Therapeutic Carbohydrate Restriction as a Metabolic Modality for the Prevention and Treatment of Abnormal Uterine Bleeding
Abstract
:1. Introduction
2. Systemic Endothelial Inflammation Leading to Structural Causes of AUB-Leiomyomata, Endometrial Polyps, and Endometrial Dysfunction
3. Insulin Resistance in Ovulatory Dysfunction
4. Mechanisms in Which Therapeutic Carbohydrate Restriction Treats Metabolic Diseases
5. How Therapeutic Carbohydrate Restriction Can Be a Preventive and Treatment Modality in Managing These Common Gynecologic Disorders
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardozo, E.R.; Clark, A.D.; Banks, N.K.; Henne, M.B.; Stegmann, B.J.; Segars, J.H. The estimated annual cost of uterine leiomyomata in the United States. Am. J. Obstet. Gynecol. 2012, 206, 211.e1–211.e9. [Google Scholar] [CrossRef]
- Flynn, M.; Jamison, M.; Datta, S.; Myers, E. Health care resource use for uterine fibroid tumors in the United States. Am. J. Obstet. Gynecol. 2006, 195, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, M.K.; Hillis, S.D.; Jamieson, D.J.; Morrow, B.; Podgornik, M.N.; Brett, K.M.; Marchbanks, P.A. Inpatient hysterectomy surveillance in the United States, 2000–2004. Am. J. Obstet. Gynecol. 2008, 198, 34.e1–34.e7. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.L.; Ajao, M.O.; Clark, N.V.; Vitonis, A.F.; Einarsson, J.I. Outpatient Hysterectomy Volume in the United States. Obstet. Gynecol. 2017, 130, 130–137. [Google Scholar] [CrossRef]
- Matteson, K.A.; Raker, C.A.; Clark, M.A.; Frick, K.D. Abnormal uterine bleeding, health status, and usual source of medical care: Analyses using the Medical Expenditures Panel Survey. J. Womens Health 2013, 22, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Moss, N.S.; Benditt, E.P. Human atherosclerotic plaque cells and leiomyoma cells. Comparison of in vitro growth characteristics. Am. J. Pathol. 1975, 78, 175–190. [Google Scholar]
- Kirschen, G.W.; AlAshqar, A.; Miyashita-Ishiwata, M.; Reschke, L.; El Sabeh, M.; Borahay, M.A. Vascular biology of uterine fibroids: Connecting fibroids and vascular disorders. Reprod. Camb. Engl. 2021, 162, R1–R18. [Google Scholar] [CrossRef]
- Tal, R.; Segars, J.H. The role of angiogenic factors in fibroid pathogenesis: Potential implications for future therapy. Hum. Reprod. Update 2014, 20, 194–216. [Google Scholar] [CrossRef]
- Mints, M.; Hultenby, K.; Zetterberg, E.; Blomgren, B.; Falconer, C.; Rogers, R.; Palmblad, J. Wall discontinuities and increased expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptors 1 and 2 in endometrial blood vessels of women with menorrhagia. Fertil. Steril. 2007, 88, 691–697. [Google Scholar] [CrossRef]
- Schwartz, S.M.; Virmani, R.; Majesky, M.W. An update on clonality: What smooth muscle cell type makes up the atherosclerotic plaque? F1000Research 2018, 7, 1969. [Google Scholar] [CrossRef]
- Scicchitano, P.; Dentamaro, I.; Carbonara, R.; Bulzis, G.; Dachille, A.; Caputo, P.; Riccardi, R.; Locorotondo, M.; Mandurino, C.; Ciccone, M.M. Cardiovascular Risk in Women with PCOS. Int. J. Endocrinol. Metab. 2012, 10, 611–618. [Google Scholar] [CrossRef]
- Silver, M.A.; Raghuvir, R.; Fedirko, B.; Elser, D. Systemic hypertension among women with uterine leiomyomata: Potential final common pathways of target end-organ remodeling. J. Clin. Hypertens. Greenwich Conn. 2005, 7, 664–668. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zeng, Q.; Li, X.; Liu, B.; Wang, P. The Association between Subclinical Atherosclerosis and Uterine Fibroids. PLoS ONE 2013, 8, e57089. [Google Scholar] [CrossRef] [PubMed]
- Uimari, O.; Auvinen, J.; Jokelainen, J.; Puukka, K.; Ruokonen, A.; Järvelin, M.-R.; Piltonen, T.; Keinänen-Kiukaanniemi, S.; Zondervan, K.; Järvelä, I.; et al. Uterine fibroids and cardiovascular risk. Hum. Reprod. 2016, 31, 2689–2703. [Google Scholar] [CrossRef] [PubMed]
- Laughlin-Tommaso, S.K.; Fuchs, E.L.; Wellons, M.F.; Lewis, C.E.; Calderon-Margalit, R.; Stewart, E.A.; Schreiner, P.J. Uterine Fibroids and the Risk of Cardiovascular Disease in the Coronary Artery Risk Development in Young Adult Women’s Study. J. Womens Health 2019, 28, 46–52. [Google Scholar] [CrossRef]
- Dolan, M.S.; Hill, C.; Valea, F.A. Benign gynecologic lesions: Vulva, Vagina, Cervix, Uterus, Oviduct, Ovary, Ultrasound Imaging of Pelvic Structures. In Comprehensive Gynecology, 8th ed.; Elsevier: Philadelphia, PA, USA, 2022; pp. 362–408.e6. [Google Scholar]
- Faerstein, E.; Szklo, M.; Rosenshein, N.B. Risk factors for uterine leiomyoma: A practice-based case-control study. II. Atherogenic risk factors and potential sources of uterine irritation. Am. J. Epidemiol. 2001, 153, 11–19. [Google Scholar] [CrossRef]
- Nijkang, N.P.; Anderson, L.; Markham, R.; Manconi, F. Endometrial polyps: Pathogenesis, sequelae and treatment. SAGE Open Med. 2019, 7, 205031211984824. [Google Scholar] [CrossRef]
- Onalan, R.; Onalan, G.; Tonguc, E.; Ozdener, T.; Dogan, M.; Mollamahmutoglu, L. Body mass index is an independent risk factor for the development of endometrial polyps in patients undergoing in vitro fertilization. Fertil. Steril. 2009, 91, 1056–1060. [Google Scholar] [CrossRef]
- Kacalska-Janssen, O.; Rajtar-Ciosek, A.; Zmaczyński, A.; Wyroba, J.; Milewicz, T.; Krzyczkowska-Sendrakowska, M.; Krzysiek, J. Markers of insulin resistance in perimenopausal women with endometrial pathology. Ginekol. Pol. 2013, 84, 922–929. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology. Polycystic Ovary Syndrome: ACOG Practice Bulletin, Number 194. Obstet. Gynecol. 2018, 131, e157–e171. [Google Scholar] [CrossRef]
- Indraccolo, U.; Di Iorio, R.; Matteo, M.; Corona, G.; Greco, P.; Indraccolo, S.R. The pathogenesis of endometrial polyps: A systematic semi-quantitative review. Eur. J. Gynaecol. Oncol. 2013, 34, 5–22. [Google Scholar]
- Çınar, M.; Eryılmaz, Ö.G.; Özel, Ş.; Fındık, R.B.; Kansu, H.; Özakşit, G. The role of oxidative stress markers in development of endometrial polyp. J. Exp. Ther. Oncol. 2016, 11, 269–273. [Google Scholar] [PubMed]
- Lockhart, C.J.; Hamilton, P.K.; Quinn, C.E.; McVeigh, G.E. End-organ dysfunction and cardiovascular outcomes: The role of the microcirculation. Clin. Sci. 2009, 116, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.P.; Dhindsa, D.S.; Lee, S.K.; Sandesara, P.B.; Chalasani, N.P.; Sperling, L.S. Nonalcoholic Fatty Liver Disease and the Heart. J. Am. Coll. Cardiol. 2019, 73, 948–963. [Google Scholar] [CrossRef]
- Munro, M.G.; Critchley, H.O.D.; Broder, M.S.; Fraser, I.S.; FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2011, 113, 3–13. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Gynecology. Management of Symptomatic Uterine Leiomyomas: ACOG Practice Bulletin, Number 228. Obstet. Gynecol. 2021, 137, e100–e115. [Google Scholar] [CrossRef] [PubMed]
- Aboeldalyl, S.; James, C.; Seyam, E.; Ibrahim, E.M.; Shawki, H.E.D.; Amer, S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 2734. [Google Scholar] [CrossRef]
- Salcedo, A.C.; Shehata, H.; Berry, A.; Riba, C. Insulin resistance and other risk factors of cardiovascular disease amongst women with abnormal uterine bleeding. J. Insul. Resist. 2022, 5, 1. [Google Scholar] [CrossRef]
- Berbic, M.; Fraser, I.S. Immunology of Normal and Abnormal Menstruation. Womens Health 2013, 9, 387–395. [Google Scholar] [CrossRef]
- Ciarmela, P.; Islam, S.; Reis, F.M.; Gray, P.C.; Bloise, E.; Petraglia, F.; Vale, W.; Castellucci, M. Growth factors and myometrium: Biological effects in uterine fibroid and possible clinical implications. Hum. Reprod. Update 2011, 17, 772–790. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Nair, S.; Al-Hendy, A. Adipocytes Enhance the Proliferation of Human Leiomyoma Cells Via TNF-α Proinflammatory Cytokine. Reprod. Sci. 2011, 18, 1186–1192. [Google Scholar] [CrossRef]
- Protic, O.; Toti, P.; Islam, S.; Occhini, R.; Giannubilo, S.R.; Catherino, W.H.; Cinti, S.; Petraglia, F.; Ciavattini, A.; Castellucci, M.; et al. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res. 2016, 364, 415–427. [Google Scholar] [CrossRef]
- Al-Jefout, M.; Black, K.; Schulke, L.; Berbic, M.; Luscombe, G.; Tokushige, N.; Manconi, F.; Markham, R.; Fraser, I.S. Novel finding of high density of activated mast cells in endometrial polyps. Fertil. Steril. 2009, 92, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- El-Hamarneh, T.; Hey-Cunningham, A.J.; Berbic, M.; Al-Jefout, M.; Fraser, I.S.; Black, K. Cellular immune environment in endometrial polyps. Fertil. Steril. 2013, 100, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Williams, G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling. Mol. Cell. Endocrinol. 2012, 351, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Coradini, D.; Oriana, S. Impact of sex hormones dysregulation and adiposity on the outcome of postmenopausal breast cancer patients. Clin. Obes. 2021, 11, e12423. [Google Scholar] [CrossRef]
- Ribatti, D.; Crivellato, E. Immune cells and angiogenesis. J. Cell. Mol. Med. 2009, 13, 2822–2833. [Google Scholar] [CrossRef]
- Metcalfe, D.D.; Baram, D.; Mekori, Y.A. Mast cells. Physiol. Rev. 1997, 77, 1033–1079. [Google Scholar] [CrossRef]
- Ben, Q.; An, W.; Jiang, Y.; Zhan, X.; Du, Y.; Cai, Q.C.; Gao, J.; Li, Z. Body mass index increases risk for colorectal adenomas based on meta-analysis. Gastroenterology 2012, 142, 762–772. [Google Scholar] [CrossRef]
- Wolin, K.Y.; Yan, Y.; Colditz, G.A. Physical activity and risk of colon adenoma: A meta-analysis. Br. J. Cancer 2011, 104, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.Y.; Kim, B.C.; Han, K.S.; Ryu, K.H.; Park, B.J.; Kim, H.B.; Nam, B. Abdominal Visceral Adipose Tissue Predicts Risk of Colorectal Adenoma in Both Sexes. Clin. Gastroenterol. Hepatol. 2010, 8, 443–450.e2. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.A. Polycystic Ovarian Syndrome. In Comprehensive Gynecology, 8th ed.; Elsevier: Philadelphia, PA, USA, 2022; pp. 824–837e1-5. [Google Scholar]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef]
- Li, J.; Bai, W.; Jiang, B.; Bai, L.; Gu, B.; Yan, S.; Li, F.; Huang, B. Ketogenic diet in women with polycystic ovary syndrome and liver dysfunction who are obese: A randomized, open-label, parallel-group, controlled pilot trial. J. Obstet. Gynaecol. Res. 2021, 47, 1145–1152. [Google Scholar] [CrossRef]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef]
- Corbett, S.; Morin-Papunen, L. The Polycystic Ovary Syndrome and recent human evolution. Mol. Cell. Endocrinol. 2013, 373, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Douglas, N.; Lobo, R.A. Reproductive Endocrinology. In Comprehensive Gynecology, 8th ed.; Elsevier: Philadelphia, PA, USA, 2022; pp. 76–105. [Google Scholar]
- Westman, E.C.; Feinman, R.D.; Mavropoulos, J.C.; Vernon, M.C.; Volek, J.S.; Wortman, J.A.; Yancy, W.S.; Phinney, S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007, 86, 276–284. [Google Scholar] [CrossRef]
- Hallberg, S.J.; Gershuni, V.M.; Hazbun, T.L.; Athinarayanan, S.J. Reversing Type 2 Diabetes: A Narrative Review of the Evidence. Nutrients 2019, 11, 766. [Google Scholar] [CrossRef]
- Stehbens, W.E. The role of lipid in the pathogenesis of atherosclerosis. Lancet 1975, 305, 724–727. [Google Scholar] [CrossRef]
- Stehbens, W.E. An appraisal of cholesterol feeding in experimental atherogenesis. Prog. Cardiovasc. Dis. 1986, 29, 107–128. [Google Scholar] [CrossRef]
- Davignon, J. The Lipid Hypothesis: Pathophysiological Basis. Arch. Surg. 1978, 113, 28. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate Restriction has a More Favorable Impact on the Metabolic Syndrome than a Low Fat Diet. Lipids 2009, 44, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Van Zuuren, E.J.; Fedorowicz, Z.; Kuijpers, T.; Pijl, H. Effects of low-carbohydrate-compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: A systematic review including GRADE assessments. Am. J. Clin. Nutr. 2018, 108, 300–331. [Google Scholar] [CrossRef]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.; Radenkovic, D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef] [PubMed]
- Fechner, E.; Smeets, E.; Schrauwen, P.; Mensink, R. The Effects of Different Degrees of Carbohydrate Restriction and Carbohydrate Replacement on Cardiometabolic Risk Markers in Humans—A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 991. [Google Scholar] [CrossRef]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Funcasta-Calderón, R.; Fernández-Fernández, C.; Castro-Quintela, E.; Carneiro-Freire, N. Metabolic effects of glucagon in humans. J. Clin. Transl. Endocrinol. 2019, 15, 45–53. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. J. Am. Coll. Cardiol. 2019, 74, e177–e232. [Google Scholar] [CrossRef]
- The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD); Aas, A.-M.; Axelsen, M.; Churuangsuk, C.; Hermansen, K.; Kendall, C.W.C.; Kahleova, H.; Khan, T.; Lean, M.E.J.; Mann, J.I.; et al. Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
- Wise, L.A.; Palmer, J.R.; Stewart, E.A.; Rosenberg, L. Polycystic ovary syndrome and risk of uterine leiomyomata. Fertil. Steril. 2007, 87, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Camajani, E.; Feraco, A.; Verde, L.; Moriconi, E.; Marchetti, M.; Colao, A.; Caprio, M.; Muscogiuri, G.; Barrea, L. Ketogenic Diet as a Possible Non-pharmacological Therapy in Main Endocrine Diseases of the Female Reproductive System: A Practical Guide for Nutritionists. Curr. Obes. Rep. 2023, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo, A.C.; Yun, J.; Carter, C.; Hart, E. Therapeutic Carbohydrate Restriction as a Metabolic Modality for the Prevention and Treatment of Abnormal Uterine Bleeding. Nutrients 2023, 15, 3760. https://doi.org/10.3390/nu15173760
Salcedo AC, Yun J, Carter C, Hart E. Therapeutic Carbohydrate Restriction as a Metabolic Modality for the Prevention and Treatment of Abnormal Uterine Bleeding. Nutrients. 2023; 15(17):3760. https://doi.org/10.3390/nu15173760
Chicago/Turabian StyleSalcedo, Andrea C., Jane Yun, Cody Carter, and Elaine Hart. 2023. "Therapeutic Carbohydrate Restriction as a Metabolic Modality for the Prevention and Treatment of Abnormal Uterine Bleeding" Nutrients 15, no. 17: 3760. https://doi.org/10.3390/nu15173760
APA StyleSalcedo, A. C., Yun, J., Carter, C., & Hart, E. (2023). Therapeutic Carbohydrate Restriction as a Metabolic Modality for the Prevention and Treatment of Abnormal Uterine Bleeding. Nutrients, 15(17), 3760. https://doi.org/10.3390/nu15173760