Auricularia auricula Peptides Nutritional Supplementation Delays H2O2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of AAPs
2.3. Cell Culture and Treatments
2.4. Cell Viability Assay
2.5. Determination of ROS Induced by H2O2 and the Protective Effect of AAPs Nutritional Supplementation
2.6. Determination Activities MDA and Antioxidant Enzymes
2.7. Senescence-Associated β-Galactosidase (SA-β-Gal) Staining
2.8. Senescence-Associated Secretory Phenotype (SASP)
2.9. Library Construction and Sequencing
2.10. Quantitative Real-Time PCR (qRT-PCR)
2.11. Western Blot
2.12. Statistical Analysis
3. Results
3.1. Determination of the Properties of AAPs
3.2. Evaluation of Cell Viability and ROS Production by H2O2
3.3. Preventive Effects of AAPs Nutritional Supplementation on Cell Viability and Reduction in Intracellular ROS
3.4. Effect of AAPs on Oxidative Damage in HepG2 Cells
3.5. Senescence-Associated β-Galactosidase (SA-β-Gal) Staining
3.6. Senescence-Associated Secretory Phenotype (SASP)
3.7. Transcriptome Sequencing and Gene Expression Analysis
3.8. Gene Ontology (GO) Enrichment Analysis
3.9. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
3.10. Quantitative Real-Time PCR (qRT-PCR) Validation
3.11. Western Blot Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhang, J.; Li, H.; Liu, W.; Xi, Y.; Liu, X. A Comprehensive Comparison of Different Selenium Supplements: Mitigation of Heat Stress and Exercise Fatigue-Induced Liver Injury. Front. Nutr. 2022, 9, 917349. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, J.A.; Zhao, F.; Liu, X.; Ma, B. Bioactive Peptides from Edible Mushrooms—The Preparation, Mechanisms, Structure—Activity Relationships and Prospects. Foods 2023, 12, 2935. [Google Scholar] [CrossRef] [PubMed]
- Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.; Bisen, P. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol. 2009, 10, 717–742. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, H.; Wang, W.; Wang, X.; Zhang, C.; Zhang, J.; Jing, H.; Ren, Z.; Gao, Z.; Song, X. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bisporus. Int. J. Biol. Macromol. 2018, 106, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.Y.; Zhang, Z.; Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP Ia) prevents oxidative stress in an ageing mouse model. Carbohydr. Polym. 2011, 84, 638–648. [Google Scholar] [CrossRef]
- Liu, E.; Ji, Y.; Zhang, F.; Liu, B.; Meng, X. Review on Auricularia auricula-judae as a Functional Food: Growth, Chemical Composition, and Biological Activities. J. Agric. Food Chem. 2021, 69, 1739–1750. [Google Scholar] [CrossRef]
- Gorouhi, F.; Maibach, H. Role of topical peptides in preventing or treating aged skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Haque, E.; Chand, R.; Kapila, S. Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int. 2008, 25, 28–43. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Kirkwood, T.B. Understanding the odd science of aging. Cell 2005, 120, 437–447. [Google Scholar] [CrossRef]
- Singh, P.; Gollapalli, K.; Mangiola, S.; Schranner, D.; Yusuf, M.A.; Chamoli, M.; Shi, S.L.; Lopes Bastos, B.; Nair, T.; Riermeier, A.; et al. Taurine deficiency as a driver of aging. Science 2023, 380, eabn9257. [Google Scholar] [CrossRef]
- McHugh, D.; Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018, 217, 65–77. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wang, Y.; Yang, Y.; Wang, Z.; Ju, X.; Yuan, J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J. Funct. Foods 2019, 55, 211–219. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Q.; Nie, R.; Yang, X.; Tang, Z.; Chen, H. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 2175–2193. [Google Scholar] [CrossRef] [PubMed]
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Z.; He, J.; Zhang, Y.; Zhang, T.; Jiang, Y. Anti-oxidative and anti-apoptosis effects of egg white peptide, Trp-Asn-Trp-Ala-Asp, against H2O2-induced oxidative stress in human embryonic kidney 293 cells. Food Funct. 2014, 5, 3179–3188. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Li, C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef]
- Lee, B.Y.; Han, J.A.; Im, J.S.; Morrone, A.; Johung, K.; Goodwin, E.C.; Kleijer, W.J.; DiMaio, D.; Hwang, E.S. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 2006, 5, 187–195. [Google Scholar] [CrossRef]
- Coppe, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol.-Mech. Dis. 2010, 5, 99–118. [Google Scholar] [CrossRef]
- Kuilman, T.; Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 2009, 9, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Spagnuolo, C.; Russo, M.; Tedesco, I.; Moccia, S.; Cervellera, C. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochem. Pharmacol. 2020, 173, 113719. [Google Scholar] [CrossRef] [PubMed]
- Cuollo, L.; Antonangeli, F.; Santoni, A.; Soriani, A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology 2020, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Hoare, M.; Narita, M. Spatial and Temporal Control of Senescence. Trends Cell Biol. 2017, 27, 830–842. [Google Scholar] [CrossRef]
- Sun, Y.; Coppe, J.P.; Lam, E.W.F. Cellular Senescence: The Sought or the Unwanted? Trends Mol. Med. 2018, 24, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Napetschnig, J.; Wu, H. Molecular basis of NF-κB signaling. Ann. Rev. Biophys. 2013, 42, 443–468. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.H.; Jeong, Y.T.; Lee, K.A.; Choi, K.H.; Kim, S.M.; Rhim, B.Y.; Kim, K. Roles of MAPK and NF-κB in interleukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J. Cardiovasc. Pharmacol. 2008, 51, 71–77. [Google Scholar] [CrossRef]
- Ghosh, J.; Das, J.; Manna, P.; Sil, P.C. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway. Toxicol. Appl. Pharmacol. 2009, 240, 73–87. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, J. Anti-aging Effect of Rhodiola on the HSF and HaCaT Cell. Mod. Food Sci. Technol. 2018, 34, 16–23. [Google Scholar] [CrossRef]
- Alía, M.; Ramos, S.; Mateos, R.; Bravo, L.; Goya, L. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J. Biochem. Mol. Toxicol. 2005, 19, 119–128. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Y.; Qiu, Y. Ethyl acetate fraction of Abelmoschus manihot (L.) Medic flowers exerts inhibitory effects against oxidative stress in H2O2-induced HepG2 cells and D-galactose-induced aging mice. J. Med. Food 2021, 24, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.F.; Hu, L.; Wu, J.N.; Wang, J.X.; Wang, X.Y.; Liu, Z.Y.; Zhao, Q.D.; Li, W.J.; Song, X.D.; Xiao, J.H. Changes in tumor suppressors and inflammatory responses during hydrogen peroxide-induced senescence in rat fibroblasts. Free Radic. Res. 2022, 56, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; ud Din, J.; Zhao, F.; Liu, X. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling. Food Funct. 2020, 11, 2725–2737. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.B.; Shin, G.H.; Kim, J.M.; Kim, Y.H.; Lee, J.H.; Lee, J.S.; Song, H.J.; Choe, S.Y.; Park, I.J.; Cho, J.H. Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem. 2016, 194, 920–927. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, S.; Zhang, C.; Soliman, M.M.; Li, H.; Liu, X. Transcriptome analysis revealing the mechanism of soybean protein isolates and soybean peptides on Lacticaseibacillus rhamnosus Lra05. Food Biosci. 2022, 47, 101681. [Google Scholar] [CrossRef]
- Shin, G.R.; Lee, S.; Jang, E.S.; Shin, H.W.; Moon, B.S.; Lee, C.H. Metabolomics reveal that amino acids are the main contributors to antioxidant activity in wheat and rice gochujangs (Korean fermented red pepper paste). Food Res. Int. 2016, 87, 10–17. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Li, J.; Zhao, A.; Li, D.; He, Y. Comparative study of the free amino acid compositions and contents in three different botanical origins of Coptis herb. Biochem. Syst. Ecol. 2019, 83, 117–120. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; Zheng, D.; Zou, Y.; Zhang, M.; Zhao, T.; Mao, G.; Feng, W. Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochem. 2016, 51, 431–443. [Google Scholar] [CrossRef]
- Jia, T.; Chao, T.; Fanqiang, M.; Weiwei, Z.; Libang, Z.; Zhaoxin, L. Lipid-lowering effect of Auricularia auricula peptides on palmitic acid-induced liver cells. Food Sci. 2022, 43, 106–113. [Google Scholar] [CrossRef]
- Hou, D.; Liu, F.; Ren, X.; Shen, Q.; Zhou, S. Protective mechanism of mung bean coat against hyperlipidemia in mice fed with a high-fat diet: Insight from hepatic transcriptome analysis. Food Funct. 2021, 12, 12434–12447. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; Jung, H.S.; Kwon, M.J.; Lee, S.H.; Park, J.H. Testosterone Protects Pancreatic β-cells from Apoptosis and Stress-Induced Accelerated Senescence. World J. Mens Health 2021, 39, 724. [Google Scholar] [CrossRef] [PubMed]
- Amakye, W.K.; Hou, C.; Xie, L.; Lin, X.; Gou, N.; Yuan, E.; Ren, J. Bioactive anti-aging agents and the identification of new anti-oxidant soybean peptides. Food Biosci. 2021, 42, 101194. [Google Scholar] [CrossRef]
- Palese, F.; Pontis, S.; Realini, N.; Piomelli, D. NAPE-specific phospholipase D regulates LRRK2 association with neuronal membranes. Adv. Pharmacol. 2021, 90, 217–238. [Google Scholar] [CrossRef]
- Taniguchi, K.; Karin, M. NF-kappaB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.X.; Wong, S.H.; Chan, M.T.; Yu, L.; Yu, S.S.; Wu, F.; Xiao, Z.; Wang, X.; Zhang, L.; Cheng, A.S.; et al. Autophagy Mediates HBx-Induced Nuclear Factor-kappaB Activation and Release of IL-6, IL-8, and CXCL2 in Hepatocytes. J. Cell. Physiol. 2015, 230, 2382–2389. [Google Scholar] [CrossRef]
- Di Micco, R.; Krizhanovsky, V.; Baker, D.; d’Adda di Fagagna, F. Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 2021, 22, 75–95. [Google Scholar] [CrossRef]
- Fafian-Labora, J.A.; O’Loghlen, A. Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends Cell Biol. 2020, 30, 628–639. [Google Scholar] [CrossRef]
- Yan, Z.; Ohuchida, K.; Fei, S.; Zheng, B.; Guan, W.; Feng, H.; Kibe, S.; Ando, Y.; Koikawa, K.; Abe, T.; et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J. Exp. Clin. Cancer Res. 2019, 38, 221. [Google Scholar] [CrossRef]
- Shah, S.; King, E.M.; Chandrasekhar, A.; Newton, R. Roles for the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone. J. Biol. Chem. 2014, 289, 13667–13679. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reward Primer |
---|---|---|
ACTB | 5′-TGGAACGGTGAAGGTGACAG-3′ | 5′-AACAACGCATCTCATATTTGGAA-3′ |
c-fos | 5′-GGGGCAAGGTGGAACAGTTAT-3′ | 5′-AGGTTGGCAATCTCGGTCTG-3′ |
c-jun | 5′-GTGCCGAAAAAGGAAGCTGG-3′ | 5′-CTGCGTTAGCATGAGTTGGC-3′ |
CXCL2 | 5′-TTCACAGTGTGTGGTCAACAT-3′ | 5′-TCTCTGCTCTAACACAGAGGGA-3′ |
CXCL8 | 5′-ACTCCAAACCTTTCCACCCC-3′ | 5′-TTCTCAGCCCTCTTCAAAAACT-3′ |
AREG | 5′-TACTCGGCTCAGGCCATTAT-3′ | 5′-TCCCGAGGACGGTTCACTAC-3′ |
CACNB2 | 5′-CCTGGGAGTAGAAGGTGGGA-3′ | 5′-GGAGTCTGCCGAACCATAGG-3′ |
DUSP1 | 5′-GCCATTGACTTCATAGACTCCA-3′ | 5′-ATGATGCTTCGCCTCTGCTT-3′ |
EDN1 | 5′-TTGAGATCTGAGGAACCCGC-3′ | 5′-GCTCAGCGCCTAAGACTGTT-3′ |
NFATC4 | 5′-GTCTTCCTTCCTCCTCCAGC-3′ | 5′-CTGAGTCCAGTTCTTCCCCC-3′ |
IL11 | 5′-GGACATGAACTGTGTTTGCCG-3′ | 5′-GAGGGTCTGGGGAAACTCG-3′ |
INHBB | 5′-GCGAGAACCCTCAACTGACA-3′ | 5′-ACCGCATCCATTTGCTGGTA-3′ |
Item | AAPs (%) |
---|---|
Asparticacid (Asp) | 9.28 ± 1.23 |
Threonine (Thr) | 3.00 ± 0.06 |
Serine (Ser) | 4.35 ± 0.09 |
Glutamicacid (Glu) | 19.17 ± 0.19 |
Glycine (Gly) | 10.57 ± 0.46 |
Alanine (Ala) | 4.69 ± 0.77 |
Cysteine (Cys) | 7.81 ± 0.21 |
Valine (Val) | 3.87 ± 0.03 |
Methionine (Met) | 1.39 ± 0.50 |
Isoleucine (Ile) | 3.76 ± 0.09 |
Leucine (Leu) | 6.39 ± 0.10 |
Tyrosine (Tyr) | 3.14 ± 0.36 |
Phenylalanine (Phe) | 4.56 ± 0.27 |
Histidine (His) | 3.26 ± 0.07 |
Lysine (Lys) | 6.31 ± 0.04 |
Arginine (Arg) | 8.43 ± 0.21 |
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Error Rate (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|---|
control 1 | 60,098,740 | 9,074,909,740 | 58,473,192 | 8,587,028,318 | 0.0253 | 97.89 | 93.99 |
control 2 | 54,787,316 | 8,272,884,716 | 53,551,530 | 7,888,155,174 | 0.0246 | 98.18 | 94.63 |
control 3 | 62,491,860 | 9,436,270,860 | 60,960,432 | 8,948,341,313 | 0.0252 | 97.92 | 94.01 |
model 1 | 55,742,576 | 8,417,128,976 | 54,448,302 | 7,991,536,234 | 0.0248 | 98.11 | 94.43 |
model 2 | 70,035,438 | 10,575,351,138 | 67,992,638 | 9,996,752,010 | 0.0250 | 98.01 | 94.29 |
model 3 | 59,654,220 | 9,007,787,220 | 57,961,824 | 8,550,212,323 | 0.0249 | 98.02 | 94.29 |
treated 1 | 51,838,286 | 7,827,581,186 | 50,408,474 | 7,427,178,279 | 0.0248 | 98.06 | 94.39 |
treated 2 | 59,391,338 | 8,968,092,038 | 57,718,770 | 8,513,014,983 | 0.0251 | 97.97 | 94.17 |
treated 3 | 53,077,068 | 8,014,637,268 | 51,623,830 | 7,544,501,778 | 0.0248 | 98.10 | 94.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Li, H.; Zhao, F.; Gao, J.; Liu, X.; Ma, B. Auricularia auricula Peptides Nutritional Supplementation Delays H2O2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients 2023, 15, 3731. https://doi.org/10.3390/nu15173731
Han Q, Li H, Zhao F, Gao J, Liu X, Ma B. Auricularia auricula Peptides Nutritional Supplementation Delays H2O2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients. 2023; 15(17):3731. https://doi.org/10.3390/nu15173731
Chicago/Turabian StyleHan, Qianwen, Haiyan Li, Fen Zhao, Ji’an Gao, Xinqi Liu, and Biao Ma. 2023. "Auricularia auricula Peptides Nutritional Supplementation Delays H2O2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways" Nutrients 15, no. 17: 3731. https://doi.org/10.3390/nu15173731
APA StyleHan, Q., Li, H., Zhao, F., Gao, J., Liu, X., & Ma, B. (2023). Auricularia auricula Peptides Nutritional Supplementation Delays H2O2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients, 15(17), 3731. https://doi.org/10.3390/nu15173731