The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Patients
2.2. Extraction of Plasma and Purification of Monocytes
2.3. FACScan Analysis
2.4. Plasma Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Monocyte Subpopulation Distribution and Polarization by LPS and EVOO Effect
3.3. Production of Cytokines by Monocyte Sub-Populations with and without Stimulation and Effect of EVOO Intervention
3.4. Plasma Cytokine Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar]
- de Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: Final report of the Lyon Diet Heart Study. Circulation 1999, 99, 779–785. [Google Scholar]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Interaction between Mediterranean diet and statins on mortality risk in patients with cardiovascular disease: Findings from the Moli-sani Study. Int. J. Cardiol. 2019, 276, 248–254. [Google Scholar]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar]
- Gupta, R.M.; Lee-Kim, V.S.; Libby, P. The March of Monocytes in Atherosclerosis: One Cell at a Time. Circ. Res. 2020, 126, 1324–1326. [Google Scholar]
- Ravenhill, B.J.; Soday, L.; Houghton, J.; Antrobus, R.; Weekes, M.P. Comprehensive cell surface proteomics defines markers of classical, intermediate and non-classical monocytes. Sci. Rep. 2020, 10, 4560. [Google Scholar]
- Ożańska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.F.; Wang, H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2014, 2, 1. [Google Scholar]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar]
- Williams, H.; Mack, C.D.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Nature versus Number: Monocytes in Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 9119. [Google Scholar]
- Zhang, X.; Cao, J.; Zhong, L. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn. Schmiedebergs Arch. Pharmacol. 2009, 379, 581–586. [Google Scholar] [PubMed]
- Maiuri, M.C.; De Stefano, D.; Di Meglio, P.; Irace, C.; Savarese, M.; Sacchi, R.; Cinelli, M.P.; Carnuccio, R. Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn. Schmiedebergs Arch. Pharmacol. 2005, 371, 457–465. [Google Scholar] [PubMed]
- Claro, C.; Ogalla, E.; Rodriguez-Rodriguez, R.; Herrera, M.; de Sotomayor, M. Phenolic content of extra virgin olive oil is essential to restore endothelial dysfunction but not to prevent vascular inflammation in atherosclerotic lesions of Apo E deficient mice. J. Funct. Foods 2015, 15, 126–136. [Google Scholar]
- Sánchez-Fidalgo, S.; Villegas, I.; Cárdeno, A.; Talero, E.; Sánchez-Hidalgo, M.; Motilva, V.; Alarcón de la Lastra, C. Extra-virgin olive oil-enriched diet modulates DSS-colitis-associated colon carcinogenesis in mice. Clin. Nutr. 2010, 29, 663–673. [Google Scholar] [PubMed]
- Urpi-Sarda, M.; Casas, R.; Sacanella, E.; Corella, D.; Andrés-Lacueva, C.; Llorach, R.; Garrabou, G.; Cardellach, F.; Sala-Vila, A.; Ros, E.; et al. The 3-Year Effect of the Mediterranean Diet Intervention on Inflammatory Biomarkers Related to Cardiovascular Disease. Biomedicines 2021, 9, 862. [Google Scholar]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [PubMed]
- Jimenez-Torres, J.; Alcalá-Diaz, J.F.; Torres-Peña, J.D.; Gutierrez-Mariscal, F.M.; Leon-Acuña, A.; Gómez-Luna, P.; Fernández-Gandara, C.; Quintana-Navarro, G.M.; Fernandez-Garcia, J.C.; Perez-Martinez, P.; et al. Mediterranean Diet Reduces Atherosclerosis Progression in Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. Stroke 2021, 52, 3440–3449. [Google Scholar]
- Lee, N.; Shin, M.S.; Kang, Y.; Park, K.; Maeda, T.; Nishioka, H.; Fujii, H.; Kang, I. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes. Hum. Immunol. 2016, 77, 512–515. [Google Scholar]
- Menck, K.; Behme, D.; Pantke, M.; Reiling, N.; Binder, C.; Pukrop, T.; Klemm, F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J. Vis. Exp. 2014, 91, e51554. [Google Scholar]
- Oh, E.S.; Na, M.; Rogers, C.J. The Association Between Monocyte Subsets and Cardiometabolic Disorders/Cardiovascular Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 640124. [Google Scholar]
- Jaipersad, A.S.; Shantsila, A.; Lip, G.Y.; Shantsila, E. Expression of monocyte subsets and angiogenic markers in relation to carotid plaque neovascularization in patients with pre-existing coronary artery disease and carotid stenosis. Ann. Med. 2014, 46, 530–538. [Google Scholar] [CrossRef]
- Tapp, L.D.; Shantsila, E.; Wrigley, B.J.; Pamukcu, B.; Lip, G.Y. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J. Thromb. Haemost. 2012, 10, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Shantsila, E.; Tapp, L.D.; Wrigley, B.J.; Pamukcu, B.; Apostolakis, S.; Montoro-García, S.; Lip, G.Y. Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis. Atherosclerosis 2014, 234, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Gdula-Dymek, A.; Marek, B.; Okopień, B. Comparison of the effects of hypolipidemic treatment on monocyte proinflammatory cytokine release in men and women with type 2 diabetes and atherogenic dyslipidemia. Endokrynol. Pol. 2015, 66, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Berenice Martínez-Shio, E.; Martín Cárdenas-Hernández, Á.; Jiménez-Suárez, V.; Sherell Marín-Jáuregui, L.; Castillo-Martin Del Campo, C.; González-Amaro, R.; Escobedo-Uribe, C.D.; Monsiváis-Urenda, A.E. Differentiation of circulating monocytes into macrophages with metabolically activated phenotype regulates inflammation in dyslipidemia patients. Clin. Exp. Immunol. 2022, 208, 83–94. [Google Scholar] [CrossRef]
- Collado, A.; Marques, P.; Domingo, E.; Perello, E.; González-Navarro, H.; Martinez-Hervás, S.; Real, J.T.; Piqueras, L.; Ascaso, J.F.; Sanz, M.-J. Novel Immune Features of the Systemic Inflammation Associated with Primary Hypercholesterolemia: Changes in Cytokine/Chemokine Profile, Increased Platelet and Leukocyte Activation. J. Clin. Med. 2018, 8, 18. [Google Scholar] [CrossRef]
- Okopien, B.; Huzarska, M.; Kulach, A.; Stachura-Kulach, A.; Madej, A.; Belowski, D.; Zielinski, M.; Herman, Z.S. Hypolipidemic drugs affect monocyte IL-1beta gene expression and release in patients with IIa and IIb dyslipidemia. J. Cardiovasc. Pharmacol. 2005, 45, 160–164. [Google Scholar] [CrossRef]
- Okopień, B.; Kowalski, J.; Krysiak, R.; Łabuzek, K.; Stachura-Kułach, A.; Kułach, A.; Zieliński, M.; Herman, Z.S. Monocyte suppressing action of fenofibrate. Pharmacol. Rep. 2005, 57, 367–372. [Google Scholar]
- Krysiak, R.; Okopien, B. Different effects of simvastatin on ex vivo monocyte cytokine release in patients with hypercholesterolemia and impaired glucose tolerance. J. Physiol. Pharmacol. 2010, 61, 725–732. [Google Scholar]
- Hwang, M.W.; Matsumori, A.; Furukawa, Y.; Ono, K.; Okada, M.; Iwasaki, A.; Hara, M.; Miyamoto, T.; Touma, M.; Sasayama, S. Neutralization of interleukin-1beta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 2001, 38, 1546–1553. [Google Scholar] [CrossRef]
- Mountain, D.J.; Singh, M.; Menon, B.; Singh, K. Interleukin-1beta increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: Role of PKCalpha/beta1 and MAPKs. Am. J. Physiol. Cell Physiol. 2007, 292, C867–C875. [Google Scholar] [CrossRef] [PubMed]
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C.; Bornet, F.; Mattei, A.; Patelli, R.; Galli, G.; Caruso, D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 2000, 468, 159–160. [Google Scholar] [CrossRef]
- Xia, M.; Zhong, Y.; Peng, Y.; Qian, C. Olive oil consumption and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Front. Nutr. 2022, 9, 1041203. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230s–242s. [Google Scholar] [CrossRef] [PubMed]
- Torabian, S.; Haddad, E.; Rajaram, S.; Banta, J.; Sabaté, J. Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. J. Hum. Nutr. Diet. 2009, 22, 64–71. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A.S.; Ali, H.I.; Ismail, L.C.; Bosevski, M.; Stojanovska, L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.A. Brachial artery ultrasound: A noninvasive tool in the assessment of triglyceride-rich lipoproteins. Clin. Cardiol. 1999, 22, Ii34–Ii39. [Google Scholar] [CrossRef]
- Vogel, R.A.; Corretti, M.C.; Plotnick, G.D. The postprandial effect of components of the Mediterranean diet on endothelial function. J. Am. Coll. Cardiol. 2000, 36, 1455–1460. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef]
- Rueda-Clausen, C.F.; Silva, F.A.; Lindarte, M.A.; Villa-Roel, C.; Gomez, E.; Gutierrez, R.; Cure-Cure, C.; López-Jaramillo, P. Olive, soybean and palm oils intake have a similar acute detrimental effect over the endothelial function in healthy young subjects. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 50–57. [Google Scholar] [CrossRef] [PubMed]
Pre-Intervention | Post-Intervention | |||||
---|---|---|---|---|---|---|
Groups | Healthy | Dyslipidemic | Post-Infarct | Healthy | Dyslipidemic | Post-Infarct |
N (% m/w) | 7 (67/33) | 12 (16/84) | 17 (69/31) | 7 | 5 | 8 |
Age (years) | 76.36 ± 5.21 | 73.40 ± 4.81 | 72.78 ± 5.70 | 79.4 ± 2.07 | 73.40 ± 4.81 | 72.78 ± 5.70 |
Height (cm) | 166.70 ± 8.86 | 164.11 ± 6.22 | 165.30 ± 10.87 | 166.6 ± 7.23 | 164.32 ± 6.22 | 165.31 ± 10.87 |
Weight (kg) | 81.46 ± 25.97 | 63.50 ± 12.63 | 75.92 ± 12.32 | 82.00 ± 11.91 | 64.50 ± 12.50 | 77.33 ± 12.19 |
BMI (kg/m2) | 28.94 ± 7.47 | 23.48 ± 3.38 | 27.52 ± 1.82 | 29.58 ± 4.25 | 23.77 ± 3.23 | 28.07 ± 1.38 |
Waist (cm) | 107.60 ± 27.37 | 86.75 ± 13.82 | 99.10 ± 5.29 | 102.81 ± 14.52 | 85.75 ± 12.95 | 99.89 ± 5.09 |
SAP (mmHg) | 143.70 ± 19.31 | 133.33 ± 23.92 | 140.4 ± 20.03 | 140.22 ± 31.03 | 134.00 ± 6.83 | 129.40 ± 15.64 |
DAP (mmHg) | 81.77 ± 15.14 | 78.51 ± 7.05 | 76.44 ± 4.04 | 80.61 ± 12.58 | 76.5 ± 2.38 | 78.67 ± 7.14 |
Lp(a) (nmol/L) | 57.06 ± 71.59 | 87.55 ± 75.85 | 130.20 ± 85.34 | 80.81 ± 54.34 | 81.68 ± 74.18 | 125.7 ± 95.25 |
ALT (UI/L) | 19.57 ± 6.10 | 17.25 ± 4.43 | 58.89 ± 70.42 | 15.63 ± 7.30 | 18.5 ± 4.2 * | 36.33 ± 26.66 |
AST (UI/L) | 20.29 ± 4.45 | 20.25 ± 1.89 | 43.11 ± 46.95 | 18.2 ± 5.07 | 22.67 ± 6.35 | 33.71 ± 23.64 |
CRP (mg/L) | 1.76 ± 1.61 | 1.7 ± 0.89 | 2.26 ± 3.09 | 1.58 ± 1.24 | 1.78 ± 1.1 | 1.46 ± 1.08 |
TC (mmol/L) | 4.88 ± 0.63 +- | 6.01 ± 0.42 *+ | 3.04 ± 0.52 *- | 4.54 ± 1.21 | 6.39 ± 0.75 | 3.12 ± 0.49 |
TG (mmol/L) | 1.21 ± 0.60 | 0.86 ± 0.14 | 1.17 ± 0.6 | 0.93 ± 0.20 | 0.83 ± 0.17 | 1.44 ± 0.98 |
C-HDL (mmol/L) | 1.58 ± 0.49 | 2.06 ± 0.69 * | 1.08 ± 0.23 * | 1.49 ± 0.40 | 2.27 ± 0.72 | 1.08 ± 0.28 |
C-LDL (mmol/L) | 2.75 ± 0.47 - | 3.56 ± 0.38 * | 1.43 ± 0.54 *- | 2.63 ± 0.96 | 3.74 ± 0.26 | 1.38 ± 0.45 |
TC/HDL | 3.33 ± 0.90 | 3.23 ± 1.16 | 2.91 ± 0.75 | 3.13 ± 0.57 | 3.03 ± 0.94 | 2.98 ± 0.59 |
Non-HDL (mmol/L) | 3.28 ± 0.54 +- | 4.27 ± 0.48 *+ | 1.96 ± 0.54 *- | 3.05 ± 0.50 | 4.12 ± 0.31 | 2.04 ± 0.4 |
HbA1c (%) | 5.58 ± 0.32 | 5.35 ± 0.45 | 5.74 ± 0.41 | 5.58 ± 0.37 | 5.35 ± 0.41 | 5.81 ± 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmer, A.; Otrante, A.; Zoubdane, N.; Nguyen, M.; Fülöp, T.; Khalil, A. The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study. Nutrients 2023, 15, 3819. https://doi.org/10.3390/nu15173819
Zimmer A, Otrante A, Zoubdane N, Nguyen M, Fülöp T, Khalil A. The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study. Nutrients. 2023; 15(17):3819. https://doi.org/10.3390/nu15173819
Chicago/Turabian StyleZimmer, Adrien, Alyann Otrante, Nada Zoubdane, Michel Nguyen, Tamàs Fülöp, and Abdelouahed Khalil. 2023. "The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study" Nutrients 15, no. 17: 3819. https://doi.org/10.3390/nu15173819
APA StyleZimmer, A., Otrante, A., Zoubdane, N., Nguyen, M., Fülöp, T., & Khalil, A. (2023). The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study. Nutrients, 15(17), 3819. https://doi.org/10.3390/nu15173819