Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Myelin Magnetic Resonance Imaging (MRI) Data Acquisition and Processing
2.3. Nutritional Data Collection
2.4. Dynamics of Social Brain Myelin–Nutrient Intake Associations
2.5. Nutrient Intake Dynamics per Nutrient–Social Brain Myelin Age Window
2.6. Identification of Window-Specific Nutrient Blends
3. Results
3.1. Dynamic Nutrient Intake—Social Brain Window Associations
3.2. Nutrient Intake across Age Windows
3.3. Age Window-Specific Nutrient Blends Associated with Social Brain Myelination
4. Discussion
4.1. The Dynamic Pattern of Myelin–Nutrient Intake Associations: Three Age Windows
4.2. Social Brain in Neurodevelopmental Disorders and the Role of Nutrition
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soto-Icaza, P.; Aboitiz, F.; Billeke, P. Development of social skills in children: Neural and behavioral evidence for the elaboration of cognitive models. Front. Neurosci. 2015, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.; Greenstreet, E.; Deoni, S.C.L. Connecting inside out: Development of the social brain in infants and toddlers with a focus on myelination as a marker of brain maturation. Child Dev. 2022, 93, 359–371. [Google Scholar] [CrossRef]
- Landy, S. Pathways to Competence: Encouraging Healthy Social and Emotional Development in Young Children; Paul H Brookes Publishing: Towson, MD, USA, 2009. [Google Scholar]
- Alduncin, N.; Huffman, L.C.; Feldman, H.M.; Loe, I.M. Executive function is associated with social competence in preschool-aged children born preterm or full term. Early Hum. Dev. 2014, 90, 299–306. [Google Scholar] [CrossRef]
- Besi, M.; Sakellariou, M. Transition to primary school the importance of social skills. Int. J. Humanit. Soc. Sci. 2019, 6, 33–36. [Google Scholar] [CrossRef]
- Huffman, L.C.; Mehlinger, S.L.; Kerivan, A.S. Risk Factors for Academic and Behavioral Problems at the Beginning of School. Off to a Good Start: Research on the Risk Factors for Early School Problems and Selected Federal Policies Affecting Children’s Social and Emotional Development and Their Readiness for School; University of North Carolina: Chapel Hill, NC, USA, 2000. [Google Scholar]
- Denham, S.A.; Brown, C. “Plays nice with others”: Social–emotional learning and academic success. Early Educ. Dev. 2010, 21, 652–680. [Google Scholar] [CrossRef]
- Foulks, B.; Morrow, R.D. Academic Survival Skills for the Young Child at Risk for School Failure. J. Educ. Res. 1989, 82, 158–165. [Google Scholar] [CrossRef]
- Garaigordobil, M.; Berrueco, L.; Celume, M.-P. Developing Children’s Creativity and Social-Emotional Competencies through Play: Summary of Twenty Years of Findings of the Evidence-Based Interventions “Game Program”. J. Intell. 2022, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Holder, M.D.; Coleman, B. Children’s Friendships and Positive Well-Being, in Friendship and Happiness; Springer: Berlin/Heidelberg, Germany, 2015; pp. 81–97. [Google Scholar] [CrossRef]
- Deoni, S.; Dean, D.; Joelson, S.; O’Regan, J.; Schneider, N. Early nutrition influences developmental myelination and cognition in infants and young children. NeuroImage 2018, 178, 649–659. [Google Scholar] [CrossRef]
- Knaap, M.S.; Valk, J.; Bakker, C.J.; Schooneveld, M.; Faber, J.A.J.; Willemse, J.; Gooskens, R.H.J.M. Myelination as an Expression of the Functional Maturity of the Brain. Dev. Med. Child Neurol. 2008, 33, 849–857. [Google Scholar] [CrossRef]
- O’Muircheartaigh, J.; Dean, D.C.; Dirks, H.; Waskiewicz, N.; Lehman, K.; Jerskey, B.A.; Deoni, S.C. Interactions between White Matter Asymmetry and Language during Neurodevelopment. J. Neurosci. 2013, 33, 16170–16177. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C.; Dean, D.C.; O’Muircheartaigh, J.; Dirks, H.; Jerskey, B.A. Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. NeuroImage 2012, 63, 1038–1053. [Google Scholar] [CrossRef]
- Fornari, E.; Knyazeva, M.G.; Meuli, R.; Maeder, P. Myelination shapes functional activity in the developing brain. NeuroImage 2007, 38, 511–518. [Google Scholar] [CrossRef]
- Pujol, J.; Soriano-Mas, C.; Ortiz, H.; Sebastian-Galles, N.; Losilla, J.M.; Deus, J. Myelination of language-related areas in the developing brain. Neurology 2006, 66, 339–343. [Google Scholar] [CrossRef]
- Dai, X.; Hadjipantelis, P.; Wang, J.-L.; Deoni, S.C.L.; Müller, H.-G. Longitudinal associations between white matter maturation and cognitive development across early childhood. Hum. Brain Mapp. 2019, 40, 4130–4145. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C.L.; O’muircheartaigh, J.; Elison, J.T.; Walker, L.; Doernberg, E.; Waskiewicz, N.; Dirks, H.; Piryatinsky, I.; Dean, D.C.; Jumbe, N.L. White matter maturation profiles through early childhood predict general cognitive ability. Anat. Embryol. 2014, 221, 1189–1203. [Google Scholar] [CrossRef]
- O’Muircheartaigh, J.; Dean, D.C.; Ginestet, C.E.; Walker, L.; Waskiewicz, N.; Lehman, K.; Dirks, H.; Piryatinsky, I.; Deoni, S.C. White matter development and early cognition in babies and toddlers. Brain Struct. Funct. 2016, 35, 4475–4487. [Google Scholar] [CrossRef]
- Walker, S.P.; Wachs, T.D.; Gardner, J.M.; Lozoff, B.; A Wasserman, G.; Pollitt, E.; A Carter, J. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.; Mainardi, F.; Budisavljevic, S.; Rolands, M.; Deoni, S. Associations between Early Life Nutrient Intakes and Brain Maturation Show Developmental Dynamics from Infancy to Toddlerhood: A Neuroimaging Observation Study. J. Nutr. 2023, 153, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C.; Dean, D.C., 3rd; Piryatinsky, I.; O’Muircheartaigh, J.; Waskiewicz, N.; Lehman, K.; Han, M.; Dirks, H. Breastfeeding and early white matter development: A cross-sectional study. NeuroImage 2013, 82, 77–86. [Google Scholar] [CrossRef]
- Schneider, N.; Hauser, J.; Oliveira, M.; Cazaubon, E.; Mottaz, S.C.; O’neill, B.V.; Steiner, P.; Deoni, S.C.L. Sphingomyelin in Brain and Cognitive Development: Preliminary Data. Eneuro 2019, 6, ENEURO.0421-18.2019. [Google Scholar] [CrossRef]
- Georgieff, M.K. Nutrition and the developing brain: Nutrient priorities and measurement. Am. J. Clin. Nutr. 2007, 85, 614S–620S. [Google Scholar] [PubMed]
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediatr. 2018, 107, 1310–1321. [Google Scholar] [CrossRef]
- Kretchmer, N.; Beard, J.L.; Carlson, S. The role of nutrition in the development of normal cognition. Am. J. Clin. Nutr. 1996, 63, 997S–1001S. [Google Scholar] [CrossRef] [PubMed]
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shan, L.; Du, L.; Wang, B.; Li, H.; Wang, W.; Wang, T.; Dong, H.; Yue, X.; Xu, Z.; et al. Clinical improvement following vitamin D3 supplementation in Autism Spectrum Disorder. Nutr. Neurosci. 2017, 20, 284–290. [Google Scholar] [CrossRef]
- Mazahery, H.; Conlon, C.A.; Beck, K.L.; Mugridge, O.; Kruger, M.C.; Stonehouse, W.; Camargo, C.A., Jr.; Meyer, B.J.; Tsang, B.; Jones, B.; et al. A Randomised-Controlled Trial of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids in the Treatment of Core Symptoms of Autism Spectrum Disorder in Children. J. Autism Dev. Disord. 2019, 49, 1778–1794. [Google Scholar] [CrossRef]
- Saad, K.; Abdel-Rahman, A.A.; Elserogy, Y.M.; Al-Atram, A.A.; El-Houfey, A.A.; Othman, H.A.-K.; Bjørklund, G.; Jia, F.; Urbina, M.A.; Abo-Elela, M.G.M.; et al. Retracted: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatry 2018, 59, 20–29. [Google Scholar] [CrossRef]
- Sun, C.; Zou, M.; Zhao, D.; Xia, W.; Wu, L. Efficacy of Folic Acid Supplementation in Autistic Children Participating in Structured Teaching: An Open-Label Trial. Nutrients 2016, 8, 337. [Google Scholar] [CrossRef]
- Schneider, N.; Bruchhage, M.M.K.; O’Neill, B.V.; Hartweg, M.; Tanguy, J.; Steiner, P.; Mutungi, G.; O’Regan, J.; Mcsweeney, S.; D’Sa, V.; et al. A Nutrient Formulation Affects Developmental Myelination in Term Infants: A Randomized Clinical Trial. Front. Nutr. 2022, 9, 823893. [Google Scholar] [CrossRef]
- Dean, D.C., 3rd; Dirks, H.; O’Muircheartaigh, J.; Walker, L.; Jerskey, B.A.; Lehman, K.; Deoni, S.C. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr. Radiol. 2014, 44, 64–72. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The automated self-administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, J.K.; Moshfegh, A.J.; Holden, J.M.; Harris, E. USDA Food and Nutrient Databases Provide the Infrastructure for Food and Nutrition Research, Policy, and Practice. J. Nutr. 2013, 143, 241S–249S. [Google Scholar] [CrossRef]
- Khor, G.L.; Shyam, S.; Misra, S.; Fong, B.; Chong, M.H.Z.; Sulaiman, N.; Lee, Y.L.; Cannan, R.; Rowan, A. Correlation between dietary intake and serum ganglioside concentrations: A cross-sectional study among Malaysian toddlers. BMC Nutr. 2016, 2, 1–13. [Google Scholar] [CrossRef]
- Vesper, H.; Schmelz, E.-M.; Nikolova-Karakashian, M.N.; Dillehay, D.L.; Lynch, D.V.; Merrill, A.H. Sphingolipids in Food and the Emerging Importance of Sphingolipids to Nutrition. J. Nutr. 1999, 129, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.; Davis, S.; Berry, S.; Melis, J.; Spelman, R.; Snell, R.; Lehnert, K.; Palmer, D. Rapid, quantitative analysis of 3′- and 6′-sialyllactose in milk by flow-injection analysis–mass spectrometry: Screening of milks for naturally elevated sialyllactose concentration. J. Dairy Sci. 2013, 96, 7684–7691. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Friday, J.E.; Goldman, J.P.; Ahuja, J.K.C. Presence of Inulin and Oligofructose in the Diets of Americans. J. Nutr. 1999, 129, 1407S–1411S. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Stat. Methodol. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with theBorutaPackage. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Carlson, S.E.; Colombo, J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. [Google Scholar] [CrossRef]
- Kalinichenko, L.S.; Gulbins, E.; Kornhuber, J.; Müller, C.P. Sphingolipid control of cognitive functions in health and disease. Prog. Lipid Res. 2022, 86, 101162. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.S.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Koshibu, K.; Rytz, A.; Giuffrida, F.; Sultan, S.; Patin, A.; Gaudin, M.; Tomezyk, A.; Steiner, P.; Schneider, N. Early Life to Adult Brain Lipidome Dynamic: A Temporospatial Study Investigating Dietary Polar Lipid Supplementation Efficacy. Front. Nutr. 2022, 9, 898655. [Google Scholar] [CrossRef] [PubMed]
- Palmano, K.; Rowan, A.; Guillermo, R.; Guan, J.; Mc Jarrow, P. The Role of Gangliosides in Neurodevelopment. Nutrients 2015, 7, 3891–3913. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Fleith, M.; Giuffrida, F.; O’Neill, B.V.; Schneider, N. Dietary Polar Lipids and Cognitive Development: A Narrative Review. Adv. Nutr. Int. Rev. J. 2019, 10, 1163–1176. [Google Scholar] [CrossRef] [PubMed]
- Oshida, K.; Shimizu, T.; Takase, M.; Tamura, Y.; Shimizu, T.; Yamashiro, Y. Effects of Dietary Sphingomyelin on Central Nervous System Myelination in Developing Rats. Pediatr. Res. 2003, 53, 589–593. [Google Scholar] [CrossRef]
- Sonnino, S.; Chiricozzi, E.; Grassi, S.; Mauri, L.; Prioni, S.; Prinetti, A. Gangliosides in Membrane Organization. Prog. Mol. Biol. Transl. Sci. 2018, 156, 83–120. [Google Scholar] [CrossRef]
- Yang, L.J.; Zeller, C.B.; Shaper, N.L.; Kiso, M.; Hasegawa, A.; E Shapiro, R.; Schnaar, R.L. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA 1996, 93, 814–818. [Google Scholar] [CrossRef]
- Liu, H.; Radlowski, E.C.; Conrad, M.S.; Li, Y.; Dilger, R.N.; Johnson, R.W. Early Supplementation of Phospholipids and Gangliosides Affects Brain and Cognitive Development in Neonatal Piglets. J. Nutr. 2014, 144, 1903–1909. [Google Scholar] [CrossRef]
- Schverer, M.; O’Mahony, S.M.; O’riordan, K.J.; Donoso, F.; Roy, B.L.; Stanton, C.; Dinan, T.G.; Schellekens, H.; Cryan, J.F. Dietary phospholipids: Role in cognitive processes across the lifespan. Neurosci. Biobehav. Rev. 2020, 111, 183–193. [Google Scholar] [CrossRef]
- Sipione, S.; Monyror, J.; Galleguillos, D.; Steinberg, N.; Kadam, V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front. Neurosci. 2020, 14, 572965. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.H.; Guan, J.; Gustavsson, M.; Krägeloh, C.U.; Breier, B.H.; Davison, M.; Fong, B.; Norris, C.; McJarrow, P.; Hodgkinson, S.C. Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition. Nutr. Res. 2009, 29, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, T.; Mao, Y.; Tian, F.; Cai, X.; Kuchan, M.J.; Zhang, L.; Zhao, Y.; Chen, J. Carotenoid profile in breast milk and maternal and cord plasma: A longitudinal study in Southwest China. Br. J. Nutr. 2021, 126, 1281–1287. [Google Scholar] [CrossRef]
- Miranda-Dominguez, O.; Ramirez, J.S.B.; Mitchell, A.J.; Perrone, A.; Earl, E.; Carpenter, S.; Feczko, E.; Graham, A.; Jeon, S.; Cohen, N.J.; et al. Carotenoids improve the development of cerebral cortical networks in formula-fed infant macaques. Sci. Rep. 2022, 12, 15220. [Google Scholar] [CrossRef]
- Avraham, Y.; Berry, E.M.; Donskoy, M.; Abu Ahmad, W.; Vorobiev, L.; Albeck, A.; Mankuta, D. Beta-carotene as a novel therapy for the treatment of “Autistic like behavior” in animal models of Autism. Behav. Brain Res. 2019, 364, 469–479. [Google Scholar] [CrossRef]
- Avraham, Y.; Mankuta, D.; Lipsker, L.; Vorobiev, L.; Patael, S.; Hassid, G.; Berry, E.M.; Albeck, A. Beta-Carotene derivatives as novel therapy for the prevention and treatment of autistic symptoms. Bioorg. Chem. 2021, 115, 105224. [Google Scholar] [CrossRef] [PubMed]
- Hauser, J.; Pisa, E.; Vásquez, A.A.; Tomasi, F.; Traversa, A.; Chiodi, V.; Martin, F.-P.; Sprenger, N.; Lukjancenko, O.; Zollinger, A.; et al. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol. Psychiatry 2021, 26, 2854–2871. [Google Scholar] [CrossRef]
- Cho, S.; Zhu, Z.; Li, T.; Baluyot, K.; Howell, B.R.; Hazlett, H.C.; Elison, J.T.; Hauser, J.; Sprenger, N.; Wu, D.; et al. Human milk 3’-Sialyllactose is positively associated with language development during infancy. Am. J. Clin. Nutr. 2021, 114, 588–597. [Google Scholar] [CrossRef]
- Madsen, E.; Gitlin, J.D. Copper and Iron Disorders of the Brain. Annu. Rev. Neurosci. 2007, 30, 317–337. [Google Scholar] [CrossRef]
- Todorich, B.; Pasquini, J.M.; Garcia, C.I.; Paez, P.M.; Connor, J.R. Oligodendrocytes and myelination: The role of iron. Glia 2009, 57, 467–478. [Google Scholar] [CrossRef]
- Brion, L.P.; Heyne, R.; Brown, L.S.; Lair, C.S.; Edwards, A.; Burchfield, P.J.; Caraig, M. Zinc deficiency limiting head growth to discharge in extremely low gestational age infants with insufficient linear growth: A cohort study. J. Perinatol. 2020, 40, 1694–1704. [Google Scholar] [CrossRef]
- Balashova, O.A.; Visina, O.; Borodinsky, L.N. Folate action in nervous system development and disease. Dev. Neurobiol. 2018, 78, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Dhir, S.; Tarasenko, M.; Napoli, E.; Giulivi, C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front. Psychiatry 2019, 10, 207. [Google Scholar] [CrossRef]
- Plantone, D.; Pardini, M.; Rinaldi, G. Riboflavin in Neurological Diseases: A Narrative Review. Clin. Drug Investig. 2021, 41, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2019, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Indika, N.-L.R.; Frye, R.E.; Rossignol, D.A.; Owens, S.C.; Senarathne, U.D.; Grabrucker, A.M.; Perera, R.; Engelen, M.P.K.J.; Deutz, N.E.P. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J. Pers. Med. 2023, 13, 252. [Google Scholar] [CrossRef]
- Kanellopoulos, A.K.; Mariano, V.; Spinazzi, M.; Woo, Y.J.; McLean, C.; Pech, U.; Li, K.W.; Armstrong, J.D.; Giangrande, A.; Callaerts, P.; et al. Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020, 180, 1178–1197.e20. [Google Scholar] [CrossRef]
- Mattei, D.; Pietrobelli, A. Micronutrients and Brain Development. Curr. Nutr. Rep. 2019, 8, 99–107. [Google Scholar] [CrossRef]
- Suzuki, H.; Yamashiro, D.; Ogawa, S.; Kobayashi, M.; Cho, D.; Iizuka, A.; Tsukamoto-Yasui, M.; Takada, M.; Isokawa, M.; Nagao, K.; et al. Intake of Seven Essential Amino Acids Improves Cognitive Function and Psychological and Social Function in Middle-Aged and Older Adults: A Double-Blind, Randomized, Placebo-Controlled Trial. Front. Nutr. 2020, 7, 586166. [Google Scholar] [CrossRef]
- Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D.; Rothenhäusler, H.-B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-Chain Amino Acids as New Biomarkers of Major Depression—A Novel Neurobiology of Mood Disorder. PLoS ONE 2016, 11, e0160542. [Google Scholar] [CrossRef]
- Theis, N.; A Brown, M.; Wood, P.; Waldron, M. Leucine Supplementation Increases Muscle Strength and Volume, Reduces Inflammation, and Affects Wellbeing in Adults and Adolescents with Cerebral Palsy. J. Nutr. 2021, 151, 59–64. [Google Scholar] [CrossRef]
- Institute of Medicine (U.S.); Committee on Military Nutrition Research. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance; National Academy Press: Washington, DC, USA, 1999; Volume xv, p. 429. [Google Scholar]
- Perlman, S.B.; Pelphrey, K.A. Developing connections for affective regulation: Age-related changes in emotional brain connectivity. J. Exp. Child Psychol. 2011, 108, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Yanai, K.; Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: An insight from human positron emission tomography studies. Pharmacol. Ther. 2007, 113, 1–15. [Google Scholar] [CrossRef]
- Kano, M.; Fukudo, S.; Tashiro, A.; Utsumi, A.; Tamura, D.; Itoh, M.; Iwata, R.; Tashiro, M.; Mochizuki, H.; Funaki, Y.; et al. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur. J. Neurosci. 2004, 20, 803–810. [Google Scholar] [CrossRef]
- Zhu, G.; Koszelak-Rosenblum, M.; Connelly, S.M.; Dumont, M.E.; Malkowski, M.G. The Crystal Structure of an Integral Membrane Fatty Acid α-Hydroxylase. J. Biol. Chem. 2015, 290, 29820–29833. [Google Scholar] [CrossRef] [PubMed]
- She, P.; Bunpo, P.; Cundiff, J.K.; Wek, R.C.; Harris, R.A.; Anthony, T.G. General Control Nonderepressible 2 (GCN2) Kinase Protects Oligodendrocytes and White Matter during Branched-chain Amino Acid Deficiency in Mice. J. Biol. Chem. 2013, 288, 31250–31260. [Google Scholar] [CrossRef]
- Kuratko, C.N.; Barrett, E.C.; Nelson, E.B.; Salem, N. The Relationship of Docosahexaenoic Acid (DHA) with Learning and Behavior in Healthy Children: A Review. Nutrients 2013, 5, 2777–2810. [Google Scholar] [CrossRef] [PubMed]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Imran, A.; Qasim, M.; Zafar, S.; Kamran, S.K.S.; Razzaq, A.; Aziz, N.; et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019, 18, 26. [Google Scholar]
- Manor, I.; Magen, A.; Keidar, D.; Rosen, S.; Tasker, H.; Cohen, T.; Richter, Y.; Zaaroor-Regev, D.; Manor, Y.; Weizman, A. The effect of phosphatidylserine containing Omega3 fatty-acids on attention-deficit hyperactivity disorder symptoms in children: A double-blind placebo-controlled trial, followed by an open-label extension. Eur. Psychiatry 2012, 27, 335–342. [Google Scholar] [CrossRef]
- Piomelli, D.; Astarita, G.; Rapaka, R. A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 2007, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef]
- Di Biase, A.; Salvati, S. Exogenous lipids in myelination and myelination. Kaohsiung J. Med. Sci. 1997, 13, 19–29. [Google Scholar]
- Worku, B.N.; Abessa, T.G.; Wondafrash, M.; Vanvuchelen, M.; Bruckers, L.; Kolsteren, P.; Granitzer, M. The relationship of undernutrition/psychosocial factors and developmental outcomes of children in extreme poverty in Ethiopia. BMC Pediatr. 2018, 18, 45. [Google Scholar] [CrossRef]
- Russo-Ponsaran, N.M.; McKown, C.; Johnson, J.K.; Allen, A.W.; Evans-Smith, B.; Fogg, L. Social-Emotional Correlates of Early Stage Social Information Processing Skills in Children With and Without Autism Spectrum Disorder. Autism Res. 2015, 8, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Colombo, J.; Gustafson, K.M.; Carlson, S.E. Critical and Sensitive Periods in Development and Nutrition. Ann. Nutr. Metab. 2019, 75 (Suppl. S1), 34–42. [Google Scholar] [CrossRef]
- Luby, J.L.; Baram, T.Z.; Rogers, C.E.; Barch, D.M. Neurodevelopmental Optimization after Early-Life Adversity: Cross-Species Studies to Elucidate Sensitive Periods and Brain Mechanisms to Inform Early Intervention. Trends Neurosci. 2020, 43, 744–751. [Google Scholar] [CrossRef]
- Walker, S.; McGlone, F. The social brain: Neurobiological basis of affiliative behaviours and psychological well-being. Neuropeptides 2013, 47, 379–393. [Google Scholar] [CrossRef]
- Fenoglio, A.; Georgieff, M.K.; Elison, J.T. Social brain circuitry and social cognition in infants born preterm. J. Neurodev. Disord. 2017, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.K. An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation, and the social brain. Behav. Brain Sci. 2004, 27, 831–855. [Google Scholar] [CrossRef]
- Insel, T.R.; Fernald, R.D. HOW THE BRAIN PROCESSES SOCIAL INFORMATION: Searching for the Social Brain. Annu. Rev. Neurosci. 2004, 27, 697–722. [Google Scholar] [CrossRef]
- Sherwin, E.; Bordenstein, S.R.; Quinn, J.L.; Dinan, T.G.; Cryan, J.F. Microbiota and the social brain. Science 2019, 366, eaar2016. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.P.; Adolphs, R. The social brain in psychiatric and neurological disorders. Trends Cogn. Sci. 2012, 16, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.-J. Development of the Social Brain in Adolescence. J. R. Soc. Med. 2015, 105, 193–211. [Google Scholar] [CrossRef]
- Domínguez-Iturza, N.; Lo, A.C.; Shah, D.; Armendáriz, M.; Vannelli, A.; Mercaldo, V.; Trusel, M.; Li, K.W.; Gastaldo, D.; Santos, A.R.; et al. The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nat. Commun. 2019, 10, 3454. [Google Scholar] [CrossRef] [PubMed]
- Crespi, B.; Badcock, C. Psychosis and autism as diametrical disorders of the social brain. Behav. Brain Sci. 2008, 31, 241–261, (discussion 261–320). [Google Scholar] [CrossRef]
- Grossmann, T. The development of social brain functions in infancy. Psychol. Bull. 2015, 141, 1266–1287. [Google Scholar] [CrossRef]
- Robinson-Agramonte, M.L.A.; Noris García, E.; Fraga Guerra, J.; Vega Hurtado, Y.; Antonucci, N.; Semprún-Hernández, N.; Schultz, S.; Siniscalco, D. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int. J. Mol. Sci. 2022, 23, 3033. [Google Scholar] [CrossRef]
- Vacher, C.M.; Lacaille, H.; O’Reilly, J.J.; Salzbank, J.; Bakalar, D.; Sebaoui, S.; Liere, P.; Clarkson-Paredes, C.; Sasaki, T.; Sathyanesan, A.; et al. Pla-cental endocrine function shapes cerebellar development and social behavior. Nat. Neurosci. 2021, 24, 1392–1401. [Google Scholar] [CrossRef]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 977–985. [Google Scholar] [CrossRef]
- Karhu, E.; Zukerman, R.; Eshraghi, R.S.; Mittal, J.; Deth, R.C.; Castejon, A.M.; Trivedi, M.; Mittal, R.; Eshraghi, A.A. Nutritional inter-ventions for autism spectrum disorder. Nut. Rev. 2020, 78, 515–531. [Google Scholar] [CrossRef] [PubMed]
Biological Sex (N) | Male | 165 |
Female | 128 | |
Age (months) (Mean (SD)) | 25.5 (4.5) | |
Birth Weight (lbs/kg) | 7.4 (1.2)/3.36 (0.54) | |
Birth Length (inches/cm) | 20.2 (1.9)/51.3 (4.8) | |
Maternal Education (N) | Professional Degree | 105 |
College Graduate | 74 | |
Partial College | 49 | |
High School Graduate | 21 | |
Partial High School | 3 | |
Not Reported | 41 | |
Race (N) | White | 181 |
Black or African American | 36 | |
Asian | 13 | |
Mixed | 22 | |
Not Reported | 41 | |
Participant Cognitive Development Composite (Mean (SD)) | MSEL ELC | 101 (18) |
MSEL VDQ | 99 (22) | |
MSEL NVDQ | 105 (18) |
Nutrient | Mean (SD) | Min–Max |
---|---|---|
Age Window 6–20 Months | ||
Copper (mg) | 0.6 (0.2) | 0.2–1.1 |
Folate (mcg) | 179.9 (85.3) | 29.3–459.1 |
Histidine (g) | 0.2 (0.1) | 0–0.7 |
Iron (mg) | 9 (5.2) | 0.6–23 |
Isoleucine (g) | 0.4 (0.3) | 0–1.2 |
Leucine(g) | 0.8 (0.6) | 0–3.1 |
Magnesium (mg) | 144.6 (54.8) | 33.2–295 |
Phosphorus (mg) | 688 (235.1) | 163.8–1349.4 |
Potassium (mg) | 1281.2 (548.7) | 131–3268.1 |
Selenium (mcg) | 55.1 (25.9) | 6.2–150 |
Valine (g) | 0.5 (0.4) | 0–1.5 |
Vitamin A (mcg) | 453.3 (344.5) | 30.6–2597.6 |
Vitamin B1 (mcg) | 0.8 (0.4) | 0–1.7 |
Vitamin B2 (mcg) | 1.3 (0.5) | 0.3–2.5 |
Vitamin B6 (mcg) | 1 (0.6) | 0.2–4 |
3′SL (mg) | 15.3 (17.3) | 0–54.6 |
Zinc (mg) | 6.2 (2.8) | 0.2–13 |
Age Window 21–30 Months | ||
alpha_lactalbumin (g) | 0.3 (0.2) | 0–0.9 |
Cryptoxanthin (mg) | 117.3 (102.6) | 0.4–387 |
Gangliosides (mg) | 3.1 (2.6) | 0.5–12 |
Oligofructose | 1.6 (1.5) | 0–5.2 |
PFA 18:4 (Octadecatetraenoic acid) (mg) | 4 (5.8) | 0–26 |
PFA 20:4 (Eicosatetraenoic acid) (g) | 0.1 (0.1) | 0–0.3 |
PFA 22:5 (Docosapentaenoic acid) (mg) | 4.1 (6.3) | 0–42 |
Phosphatidylcholine (g) | 0.5 (0.7) | 0–3.5 |
Phosphatidylinositol (mg) | 9.8 (11.8) | 0–47.5 |
Sphingomyelin (mg) | 7 (8.4) | 0–43.9 |
3′SL (mg) | 20.6 (20.8) | 0–90.5 |
6′SL (mg) | 4 (4) | 0.1–18.3 |
Age Window 31–60 Months | ||
Alpha-carotene (mcg) | 276.7 (264.1) | 0–1669.5 |
alpha_lactalbumin (g) | 0.2 (0.2) | 0–0.8 |
Alpha tocopherol (mg) | 6 (2.8) | 0–17.9 |
Gangliosides (mg) | 3.1 (2.5) | 0.1–13 |
Histidine (mg) | 0.3 (0.2) | 0–0.9 |
Isoleucine (mg) | 0.5 (0.2) | 0–1.7 |
Leucine (mg) | 1.1 (0.7) | 0–2.9 |
Lysine (mg) | 0.8 (0.4) | 0–2.3 |
MFA 20:1 (Eicosenoic acid) (g) | 0.1 (0.1) | 0–0.5 |
PFA 18:4 (Octadecatetraenoic acid) (mg) | 6.8 (10.1) | 0–56 |
PFA 20:5 (Eicosapentaenoic acid) (mg) | 8.3 (15.4) | 0–127 |
PFA 22:5 (Docosapentaenoic acid) (mg) | 10.1 (8.6) | 0–37 |
PFA 22:6 (Docosahexaenoic acid) (mg) | 32.1 (46.2) | 0–255 |
Phosphatidylcholine (g) | 0.6 (0.6) | 0–3.2 |
Phosphatidylethanolamine (g) | 0.1 (0.1) | 0–0.7 |
Phosphorus (mg) | 894.2 (253.4) | 32.5–1473.6 |
Phosphatidylinositol (mg) | 16.5 (22.1) | 0–168.3 |
Phosphatidylserine (mg) | 18.3 (34.7) | 0–293.4 |
Sphingomyelin (mg) | 9.7 (11.4) | 0.1–76.6 |
Tryptophan (g) | 0.1 (0.1) | 0–0.6 |
Valine (g) | 0.7 (0.3) | 0–2 |
3′SL (mg) | 11.7 (15) | 0–81.6 |
6′SL (mg) | 2.7 (2.9) | 0–16.5 |
Nutrient Combinations | Age Window 6–20 Months | Across Age Range 6–60 Months |
Vitamins and Amino Acids | Lipids + HMO | |
Nutrient | Vitamin B1 | Gangliosides |
Vitamin B2 | Sphingomyelin | |
Vitamin B6 | Vitamin B12 | |
Zinc | Phosphatidylinositol | |
Iron | Phosphorus | |
Copper | 3′SL | |
Histidine | ||
Isoleucine | ||
Lysine | ||
Leucine | ||
Correlation | 0.54 | 0.67 |
(95% CI) | (0.17, 0.77) | (0.52, 0.78) |
RMSE | 0.55 | 0.73 |
Nutrient Combinations | Micronutrients | Fatty Acids | Lipids | Amino Acids |
(Vitamins and Minerals) | ||||
Nutrient | Vitamin B12 | Linolelaidic acid (18:1) | Gangliosides | Isoleucine |
Phosphorus | γ-Linolenic acid (18:3), Docosahexaenoic acid [DHA] | Sphingomyelin | Tryptophan | |
Folate | Arachidonic acid | Phosphatidylinositol | Histidine | |
Calcium | Octadecenoic acid (18:1) | Phosphatidylserine | Lysine | |
Vitamin A | Gondoic acid (20:1) | Phosphatidylcholine | Glycine | |
Palmitoleic acid (16:1) | Leucine | |||
Docosapentanoic acid (22:5) | ||||
Eicosapentaenoic acid (20:5) | ||||
Erucic acid (22:1) | ||||
Stearidonic acid (18:4) | ||||
Correlation | 0.90 | 0.56 | 0.57 | 0.50 |
(95% CI) | (0.51, 0.78) | (0.38, 0.70) | (0.38, 0.70) | (0.30, 0.66) |
RMSE | 0.77 | 0.80 | 0.76 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanellopoulos, A.K.; Costello, S.; Mainardi, F.; Koshibu, K.; Deoni, S.; Schneider, N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023, 15, 3754. https://doi.org/10.3390/nu15173754
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients. 2023; 15(17):3754. https://doi.org/10.3390/nu15173754
Chicago/Turabian StyleKanellopoulos, Alexandros K., Sarah Costello, Fabio Mainardi, Kyoko Koshibu, Sean Deoni, and Nora Schneider. 2023. "Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children" Nutrients 15, no. 17: 3754. https://doi.org/10.3390/nu15173754
APA StyleKanellopoulos, A. K., Costello, S., Mainardi, F., Koshibu, K., Deoni, S., & Schneider, N. (2023). Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients, 15(17), 3754. https://doi.org/10.3390/nu15173754