Infant Feeding Pattern Clusters Are Associated with Childhood Health Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Feeding Pattern in Infancy
2.4. Primary Outcome
2.5. Secondary Outcome: Childhood Diseases
2.6. Additional Outcome: Overweight/Obesity at 6 Years of Age
2.7. Covariates
2.8. Statistical Analysis
3. Results
3.1. Classification of Infant Feeding Clusters
3.2. Characteristics of the Study Population
3.3. Association between All-Cause Hospitalization, ICU Care, and Feeding Patterns in Infancy
3.4. Association between Specific Childhood Diseases and Feeding Patterns in Infancy
3.5. Association of Overweight/Obesity at 6 Years of Age with the Infant Feeding Clusters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NHIS | National Health Insurance Service |
NHSPIC | National Health Screening Program for Infants and Children |
ICD-10 | International Classification of Diseases 10th revision |
ICU | intensive care unit |
URI | upper respiratory tract infection |
LRI | lower respiratory tract infection |
BMI | body mass index |
poLCA | Polytomous Variable Latent Class Analysis |
BIC | Bayesian Information Criterion |
AIC | Akaike Information Criterion |
HR | hazard ratio |
CI | confidence interval |
PY | person-years |
RR | risk ratio |
SD | standard deviation |
ADHD | attention deficit hyperactivity disorder |
ITP | idiopathic thrombocytopenic purpura |
References
- Wilson, A.C.; Forsyth, J.S.; Greene, S.A.; Irvine, L.; Hau, C.; Howie, P.W. Relation of infant diet to childhood health: Seven year follow up of cohort of children in Dundee infant feeding study. BMJ 1998, 316, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gingras, V.; Aris, I.M.; Rifas-Shiman, S.L.; Switkowski, K.M.; Oken, E.; Hivert, M.F. Timing of Complementary Feeding Introduction and Adiposity Throughout Childhood. Pediatrics 2019, 144, e20191320. [Google Scholar] [CrossRef] [PubMed]
- Pluymen, L.P.M.; Wijga, A.H.; Gehring, U.; Koppelman, G.H.; Smit, H.A.; van Rossem, L. Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: The PIAMA birth cohort study. Eur. J. Nutr. 2018, 57, 1985–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawod, B.; Marshall, J.S.; Azad, M.B. Breastfeeding and the developmental origins of mucosal immunity: How human milk shapes the innate and adaptive mucosal immune systems. Curr. Opin. Gastroenterol. 2021, 37, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Payne, S.; Quigley, M.A. Breastfeeding and infant hospitalisation: Analysis of the UK 2010 Infant Feeding Survey. Matern. Child Nutr. 2017, 13, e12263. [Google Scholar] [CrossRef]
- Fragkou, P.C.; Karaviti, D.; Zemlin, M.; Skevaki, C. Impact of Early Life Nutrition on Children’s Immune System and Noncommunicable Diseases through Its Effects on the Bacterial Microbiome, Virome and Mycobiome. Front. Immunol. 2021, 12, 644269. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.W.; Lee, J.E.; Ha, E.K.; Han, M.Y.; Lee, E. Breastmilk Feeding during the First 4 to 6 Months of Age and Childhood Disease Burden until 10 Years of Age. Nutrients 2021, 13, 2825. [Google Scholar] [CrossRef]
- Kuo, A.A.; Inkelas, M.; Slusser, W.M.; Maidenberg, M.; Halfon, N. Introduction of solid food to young infants. Matern. Child Health J. 2011, 15, 1185–1194. [Google Scholar] [CrossRef] [Green Version]
- Amazouz, H.; de Lauzon-Guillain, B.; Bourgoin-Heck, M.; Just, J.; Beydon, N.; Lezmi, G.; Ranciere, F.; Momas, I. Infant feeding clusters are associated with respiratory health and allergy at school age in the PARIS birth cohort. Allergy 2021, 76, 1223–1234. [Google Scholar] [CrossRef]
- Savage, J.S.; Fisher, J.O.; Birch, L.L. Parental influence on eating behavior: Conception to adolescence. J. Law Med. Ethics 2007, 35, 22–34. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, G.J. Cluster analysis and related techniques in medical research. Stat. Methods Med. Res. 1992, 1, 27–48. [Google Scholar] [CrossRef]
- Bolin, J.H.; Edwards, J.M.; Finch, W.H.; Cassady, J.C. Applications of cluster analysis to the creation of perfectionism profiles: A comparison of two clustering approaches. Front. Psychol. 2014, 5, 343. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, J.E.; Shim, S.M.; Ha, E.K.; Yon, D.K.; Kim, O.H.; Baek, J.H.; Koh, H.Y.; Chae, K.Y.; Lee, S.W.; et al. Cohort profile: National Investigation of Birth Cohort in Korea study 2008 (NICKs-2008). Clin. Exp. Pediatr. 2021, 64, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdollahi, M.; Abedi, P.; Abedi, A.; Abolhassani, H. Five insights from the global burden of disease study 2019. Lancet 2020, 396, 1135–1159. [Google Scholar] [CrossRef] [PubMed]
- Hagenaars, J.A.; McCutcheon, A.L. Applied Latent Class Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Linzer, D.A.; Lewis, J.B. poLCA: An R package for polytomous variable latent class analysis. J. Stat. Softw. 2011, 42, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bandeen-Roche, K.; Miglioretti, D.L.; Zeger, S.L.; Rathouz, P.J. Latent variable regression for multiple discrete outcomes. J. Am. Stat. Assoc. 1997, 92, 1375–1386. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Boehmke, B.; Greenwell, B. Hands-on Machine Learning with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Lezhnina, O.; Kismihók, G. Latent Class Cluster Analysis: Selecting the number of clusters. MethodsX 2022, 9, 101747. [Google Scholar] [CrossRef]
- Tran, T.; Bliuc, D.; Ho-Le, T.; Abrahamsen, B.; Van Den Bergh, J.P.; Chen, W.; Eisman, J.A.; Geusens, P.; Hansen, L.; Vestergaard, P. Association of multimorbidity and excess mortality after fractures among Danish adults. JAMA Netw. Open 2022, 5, e2235856. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Auxiliary variables in mixture modeling: Three-step approaches using M plus. Struct. Equ. Model. A Multidiscip. J. 2014, 21, 329–341. [Google Scholar] [CrossRef]
- Shanahan, L.; Copeland, W.E.; Worthman, C.M.; Erkanli, A.; Angold, A.; Costello, E.J. Sex-differentiated changes in C-reactive protein from ages 9 to 21: The contributions of BMI and physical/sexual maturation. Psychoneuroendocrinology 2013, 38, 2209–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccolini, C.S.; Carvalho, M.L.d.; Oliveira, M.I.C.d.; Boccolini, P.d.M.M. Breastfeeding can prevent hospitalization for pneumonia among children under 1 year old. J. Pediatr. 2011, 87, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Chang, Y.H.; Ding, D.C. The Negative Association between Breastfeeding Duration and Infant Febrile Seizure: A Retrospective Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 5495. [Google Scholar] [CrossRef] [PubMed]
- Mitsuda, N.; Hosokawa, T.; Eitoku, M.; Fujieda, M.; Suganuma, N.; Japan, E.; Children’s Study, G. Breastfeeding and risk of febrile seizures in infants: The Japan Environment and Children’s Study. Brain Dev. 2019, 41, 839–847. [Google Scholar] [CrossRef]
- Mitsuda, N.; JP, N.A.; Hosokawa, T.; Eitoku, M.; Fujieda, M.; Suganuma, N.; Japan, E.; Children’s Study, G. Breastfeeding and risk of febrile seizures in the first 3 years of life: The Japan Environment and Children’s Study. Brain Dev. 2022, 44, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.; Bergmann, R.; Kallischnigg, G.; Plagemann, A. Duration of breastfeeding and risk of overweight: A meta-analysis. Am. J. Epidemiol. 2005, 162, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S.; Matush, L.; Vanilovich, I.; Platt, R.W.; Bogdanovich, N.; Sevkovskaya, Z.; Dzikovich, I.; Shishko, G.; Collet, J.-P.; Martin, R.M. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: Evidence from a large randomized trial. Am. J. Clin. Nutr. 2007, 86, 1717–1721. [Google Scholar] [CrossRef]
- Yu, C.; Binns, C.W.; Lee, A.H. The Early Introduction of Complementary (Solid) Foods: A Prospective Cohort Study of Infants in Chengdu, China. Nutrients 2019, 11, 760. [Google Scholar] [CrossRef] [Green Version]
- Homann, C.M.; Rossel, C.A.J.; Dizzell, S.; Bervoets, L.; Simioni, J.; Li, J.; Gunn, E.; Surette, M.G.; de Souza, R.J.; Mommers, M.; et al. Infants’ First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts. Nutrients 2021, 13, 2639. [Google Scholar] [CrossRef]
- Laue, H.E.; Coker, M.O.; Madan, J.C. The Developing Microbiome from Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front. Pediatr. 2022, 10, 815885. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.K.; Lee, S.W.; Kim, J.H.; Lee, J.E.; Jee, H.M.; Chae, K.Y.; Han, M.Y.; Rhie, S. Changes in childhood growth after adenotonsillectomy: A population-based cohort study. Sleep Med. 2022, 89, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Lin, H.-W.; Chiang, B.-L. Association of croup with asthma in children: A cohort study. Medicine 2017, 96, e7667. [Google Scholar] [CrossRef]
- Chang, Y.P.; Yang, C.J.; Hu, K.F.; Chao, A.C.; Chang, Y.H.; Hsieh, K.P.; Tsai, J.H.; Ho, P.S.; Lim, S.Y. Risk factors for pneumonia among patients with Parkinson’s disease: A Taiwan nationwide population-based study. Neuropsychiatr. Dis. Treat. 2016, 12, 1037. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ha, E.K.; Lee, S.W.; Cha, H.R.; Baek, H.S.; Han, M.Y. Growth pattern during early infancy, body mass index during childhood and childhood asthma. Clin. Exp. Allergy 2022, 53, 39–51. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.W.; Kwon, Y.; Ha, E.K.; An, J.; Cha, H.R.; Jeong, S.J.; Han, M.Y. Infantile Colic and the Subsequent Development of the Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2022, 28, 618–629. [Google Scholar] [CrossRef]
- Goff, S.L.; Feld, A.; Andrade, S.E.; Mahoney, L.; Beaton, S.J.; Boudreau, D.M.; Davis, R.L.; Goodman, M.; Hartsfield, C.L.; Platt, R.; et al. Administrative data used to identify patients with irritable bowel syndrome. J. Clin. Epidemiol. 2008, 61, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yi, Y.Y.; Ha, E.K.; Cha, H.R.; Han, M.Y.; Baek, H.S. Neurodevelopment at 6 years of age in children with atopic dermatitis. Allergol. Int. 2022, 72, 116–127. [Google Scholar] [CrossRef]
- Chiang, K.-L.; Cheng, C.-Y. Prevalence and neuro-psychiatric comorbidities of pediatric epilepsy in Taiwan: A national population-based study. Epilepsy Res. 2014, 108, 1451–1460. [Google Scholar] [CrossRef]
- Kwak, J.H.; Ha, E.K.; Kim, J.H.; Cha, H.R.; Lee, S.W.; Han, M.Y. Association of Familial History of Diabetes, Hypertension, Dyslipidemia, Stroke, or Myocardial Infarction With Risk of Kawasaki Disease. J. Am. Heart Assoc. 2022, 11, e023840. [Google Scholar] [CrossRef]
- Hung, G.Y.; Lee, C.Y.; Yen, H.J.; Lin, L.Y.; Horng, J.L. Incidence of immune thrombocytopenia in Taiwan: A nationwide population-based study. Transfusion 2018, 58, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Chao, Y.H.; Wu, K.H.; Yen, T.Y.; Hsu, Y.L.; Hsieh, T.H.; Wei, H.M.; Wu, J.L.; Muo, C.H.; Hwang, K.P.; et al. Increased risk of herpes zoster in children with cancer: A nationwide population-based cohort study. Medicine 2016, 95, e4037. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|---|---|
Total number, n (%) | 236,372 (100.0) | 116,372 (49.2) | 108,189 (45.8) | 11,811 (5.0) | |
Types of solid foods introduced 2 | Grains | 209,265 (88.4) | 113,467 (97.5) | 91,525 (84.6) | 4273 (36.2) |
Vegetables | 223,621 (94.4) | 115,588 (99.3) | 105,421 (97.4) | 2612 (22.1) | |
Fruits | 170,649 (72.1) | 107,780 (92.6) | 60,252 (55.7) | 2608 (22.1) | |
Eggs | 130,266 (55.0) | 105,257 (90.4) | 23,331 (21.6) | 1678 (14.2) | |
Fish | 129,197 (54.6) | 99,778 (85.7) | 28,270 (26.1) | 1149 (9.7) | |
Meat | 213,764 (90.3) | 114,486 (98.4) | 98,547 (91.1) | 731 (6.2) | |
Frequency of solid food intake per day 2 | None | 1967 (0.8) | 247 (0.2) | 327 (0.3) | 1393 (11.8) |
1 | 5990 (2.5) | 969 (0.8) | 3407 (3.1) | 1614 (13.7) | |
2 | 60,030 (25.4) | 16,427 (14.1) | 40,195 (37.2) | 3408 (28.9) | |
3 | 161,471 (68.3) | 94,228 (81.0) | 62,193 (57.5) | 5050 (42.8) | |
≥4 | 6914 (2.9) | 4501 (3.9) | 2067 (1.9) | 346 (2.9) | |
Types of feeding during the first 4 months of age 3 | Only breastfeeding | 112,277 (47.5) | 60,376 (51.9) | 46,931 (43.4) | 4970 (42.1) |
Only formula milk feeding | 76,992 (32.6) | 31,850 (27.4) | 40,319 (39.3) | 4823 (40.8) | |
Mixed feeding | 46,146 (19.5) | 23,678 (20.3) | 20,549 (19.0) | 1919 (16.2) |
Total (n = 236,372) | Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|---|
Sex, n (%) | ||||
Boy | 120,066 (50.8) | 59,131 (50.8) | 55,086 (50.9) | 5849 (49.5) |
Girl | 116,306 (48.2) | 57,241 (49.2) | 53,103 (49.1) | 5962 (50.5) |
Regions at birth, n (%) | ||||
Seoul | 58,815 (25.1) | 30,234 (26.2) | 26,422 (24.6) | 2159 (18.5) |
Metropolitan | 55,217 (23.6) | 26,854 (23.3) | 25,716 (24.0) | 2656 (22.7) |
City | 94,680 (40.4) | 45,976 (39.9) | 43,494 (40.6) | 5210 (44.5) |
Rural | 25,559 (10.9) | 12,299 (10.7) | 11,590 (10.8) | 1670 (14.3) |
Socioeconomic status 2, n (%) | ||||
First quintile (lowest) | 17,863 (7.8) | 8571 (7.6) | 8172 (7.8) | 1120 (9.9) |
Second quintile | 34,190 (15.0) | 16,462 (14.6) | 15,462 (14.8) | 2266 (19.9) |
Third quintile | 63,557 (27.8) | 30,819 (27.4) | 29,348 (28.0) | 3390 (29.8) |
Fourth quintile | 75,499 (33.1) | 37,467 (33.3) | 34,847 (33.3) | 3185 (28.0) |
Fifth quintile (highest) | 37,271 (16.3) | 19,073 (17.0) | 16,800 (16.1) | 1398 (12.3) |
Birth weight 3, mean (SD), kg | 3.2 (0.3) | 3.2 (0.3) | 3.2 (0.3) | 3.2 (0.3) |
Body weight at 4–6 months of age 3, mean (SD), kg | 8.1 (1.0) | 8.1 (1.0) | 8.1 (1.0) | 8.1 (1.0) |
Body weight at 9–12 months of age 4, mean (SD), kg | 9.8 (1.1) | 9.9 (1.1) | 9.8 (1.1) | 9.8 (1.1) |
Head circumference at 4–6 months of age 3, mean (SD), cm | 42,750 (1.5) | 42,768 (1.5) | 42,741 (1.5) | 42,656 (1.5) |
Perinatal comorbidities 5, n (%) | ||||
Birth trauma | 2045 (0.9) | 1049 (0.9) | 908 (0.8) | 88 (0.7) |
Respiratory and cardiovascular disorders | 9836 (4.2) | 4778 (4.1) | 4639 (4.3) | 419 (3.5) |
Infections | 32,876 (13.9) | 15,994 (13.7) | 15,211 (14.1) | 1671 (14.1) |
Hemorrhagic and hematological disorders | 74,439 (31.5) | 36,632 (31.5) | 34,246 (31.7) | 3561 (30.1) |
Transitory endocrine and metabolic disorders | 5629 (2.4) | 2830 (2.4) | 2553 (2.4) | 246 (2.1) |
Digestive system disorders | 6748 (2.9) | 3186 (2.7) | 3241 (3.0) | 321 (2.7) |
Integument and temperature regulation | 8793 (3.7) | 4200 (3.6) | 4121 (3.8) | 472 (4.0) |
Comorbidities 5, n (%) | ||||
Hospitalization due to wheezing | 9476 (4.0) | 4314 (3.7) | 4493 (4.2) | 669 (5.7) |
Atopic dermatitis | 36,093 (15.3) | 16,058 (13.8) | 17,991 (16.6) | 2044 (17.3) |
Food allergy | 3721 (1.6) | 1690 (1.5) | 1819 (1.7) | 212 (1.8) |
Cluster 1 (Reference) n = 116,372 | Cluster 2 n = 108,189 | Cluster 3 n = 11,811 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diseases | n of Event | Accumulated n, 1000 PY | IR/1000 PY | n of Event | Accumulated n, 1000 PY | IR/1000 PY | RD 2 (95% CI) | aHR 3 (95% CI) | n of Event | Accumulated n, 1000 PY | IR/1000 PY | RD 2 (95% CI) | aHR 3 (95% CI) |
All-cause hospitalization | 44,572 | 942.6 | 47.29 | 43,578 | 963.8 | 50.45 | 3.16 (2.52 to 3.81) | 1.042 (1.028 to 1.057) | 5043 | 91.8 | 54.92 | 7.63 (6.05 to 9.21) | 1.076 (1.046 to 1.109) |
All-cause ICU admission | 541 | 1169.7 | 0.46 | 500 | 1087.5 | 0.46 | 0.00 (−0.01 to 0.00) | 0.975 (0.861 to 1.104) | 62 | 118.7 | 0.52 | 0.06 (−0.16 to 0.15) | 1.119 (0.853 to 1.469) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Lee, E.; Ha, E.K.; Lee, G.C.; Shin, J.; Baek, H.-S.; Choi, S.-H.; Shin, Y.H.; Han, M.Y. Infant Feeding Pattern Clusters Are Associated with Childhood Health Outcomes. Nutrients 2023, 15, 3065. https://doi.org/10.3390/nu15133065
Kim JH, Lee E, Ha EK, Lee GC, Shin J, Baek H-S, Choi S-H, Shin YH, Han MY. Infant Feeding Pattern Clusters Are Associated with Childhood Health Outcomes. Nutrients. 2023; 15(13):3065. https://doi.org/10.3390/nu15133065
Chicago/Turabian StyleKim, Ju Hee, Eun Lee, Eun Kyo Ha, Gi Chun Lee, Jeewon Shin, Hey-Sung Baek, Sun-Hee Choi, Youn Ho Shin, and Man Yong Han. 2023. "Infant Feeding Pattern Clusters Are Associated with Childhood Health Outcomes" Nutrients 15, no. 13: 3065. https://doi.org/10.3390/nu15133065
APA StyleKim, J. H., Lee, E., Ha, E. K., Lee, G. C., Shin, J., Baek, H. -S., Choi, S. -H., Shin, Y. H., & Han, M. Y. (2023). Infant Feeding Pattern Clusters Are Associated with Childhood Health Outcomes. Nutrients, 15(13), 3065. https://doi.org/10.3390/nu15133065