The Association of Lifestyle Patterns with Prediabetes in Adults from Families at High Risk for Type 2 Diabetes in Europe: The Feel4Diabetes Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study’s Design
2.2. Bioethics
2.3. Study Population
2.4. Anthropometry
2.5. Blood Indices
2.6. Blood Pressure Measurement
2.7. Dietary Assessment
2.8. Demographic and Behavioral Characteristics
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Lifestyle Patterns
3.3. Lifestyle Patterns and Prediabetes
3.4. Profile Analysis of the Associations of Lifestyle Patterns and Prediabetes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas 10th edition scientific committee. In IDF DIABETES ATLAS [Internet], 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- De Mello, V.D.F.; Schwab, U.; Kolehmainen, M.; Koenig, W.; Siloaho, M.; Poutanen, K.; Mykkänen, H.; Uusitupa, M. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: The Sysdimet study. Diabetologia 2011, 54, 2755–2767. [Google Scholar] [CrossRef] [Green Version]
- Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Poutanen, K.; Mykkänen, H.; Seppänen-Laakso, T.; Gylling, H.; Uusitupa, M.; Orešič, M. Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study. PLoS ONE 2011, 6, e22646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malin, S.K.; Kullman, E.L.; Scelsi, A.R.; Godin, J.-P.; Ross, A.B.; Kirwan, J.P. A Whole-Grain Diet Increases Glucose-Stimulated Insulin Secretion Independent of Gut Hormones in Adults at Risk for Type 2 Diabetes. Mol. Nutr. Food Res. 2019, 63, e1800967. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Edirisinghe, I.; Wei, H.; Vijayakumar, L.P.; Banaszewski, K.; Cappozzo, J.C.; Burton-Freeman, B. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res. 2016, 60, 1099–1109. [Google Scholar] [CrossRef]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef] [Green Version]
- Paquette, M.; Medina Larqué, A.S.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonné, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bulló, M. Beneficial Effect of Pistachio Consumption on Glucose Metabolism, Insulin Resistance, Inflammation, and Related Metabolic Risk Markers: A Randomized Clinical Trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Alonso, P.; Cañueto, D.; Giardina, S.; Salas-Salvadó, J.; Cañellas, N.; Correig, X.; Bulló, M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J. Nutr. Biochem. 2017, 45, 48–53. [Google Scholar] [CrossRef]
- Wien, M.; Bleich, D.; Raghuwanshi, M.; Gould-Forgerite, S.; Gomes, J.; Monahan-Couch, L.; Oda, K. Almond Consumption and Cardiovascular Risk Factors in Adults with Prediabetes. J. Am. Coll. Nutr. 2010, 29, 189–197. [Google Scholar] [CrossRef]
- Polovina, S.; Micic, D. The influence of diet with reduction in calorie intake on metabolic syndrome parameters in obese subjects with impaired glucose tolerance. Med. Rev. 2010, 63, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.; Bliddal, H.; Riecke, B.F.; Leeds, A.R.; Astrup, A.; Christensen, R. Comparison of a low-energy diet and a very low-energy diet in sedentary obese individuals: A pragmatic randomized controlled trial. Clin. Obes. 2011, 1, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-López, L.; González-Figueroa, E.; Medina-Bravo, P.; Pineda-Del Aguila, I.; Ávila-Jiménez, L.; Ramos-Hernández, R.; Klunder-Klunder, M.; la Peña, J.E.-D. Low calorie and carbohydrate diet: To improve the cardiovascular risk indicators in overweight or obese adults with prediabetes. Endocrine 2012, 43, 593–602. [Google Scholar] [CrossRef]
- Christensen, P.; Meinert Larsen, T.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A.; et al. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef] [Green Version]
- Solomon, T.P.; Haus, J.M.; Kelly, K.R.; Cook, M.D.; Filion, J.; Rocco, M.; Kashyap, S.R.; Watanabe, R.M.; Barkoukis, H.; Kirwan, J.P. A low–glycemic index diet combined with exercise reduces insulin resistance, postprandial hyperinsulinemia, and glucose-dependent insulinotropic polypeptide responses in obese, prediabetic humans. Am. J. Clin. Nutr. 2010, 92, 1359–1368. [Google Scholar] [CrossRef] [Green Version]
- Macedo da Costa, T.H.; Pires da Silva, F.V.; Gonçalves Reis, C.E.; Augusto Casulari, L. Improved metabolic response after 16 weeks of calorie-restricted low-glycaemic index diet and metformin in impaired glucose tolerance subjects. Nutr. Hosp. 2014, 29, 1081–1087. [Google Scholar] [CrossRef]
- Cheng, S.; Ge, J.; Zhao, C.; Le, S.; Yang, Y.; Ke, D.; Wu, N.; Tan, X.; Zhang, X.; Du, X.; et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci. Rep. 2017, 7, 15952. [Google Scholar] [CrossRef] [Green Version]
- Haus, J.M.; Solomon, T.P.J.; Marchetti, C.M.; Edmison, J.M.; González, F.; Kirwan, J.P. Free Fatty Acid-Induced Hepatic Insulin Resistance is Attenuated Following Lifestyle Intervention in Obese Individuals with Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2010, 95, 323–327. [Google Scholar] [CrossRef]
- Jacques, P.F.; Tucker, K.L. Are dietary patterns useful for understanding the role of diet in chronic disease? Am. J. Clin. Nutr. 2001, 73, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulos, D.; Lagiou, P. Dietary patterns and mortality. Br. J. Nutr. 2001, 85, 133–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, I. Transcending reductionism in nutrition research. Am. J. Clin. Nutr. 2003, 78, 514S–516S. [Google Scholar] [CrossRef] [Green Version]
- Manios, Y.; Androutsos, O.; Lambrinou, C.-P.; Cardon, G.; Lindstrom, J.; Annemans, L.; Mateo-Gallego, R.; De Sabata, M.S.; Iotova, V.; Kivela, J.; et al. A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: Design and implementation of the Feel4Diabetes-study. Public Health Nutr. 2018, 21, 3281–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manios, Y.; Mavrogianni, C.; Lambrinou, C.-P.; Cardon, G.; Lindström, J.; Iotova, V.; Tankova, T.; Civeira, F.; Kivelä, J.; Jancsó, Z.; et al. Two-stage, school and community-based population screening successfully identifies individuals and families at high-risk for type 2 diabetes: The Feel4Diabetes-study. BMC Endocr. Disord. 2020, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulijaszek, S.J. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; WHO Technical Report Series 894; World Health Organization: Geneva, Switzerland, 2000; p. 252, SFR 56.00; ISBN 92-4-120894-5. [Google Scholar] [CrossRef]
- American Diabetes Association. Chapter 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2017, 41 (Suppl. 1), S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Expert Panel on Detection E Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486. [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, C.A.; Fappa, E.; Zachari, K.; Mavrogianni, C.; Van Stappen, V.; Kivelä, J.; Virtanen, E.; González-Gil, E.M.; Flores-Barrantes, P.; Nánási, A.; et al. Development and reliability of questionnaires for the assessment of diet and physical activity behaviors in a multi-country sample in Europe the Feel4Diabetes Study. BMC Endocr. Disord. 2020, 20, 135. [Google Scholar] [CrossRef] [Green Version]
- Androutsos, O.; Anastasiou, C.; Lambrinou, C.-P.; Mavrogianni, C.; Cardon, G.; Van Stappen, V.; Kivelä, J.; Wikström, K.; Moreno, L.A.; Iotova, V.; et al. Intra- and inter- observer reliability of anthropometric measurements and blood pressure in primary schoolchildren and adults: The Feel4Diabetes-study. BMC Endocr. Disord. 2020, 20, 27. [Google Scholar] [CrossRef] [Green Version]
- Mardia, K.V.; Kent, J.; Bibby, J. Multivariate Analysis, 1st ed.; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Pestoni, G.; Riedl, A.; Breuninger, T.A.; Wawro, N.; Krieger, J.-P.; Meisinger, C.; Rathmann, W.; Thorand, B.; Harris, C.; Peters, A.; et al. Association between dietary patterns and prediabetes, undetected diabetes or clinically diagnosed diabetes: Results from the KORA FF4 study. Eur. J. Nutr. 2020, 60, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, F.; Siassi, F.; Koohdani, F.; Mahaki, B.; Qorbani, M.; Yavari, P.; Shaibu, O.M.; Sotoudeh, G. Healthy and unhealthy dietary patterns are related to pre-diabetes: A case–control study. Br. J. Nutr. 2016, 116, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-Y.; Hua, S.; Qi, Q.; Sotres-Alvarez, D.; Mattei, J.; Casagrande, S.S.; Mossavar-Rahmani, Y.; Siega-Riz, A.M.; Gallo, L.C.; Wassertheil-Smoller, S.; et al. Association of Sugar-Sweetened Beverage Consumption with Prediabetes and Glucose Metabolism Markers in Hispanic/Latino Adults in the United States: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). J. Nutr. 2022, 152, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jacques, P.F.; Meigs, J.B.; Fox, C.S.; Rogers, G.T.; Smith, C.E.; Hruby, A.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage but Not Diet Soda Consumption Is Positively Associated with Progression of Insulin Resistance and Prediabetes. J. Nutr. 2016, 146, 2544–2550. [Google Scholar] [CrossRef] [Green Version]
- Miyamura, K.; Nawa, N.; Isumi, A.; Doi, S.; Ochi, M.; Fujiwara, T. Association between skipping breakfast and prediabetes among adolescence in Japan: Results from A-CHILD study. Front. Endocrinol. 2023, 14, 1051592. [Google Scholar] [CrossRef] [PubMed]
- Ballon, A.; Neuenschwander, M.; Schlesinger, S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2019, 149, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhang, B.; Ge, Y.; Shi, H.; Song, S.; Xue, W.; Li, J.; Fu, K.; Chen, X.; Teng, W.; et al. Association between skipping breakfast and risk of cardiovascular disease and all cause mortality: A meta-analysis. Clin. Nutr. 2020, 39, 2982–2988. [Google Scholar] [CrossRef] [PubMed]
- Vandercappellen, E.J.; Koster, A.; Savelberg, H.H.C.M.; Eussen, S.J.P.M.; Dagnelie, P.C.; Schaper, N.C.; Schram, M.T.; van der Kallen, C.J.H.; van Greevenbroek, M.M.J.; Wesselius, A.; et al. Sedentary behaviour and physical activity are associated with biomarkers of endothelial dysfunction and low-grade inflammation—Relevance for (pre)diabetes: The Maastricht Study. Diabetologia 2022, 65, 777–789. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, C.; Zhang, P.; Wang, Y. Associations of sedentary time and physical activity with adverse health conditions: Outcome-wide analyses using isotemporal substitution model. Eclinicalmedicine 2022, 48, 101424. [Google Scholar] [CrossRef]
- Liang, Z.-D.; Zhang, M.; Wang, C.-Z.; Yuan, Y.; Liang, J.-H. Association between sedentary behavior, physical activity, and cardiovascular disease-related outcomes in adults—A meta-analysis and systematic review. Front. Public Health 2022, 10, 8460. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
Total (n = 2759) | High-Income Countries (Belgium–Finland) (n = 806) | High-Income Countries under Austerity Measures (Greece–Spain) (n = 1280) | Low–Middle-Income Countries (Bulgaria–Hungary) (n = 673) | p * | |
---|---|---|---|---|---|
Median (IQR, 25th–75th Percentile) or (%) | Median (IQR, 25th–75th Percentile) or (%) | Median (IQR, 25th–75th Percentile) or (%) | Median (IQR, 25th–75th Percentile) or (%) | ||
Age (years) | 41 (38–45) | 39 (36–44) | 43 (39–46) | 39 (36–44) | <0.001 |
Sex | <0.001 | ||||
Male (%) | 33.7 | 34.1 | 37.7 | 25.6 | |
Female (%) | 66.3 | 65.9 | 62.3 | 74.4 | |
Education | <0.001 | ||||
≤12 years (%) | 25.6 | 17.1 | 29 | 27.9 | |
>12 years (%) | 74.4 | 82.9 | 71 | 72.1 | |
Smoking | <0.001 | ||||
Never smokers (%) | 45.8 | 56.2 | 43.6 | 38.7 | |
Former smokers (%) | 28.6 | 32.7 | 28.1 | 25 | |
Current smokers (%) | 25.6 | 11.1 | 28.3 | 36.3 | |
Existence of prediabetes | <0.001 | ||||
Normal (%) | 76 | 70.9 | 73.9 | 86.2 | |
Prediabetes (%) | 24 | 29.1 | 26.1 | 13.8 | |
Body mass index (kg/m2) | 28 (25–32) | 28 (25–32) | 29 (25–32) | 27 (23–31) | <0.001 |
Waist circumference (cm) | 95 (84–104) | 95 (85–104) | 96 (87–106) | 90 (78–102) | <0.001 |
Fasting plasma glucose (mg/dL) | 93 (86–100) | 93 (86–101) | 94 (88–100) | 88 (83–96) | <0.001 |
Breakfast consumption (days/week) | 4 (2–4) | 4 (4) | 4 (3–4) | 3 (2–4) | <0.001 |
Sitting hours (hours/day) | 5 (2.5–8) | 5 (3–8) | 4 (2–8) | 5 (2.5–7) | <0.001 |
Factor 1 | Factor 2 | |
---|---|---|
Fruits and berries | 0.744 † | 0.198 |
Vegetables | 0.672 † | 0.232 |
Legumes | 0.236 | 0.081 |
Salty snacks | −0.309 † | 0.674 † |
Sweet snacks | −0.107 | 0.724 † |
Soft drinks with sugar | −0.443 † | 0.373 † |
Juice with sugar | −0.181 | 0.359 † |
Nuts and seeds | 0.586† | 0.213 |
Alcohol | 0.089 | 0.027 |
Breakfast consumption | 0.405 † | 0.193 |
Sedentary behavior | −0.039 | 0.330 † |
Explained variation, % | 17.4% | 14% |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Component 1: Breakfast consumption, high consumption of fruits and berries, vegetables and nuts and seeds, and low consumption of salty snacks and soft drinks with sugar | 0.99 (0.88–1.14) | 0.99 (0.87–1.13) | 0.99 (0.98–1.30) |
Component 2: High consumption of salty and sweet snacks, soft drinks with sugar and juice with sugar and sedentary behavior | 1.04 (1.02–1.06) | 1.03 (1.02–1.05) | 1.02 (1.01–1.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourouti, N.; Mavrogianni, C.; Mouratidou, T.; Liatis, S.; Valve, P.; Rurik, I.; Torzsa, P.; Cardon, G.; Bazdarska, Y.; Iotova, V.; et al. The Association of Lifestyle Patterns with Prediabetes in Adults from Families at High Risk for Type 2 Diabetes in Europe: The Feel4Diabetes Study. Nutrients 2023, 15, 3155. https://doi.org/10.3390/nu15143155
Mourouti N, Mavrogianni C, Mouratidou T, Liatis S, Valve P, Rurik I, Torzsa P, Cardon G, Bazdarska Y, Iotova V, et al. The Association of Lifestyle Patterns with Prediabetes in Adults from Families at High Risk for Type 2 Diabetes in Europe: The Feel4Diabetes Study. Nutrients. 2023; 15(14):3155. https://doi.org/10.3390/nu15143155
Chicago/Turabian StyleMourouti, Niki, Christina Mavrogianni, Theodora Mouratidou, Stavros Liatis, Päivi Valve, Imre Rurik, Péter Torzsa, Greet Cardon, Yulia Bazdarska, Violeta Iotova, and et al. 2023. "The Association of Lifestyle Patterns with Prediabetes in Adults from Families at High Risk for Type 2 Diabetes in Europe: The Feel4Diabetes Study" Nutrients 15, no. 14: 3155. https://doi.org/10.3390/nu15143155
APA StyleMourouti, N., Mavrogianni, C., Mouratidou, T., Liatis, S., Valve, P., Rurik, I., Torzsa, P., Cardon, G., Bazdarska, Y., Iotova, V., Moreno, L. A., Makrilakis, K., & Manios, Y. (2023). The Association of Lifestyle Patterns with Prediabetes in Adults from Families at High Risk for Type 2 Diabetes in Europe: The Feel4Diabetes Study. Nutrients, 15(14), 3155. https://doi.org/10.3390/nu15143155