 0.845 |
HbA1c (%) | 5.56 | 0.99 | 5.64 | 1.02 | 5.62 | 1.01 | −0.467 | 0.641 |
FBG (mg/dL) | 92.54 | 31.63 | 95.17 | 38.37 | 94.46 | 36.78 | −0.407 | 0.685 |
Insulin (µIU/L) | 9.56 | 6.26 | 10.04 | 5.99 | 9.91 | 6.05 | −0.454 | 0.650 |
SBP (mmHg) | 122.32 | 16.86 | 124.31 | 19.12 | 123.80 | 18.54 | −0.614 | 0.540 |
Cortisol (µg/dL) | 16.48 | 7.41 | 14.85 | 6.12 | 15.27 | 6.49 | 1.442 | 0.151 |
DBP (mmHg) | 78.52 | 10.63 | 77.15 | 10.69 | 77.50 | 10.66 | 0.737 | 0.462 |
Total cholesterol (mg/dL) | 215.90 | 32.05 | 204.36 | 38.23 | 207.31 | 37.01 | 1.797 | 0.074 |
LDL (mg/dL) | 69.13 | 18.40 | 62.91 | 17.09 | 64.50 | 17.59 | 2.042 | 0.043 |
HDL (mg/dL) | 123.87 | 35.03 | 120.48 | 33.01 | 121.35 | 33.46 | 0.578 | 0.564 |
Triglycerides (mg/dL) | 108.68 | 81.65 | 105.61 | 50.41 | 106.40 | 59.71 | 0.294 | 0.769 |
Adiponectin (ng/mL) | 11,328.03 | 5557.73 | 10,866.76 | 6476.75 | 10,984.76 | 6242.00 | 0.422 | 0.674 |
CRP (mg/dL) | 3.74 | 10.04 | 3.24 | 7.49 | 3.37 | 8.19 | 0.346 | 0.730 |
TNF-α (pg/mL) | 4.22 | 5.29 | 5.37 | 8.18 | 5.08 | 7.56 | −0.871 | 0.385 |
IL-6 (pg/mL) | 16.25 | 21.71 | 64.63 | 160.43 | 52.26 | 140.30 | −1.990 | 0.048 |
HOMA-IR | 2.45 | 2.78 | 2.48 | 2.10 | 2.47 | 2.28 | −0.054 | 0.957 |
Independent Variable | Log CRP | Log TNF-α | Log IL-6 | |||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
Log CRP * | - | - | 0.09 | 0.237 | 0.25 | 0.001 |
Log CRP ** | - | - | 0.11 | 0.154 | 0.24 | 0.002 |
Log TNF-α * | 0.09 | 0.237 | - | - | 0.11 | 0.143 |
Log TNF-α ** | 0.11 | 0.154 | - | - | 0.11 | 0.136 |
Log IL-6 * | 0.25 | 0.001 | 0.11 | 0.143 | - | - |
Log IL-6 ** | 0.23 | 0.002 | 0.12 | 0.136 | - | - |
Log adiponectin * | −0.23 | 0.002 | −0.01 | 0.901 | −0.03 | 0.708 |
Log adiponectin ** | −0.23 | 0.003 | −0.01 | 0.879 | −0.02 | 0.776 |
Independent Variable | BMI | WC | RFM | VAI | WHtR | |||||
---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | |
Log CRP * | 0.06 | 0.442 | 0.02 | 0.798 | 0.05 | 0.533 | 0.25 | 0.001 | 0.04 | 0.642 |
Log CRP ** | 0.04 | 0.648 | 0.00 | 0.976 | 0.03 | 0.691 | 0.25 | 0.001 | 0.02 | 0.807 |
Log TNF-α * | −0.05 | 0.534 | 0.01 | 0.923 | −0.09 | 0.263 | 0.06 | 0.413 | −0.04 | 0.635 |
Log TNF-α ** | −0.04 | 0.565 | 0.01 | 0.914 | −0.08 | 0.282 | 0.07 | 0.365 | −0.03 | 0.661 |
Log IL-6 * | 0.16 | 0.033 | 0.07 | 0.349 | 0.10 | 0.180 | 0.07 | 0.379 | 0.10 | 0.176 |
Log IL-6 ** | 0.15 | 0.058 | 0.05 | 0.483 | 0.09 | 0.260 | 0.06 | 0.417 | 0.09 | 0.257 |
Log adiponectin * | 0.05 | 0.502 | 0.01 | 0.933 | −0.03 | 0.701 | −0.43 | 0.000 | −0.01 | 0.938 |
Log adiponectin ** | 0.06 | 0.453 | 0.01 | 0.873 | −0.02 | 0.761 | −0.43 | <0.001 | 0.00 | 0.995 |
Independent Variable | BMI < 30.0 kg/m2 (n = 116) | BMI ≥ 30.0 kg/m2 (n = 56) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMI | WC | RFM | VAI | WHtR | BMI | WC | RFM | VAI | WHtR | |||||||||||
β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | |
Log CRP | 0.00 | 0.979 | −0.04 | 0.730 | −0.02 | 0.835 | 0.19 | 0.035 | −0.03 | 0.0793 | −0.00 | 0.987 | 0.00 | 0.980 | 0.06 | 0.707 | 0.12 | 0.398 | 0.03 | 0.868 |
Log TNF-α | −0.08 | 0.423 | −0.02 | 0.840 | −0.09 | 0.334 | 0.06 | 0.450 | −0.05 | 0.603 | −0.04 | 0.803 | 0.03 | 0.821 | −0.12 | 0.431 | 0.01 | 0.967 | −0.05 | 0.741 |
Log IL-6 | 0.19 | 0.052 | 0.08 | 0.436 | 0.12 | 0.227 | 0.02 | 0.822 | 0.12 | 0.215 | 0.05 | 0.734 | 0.00 | 0.992 | 0.02 | 0.901 | 0.06 | 0.653 | 0.01 | 0.932 |
Log adiponectin | −0.02 | 0.865 | −0.06 | 0.551 | −0.09 | 0.377 | −0.42 | <0.001 | −0.06 | 0.571 | 0.12 | 0.421 | 0.13 | 0.396 | 0.10 | 0.490 | −0.29 | 0.033 | 0.09 | 0.550 |
Current non−smoking (n = 132) | Current smoking (n = 40) | |||||||||||||||||||
Log CRP | 0.04 | 0.686 | −0.01 | 0.938 | 0.01 | 0.932 | 0.14 | 0.122 | −0.00 | 0.959 | −0.00 | 0.986 | 0.09 | 0.539 | 0.15 | 0.297 | 0.17 | 0.176 | 0.13 | 0.412 |
Log TNF-α | −0.11 | 0.202 | −0.13 | 0.148 | −0.21 | 0.021 | 0.10 | 0.254 | −0.16 | 0.071 | 0.09 | 0.618 | 0.39 | 0.008 | 0.31 | 0.030 | −0.10 | 0.395 | 0.32 | 0.034 |
Log IL-6 | 0.18 | 0.048 | 0.05 | 0.583 | 0.11 | 0.235 | −0.05 | 0.587 | 0.11 | 0.247 | 0.03 | 0.863 | 0.27 | 0.076 | 0.27 | 0.079 | 0.34 | 0.012 | 0.25 | 0.123 |
Log adiponectin | 0.07 | 0.466 | −0.03 | 0.771 | −0.08 | 0.368 | −0.37 | <0.001 | −0.06 | 0.497 | 0.05 | 0.808 | 0.14 | 0.344 | 0.20 | 0.170 | −0.47 | 0.001 | 0.20 | 0.196 |
No−MetS (n = 80) | Pre−MetS/MetS (n = 92) | |||||||||||||||||||
Log CRP | −0.04 | 0.712 | −0.08 | 0.516 | −0.07 | 0.588 | 0.07 | 0.569 | −0.05 | 0.702 | 0.07 | 0.533 | 0.03 | 0.801 | 0.03 | 0.781 | 0.05 | 0.649 | 0.02 | 0.865 |
Log TNF-α | −0.12 | 0.310 | 0.03 | 0.823 | −0.11 | 0.381 | 0.14 | 0.253 | −0.05 | 0.677 | −0.02 | 0.877 | −0.03 | 0.782 | −0.10 | 0.377 | 0.07 | 0.443 | −0.05 | 0.664 |
Log IL-6 | 0.10 | 0.424 | 0.11 | 0.387 | 0.12 | 0.355 | 0.10 | 0.417 | 0.12 | 0.346 | 0.20 | 0.067 | −0.01 | 0.945 | 0.04 | 0.712 | −0.05 | 0.615 | 0.04 | 0.713 |
Log adiponectin | 0.10 | 0.380 | 0.02 | 0.886 | −0.03 | 0.816 | −0.19 | 0.088 | −0.04 | 0.718 | 0.07 | 0.519 | 0.05 | 0.655 | 0.04 | 0.717 | −0.47 | <0.001 | 0.09 | 0.451 |
Premenopausal Women (n = 44) | Postmenopausal Women (n = 128) | All Women (n = 172) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRP | TNF-α | IL-6 | Adiponectin | CRP | TNF-α | IL-6 | Adiponectin | CRP | TNF-α | IL-6 | Adiponectin | |||||||||||||
r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
BMI (kg/m2) | −0.07 | 0.636 | −0.16 | 0.313 | 0.06 | 0.693 | 0.23 | 0.132 | 0.12 | 0.180 | −0.01 | 0.916 | 0.20 | 0.025 | −0.03 | 0.764 | 0.06 | 0.442 | −0.05 | 0.534 | 0.16 | 0.033 | 0.05 | 0.502 |
WC (cm) | 0.11 | 0.492 | −0.03 | 0.859 | 0.25 | 0.096 | 0.23 | 0.125 | −0.01 | 0.886 | 0.02 | 0.853 | 0.03 | 0.773 | −0.07 | 0.452 | 0.02 | 0.798 | 0.01 | 0.923 | 0.07 | 0.349 | 0.01 | 0.933 |
SBP (mmHg) | 0.26 | 0.094 | −0.06 | 0.712 | −0.11 | 0.465 | −0.05 | 0.738 | 0.22 | 0.014 | −0.11 | 0.231 | 0.15 | 0.082 | −0.09 | 0.290 | 0.23 | 0.003 | −0.10 | 0.210 | 0.11 | 0.146 | −0.09 | 0.264 |
DBP (mmHg) | 0.12 | 0.447 | −0.01 | 0.961 | −0.03 | 0.867 | 0.04 | 0.817 | 0.03 | 0.744 | 0.00 | 0.988 | 0.14 | 0.126 | −0.01 | 0.871 | 0.05 | 0.507 | 0.00 | 0.989 | 0.10 | 0.197 | 0.00 | 0.990 |
FBG (mg/dL) | 0.38 | 0.011 | 0.01 | 0.952 | 0.28 | 0.064 | −0.47 | 0.001 | 0.42 | <0.001 | −0.07 | 0.408 | 0.18 | 0.047 | −0.28 | 0.002 | 0.41 | <0.001 | −0.06 | 0.456 | 0.20 | 0.010 | −0.32 | <0.001 |
Insulin (mU/mL) | 0.57 | <0.001 | 0.06 | 0.694 | 0.13 | 0.409 | −0.46 | 0.002 | 0.33 | <0.001 | −0.16 | 0.068 | 0.14 | 0.115 | −0.45 | <0.001 | 0.39 | <0.001 | −0.11 | 0.155 | 0.14 | 0.071 | −0.45 | <0.001 |
HDL (mg/dL) | −0.30 | 0.051 | −0.21 | 0.173 | −0.03 | 0.840 | 0.53 | <0.001 | −0.16 | 0.064 | 0.11 | 0.199 | −0.07 | 0.415 | 0.46 | <0.001 | −0.20 | 0.007 | 0.04 | 0.644 | −0.08 | 0.325 | 0.48 | <0.001 |
LDL (mg-dL) | 0.11 | 0.492 | −0.07 | 0.663 | −0.12 | 0.444 | −0.27 | 0.073 | −0.02 | 0.806 | 0.20 | 0.020 | −0.02 | 0.819 | 0.11 | 0.209 | 0.01 | 0.869 | 0.14 | 0.068 | −0.04 | 0.575 | 0.01 | 0.915 |
HOMA-IR | 0.52 | <0.001 | 0.03 | 0.826 | 0.22 | 0.151 | −0.56 | <0.001 | 0.46 | <0.001 | −0.16 | 0.072 | 0.20 | 0.022 | −0.49 | <0.001 | 0.48 | <0.001 | −0.10 | 0.176 | 0.20 | 0.009 | −0.51 | <0.001 |
CRP (mg/dL) | - | - | 0.15 | 0.337 | 0.07 | 0.652 | −0.16 | 0.293 | - | - | 0.11 | 0.210 | 0.20 | 0.025 | −0.15 | 0.087 | - | - | 0.12 | 0.119 | 0.16 | 0.039 | −0.15 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamińska, M.S.; Lubkowska, A.; Panczyk, M.; Walaszek, I.; Grochans, S.; Grochans, E.; Cybulska, A.M. Relationships of Body Mass Index, Relative Fat Mass Index, and Waist Circumference with Serum Concentrations of Parameters of Chronic Inflammation. Nutrients 2023, 15, 2789. https://doi.org/10.3390/nu15122789
Kamińska MS, Lubkowska A, Panczyk M, Walaszek I, Grochans S, Grochans E, Cybulska AM. Relationships of Body Mass Index, Relative Fat Mass Index, and Waist Circumference with Serum Concentrations of Parameters of Chronic Inflammation. Nutrients. 2023; 15(12):2789. https://doi.org/10.3390/nu15122789
Chicago/Turabian StyleKamińska, Magdalena Sylwia, Anna Lubkowska, Mariusz Panczyk, Ireneusz Walaszek, Szymon Grochans, Elżbieta Grochans, and Anna Maria Cybulska. 2023. "Relationships of Body Mass Index, Relative Fat Mass Index, and Waist Circumference with Serum Concentrations of Parameters of Chronic Inflammation" Nutrients 15, no. 12: 2789. https://doi.org/10.3390/nu15122789
APA StyleKamińska, M. S., Lubkowska, A., Panczyk, M., Walaszek, I., Grochans, S., Grochans, E., & Cybulska, A. M. (2023). Relationships of Body Mass Index, Relative Fat Mass Index, and Waist Circumference with Serum Concentrations of Parameters of Chronic Inflammation. Nutrients, 15(12), 2789. https://doi.org/10.3390/nu15122789