Magnetic Resonance Imaging Can Be Used to Assess Sarcopenia in Children with Newly Diagnosed Crohn’s Disease
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miele, E.; Shamir, R.; Aloi, M.; Assa, A.; Braegger, C.; Bronsky, J.; de Ridder, L.; Escher, J.C.; Hojsak, I.; Kolaček, S.; et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Ooi, P.H.; Thompson-Hodgetts, S.; Pritchard-Wiart, L.; Gilmour, S.M.; Mager, D.R. Pediatric Sarcopenia: A Paradigm in the Overall Definition of Malnutrition in Children? JPEN J. Parenter. Enter. Nutr. 2020, 44, 407–418. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Bamba, S.; Sasaki, M.; Takaoka, A.; Takahashi, K.; Imaeda, H.; Nishida, A.; Inatomi, O.; Sugimoto, M.; Andoh, A. Sarcopenia is a predictive factor for intestinal resection in admitted patients with Crohn’s disease. PLoS ONE 2017, 12, e0180036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cao, L.; Cao, T.; Yang, J.; Gong, J.; Zhu, W.; Li, N.; Li, J. Prevalence of Sarcopenia and Its Impact on Postoperative Outcome in Patients with Crohn’s Disease Undergoing Bowel Resection. JPEN J. Parenter. Enter. Nutr. 2017, 41, 592–600. [Google Scholar] [CrossRef]
- Schneider, S.M.; Al-Jaouni, R.; Filippi, J.; Wiroth, J.-B.; Zeanandin, G.; Arab, K.; Hébuterne, X. Sarcopenia is prevalent in patients with Crohnʼs disease in clinical remission. Inflamm. Bowel Dis. 2008, 14, 1562–1568. [Google Scholar] [CrossRef]
- Ashton, J.J.; Peiris, D.; Green, Z.; Johnson, M.J.; Marino, L.V.; Griffiths, M.; Beattie, R.M. Routine abdominal magnetic resonance imaging can determine psoas muscle area in paediatric Crohn’s disease and correlates with bioelectrical impedance spectroscopy measures of lean mass. Clin. Nutr. ESPEN 2021, 42, 233–238. [Google Scholar] [CrossRef]
- Atlan, L.; Cohen, S.; Shiran, S.; Sira, L.B.; Pratt, L.T.; Yerushalmy-Feler, A. Sarcopenia is a Predictor for Adverse Clinical Outcome in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 883–888. [Google Scholar] [CrossRef]
- Burnham, J.M.; Shults, J.; Semeao, E.; Foster, B.J.; Zemel, B.S.; Stallings, V.A.; Leonard, M.B. Body composition alterations consistent with cachexia in children and young adults with Crohn disease. Am. J. Clin. Nutr. 2005, 82, 413–420. [Google Scholar] [CrossRef]
- Thayu, M.; Shults, J.; Burnham, J.M.; Zemel, B.S.; Baldassano, R.N.; Leonard, M.B. Gender differences in body composition deficits at diagnosis in children and adolescents with Crohn’s disease. Inflamm. Bowel Dis. 2007, 13, 1121–1128. [Google Scholar] [CrossRef]
- Sylvester, F.A.; Leopold, S.; Lincoln, M.; Hyams, J.S.; Griffiths, A.M.; Lerer, T. A two-year longitudinal study of persistent lean tissue deficits in children with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2009, 7, 452–455. [Google Scholar] [CrossRef]
- Bechtold, S.; Alberer, M.; Arenz, T.; Putzker, S.; Filipiak-Pittroff, B.; Schwarz, H.P.; Koletzko, S. Reduced muscle mass and bone size in pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2010, 16, 216–225. [Google Scholar] [CrossRef]
- Thayu, M.; Denson, L.A.; Shults, J.; Zemel, B.S.; Burnham, J.M.; Baldassano, R.N.; Howard, K.M.; Ryan, A.; Leonard, M.B. Determinants of changes in linear growth and body composition in incident pediatric Crohn’s disease. Gastroenterology 2010, 139, 430–438. [Google Scholar] [CrossRef]
- Davies, A.; Nixon, A.; Muhammed, R.; Tsintzas, K.; Kirkham, S.; Stephens, F.B.; Moran, G.W. Reduced skeletal muscle protein balance in paediatric Crohn’s disease. Clin. Nutr. 2020, 39, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.R.; Carroll, M.W.; Wine, E.; Siminoski, K.; MacDonald, K.; Kluthe, C.L.; Medvedev, P.; Chen, M.; Wu, J.; Turner, J.M.; et al. Vitamin D status and risk for sarcopenia in youth with inflammatory bowel diseases. Eur. J. Clin. Nutr. 2018, 72, 623–626. [Google Scholar] [CrossRef]
- Ward, L.M.; Ma, J.; Rauch, F.; Benchimol, E.I.; Hay, J.; Leonard, M.B.; Matzinger, M.A.; Shenouda, N.; Lentle, B.; Cosgrove, H.; et al. Musculoskeletal health in newly diagnosed children with Crohn’s disease. Osteoporos. Int. 2017, 28, 3169–3177. [Google Scholar] [CrossRef]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.M.; Mølgaard, C.; Ejlerskov, K.T.; Christensen, L.B.; Michaelsen, K.F.; Briend, A. Validity of anthropometric measurements to assess body composition, including muscle mass, in 3-year-old children from the SKOT cohort. Matern. Child Nutr. 2015, 11, 398–408. [Google Scholar] [CrossRef]
- Schweitzer, L.; Geisler, C.; Pourhassan, M.; Braun, W.; Glüer, C.C.; Bosy-Westphal, A.; Müller, M.J. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am. J. Clin. Nutr. 2015, 102, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Trivić, I.; Sila, S.; Mišak, Z.; Niseteo, T.; Batoš, A.T.; Hojsak, I.; Kolaček, S. Impact of an exercise program in children with inflammatory bowel disease in remission. Pediatr. Res. 2023, 93, 1999–2004. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.-L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. European Society of Pediatric Gastroenterology H, Nutrition. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar] [CrossRef]
- Levine, A.; Griffiths, A.; Markowitz, J.; Wilson, D.C.; Turner, D.; Russell, R.K.; Fell, J.; Ruemmele, F.M.; Walters, T.; Sherlock, M.; et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel Dis. 2011, 17, 1314–1321. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-Forage: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; 312p. [Google Scholar]
- Wells, J.C.; Williams, J.E.; Chomtho, S.; Darch, T.; Grijalva-Eternod, C.; Kennedy, K.; Haroun, D.; Wilson, C.; Cole, T.J.; Fewtrell, M.S. Body-composition reference data for simple and reference techniques and a 4-component model: A new UK reference child. Am. J. Clin. Nutr. 2012, 96, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Lurz, E.; Patel, H.; Lebovic, G.; Quammie, C.; Woolfson, J.P.; Perez, M.; Ricciuto, A.; Wales, P.W.; Kamath, B.M.; Chavhan, G.B.; et al. Paediatric reference values for total psoas muscle area. J. Cachexia Sarcopenia Muscle 2020, 11, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Xie, G.; Wang, D.; Li, T.; Ren, Y.; Li, J.; Deng, J.; Li, K. Imaging-based assessment of body composition in patients with Crohn’s disease: A systematic review. Int. J. Colorectal Dis. 2023, 38, 126. [Google Scholar] [CrossRef] [PubMed]
- Nardone, O.M.; Ponsiglione, A.; de Sire, R.; Calabrese, G.; Liuzzi, R.; Testa, A.; Guarino, A.D.; Olmo, O.; Rispo, A.; Camera, L.; et al. Impact of Sarcopenia on Clinical Outcomes in a Cohort of Caucasian Active Crohn’s Disease Patients Undergoing Multidetector CT-Enterography. Nutrients 2022, 14, 3460. [Google Scholar] [CrossRef]
- Lee, C.H.; Yoon, H.; Oh, D.J.; Lee, J.M.; Choi, Y.J.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. The prevalence of sarcopenia and its effect on prognosis in patients with Crohn’s disease. Intest. Res. 2020, 18, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Grillot, J.; D’Engremont, C.; Parmentier, A.L.; Lakkis, Z.; Piton, G.; Cazaux, D.; Gay, C.; De Billy, M.; Koch, S.; Borot, S.; et al. Sarcopenia and visceral obesity assessed by computed tomography are associated with adverse outcomes in patients with Crohn’s disease. Clin. Nutr. 2020, 39, 3024–3030. [Google Scholar] [CrossRef]
- Madden, A.M.; Smith, S. Body composition and morphological assessment of nutritional status in adults: A review of anthropometric variables. J. Hum. Nutr. Diet. 2016, 29, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bostrom, A.G.; Kirschner, B.S.; Ferry, G.D.; Winter, H.S.; Baldassano, R.N.; Gold, B.D.; Abramson, O.; Smith, T.; Cohen, S.A.; et al. Gender differences in presentation and course of disease in pediatric patients with Crohn disease. Pediatrics 2007, 120, e1418–e1425. [Google Scholar] [CrossRef]
- De La Puente, S.; Espinosa Góngora, R.; Souto Romero, H.; Rico Espiñeira, C.; Luis Huertas, A.L.; Garcés Visier, C.; Ramos Rodríguez, P.; Muñoz Hernández, D.; Espinoza Vega, M.L.; Acedo Ruiz, J.A.; et al. Pediatric perianal Crohn’s disease behavior in the era of biologic therapy. Cir. Pediatr. 2023, 36, 22–27, (In English and Spanish). [Google Scholar] [PubMed]
- Campa, F.; Coratella, G.; Cerullo, G.; Stagi, S.; Paoli, S.; Marini, S.; Grigoletto, A.; Moroni, A.; Petri, C.; Andreoli, A.; et al. New bioelectrical impedance vector references and phase angle centile curves in 4,367 adults: The need for an urgent update after 30 years. Clin Nutr. 2023, 42, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
N (%) | |
---|---|
Sex (male, %) | 16 (53%) |
Disease location | |
L1 | 8 (27%) |
L2 | 5 (17%) |
L3 | 17 (57%) |
Involvement of upper GI tract | 10 (33%) |
Perianal disease | 14 (47%) |
Behavior | |
B1 | 22 (73%) |
B2 | 8 (27%) |
Mean (SD) | |
wPCDAI | 17.7 (12.7) |
Weight for age Z score | −0.4 (1.5) |
Height for age Z score | 0.2 (1.1) |
BMI for age Z score | −0.8 (1.7) |
Lean mass/kg | 43 (12.8) |
Lean mass % | 79 (8.5) |
LBMI Z score | −0.5 (1.8) |
Right psoas muscle area | 7.63 (3.24) |
Left psoas muscle area | 7.57 (3) |
Right paravertebral muscle area | 15.46 (5.03) |
Left paravertebral muscle area | 15.49 (4.54) |
TPMA | 15.2 (1.13) |
TPMA/BSA | 9.78 (0.586) |
TPMA Z score | −1.8 (1.1) |
TPVM | 30.95 (1.73) |
TPVM/BSA | 20.00 (0.811) |
Group with Sarcopenia (N = 13) | Group without Sarcopenia (N = 17) | p | |
---|---|---|---|
Age, years, median (IQR) | 14.6 (3.1) | 14.7 (7.9) | 0.621 |
Male sex (n, %) | 10 (77%) | 4 (24%) | 0.004 |
Perianal disease (n, %) | 9 (69%) | 5 (29%) | 0.03 |
wPCDAI, median (IQR) | 12.5 (21.3) | 15 (11.3) | 0.509 |
Disease location | 0.756 | ||
L1 | 3 (23%) | 5 (29%) | |
L2 | 2 (15%) | 3 (18%) | |
L3 | 8 (62%) | 9 (53%) | |
Upper GI involvement | 5 (38%) | 5 (29%) | 0.602 |
Behavior | 0.597 | ||
B1 | 10 (77%) | 12 (71%) | |
B2 | 3 (23%) | 5 (29%) | |
anti-TNF therapy | 10 (77%) | 7 (41%) | 0.05 |
TPMA, Coeff (p) | TPMA/BSA, Coeff (p) | TPVM, Coeff (p) | TPVM/BSA, Coeff (p) | TPMA Z Score, Coeff (p) | |
---|---|---|---|---|---|
Body mass for age Z score | 0.335 (p = 0.054) | 0.131 (p = 0489) | 0.518 (p = 0.003) | 0.257 (p = 0.171) | 0.430 (p = 0.020) |
Body height for age Z score | 0.098 (p = 0.605) | −0.07 (p = 0.712) | 0.377 (p = 0.040) | 0.207 (p = 0.272) | 0.164 (p = 0.396) |
BMI for age Z score | 0.374 (p = 0.042) | 0.180 (p = 0.341) | 0.466 (p = 0.009) | 0.235 (p = 0.212) | 0.486 (p = 0.008) |
Lean mass/kg | 0.706 (p < 0.001) | 0.497 (p = 0.052) | 0.75 (p < 0.001) | 0.386 (p = 0.076) | 0.301 (p = 0.174) |
Lean mass (%) | 0.23 (p = 0.304) | 0.292 (p = 0.187) | 0.310 (p = 0.160) | 0.422 (p = 0.050) | 0.325 (p = 0.139) |
LMBI Z score | 0.28 (p = 0.26) | 0.311 (p = 0.21) | 0.476 (p = 0.046) | 0.562 (p = 0.015) | 0.629 (p = 0.005) |
Exp (B) | 95% CI | p | |
---|---|---|---|
Height Z score | 1.286 | 0.637–2.593 | 0.492 |
BMI Z score | 0.651 | 0.374–1.131 | 0.128 |
Age | 0.693 | 0.48–1.001 | 0.051 |
Sex | 0.556 | 0.128–2.412 | 0.433 |
TPMA | 0.998 | 0.996–1.0 | 0.018 |
TPMA/BSA | 0.997 | 0.995–1.0 | 0.074 |
TPVM | 0.999 | 0.998–1.0 | 0.031 |
TPVM/BSA | 0.999 | 0.997–1.001 | 0.181 |
TPMA Z score | 0.61 | 0.299–1.242 | 0.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagec, P.; Sara, S.; Tripalo Batoš, A.; Trivić Mažuranić, I.; Močić Pavić, A.; Mišak, Z.; Hojsak, I. Magnetic Resonance Imaging Can Be Used to Assess Sarcopenia in Children with Newly Diagnosed Crohn’s Disease. Nutrients 2023, 15, 3838. https://doi.org/10.3390/nu15173838
Blagec P, Sara S, Tripalo Batoš A, Trivić Mažuranić I, Močić Pavić A, Mišak Z, Hojsak I. Magnetic Resonance Imaging Can Be Used to Assess Sarcopenia in Children with Newly Diagnosed Crohn’s Disease. Nutrients. 2023; 15(17):3838. https://doi.org/10.3390/nu15173838
Chicago/Turabian StyleBlagec, Paola, Sila Sara, Ana Tripalo Batoš, Ivana Trivić Mažuranić, Ana Močić Pavić, Zrinjka Mišak, and Iva Hojsak. 2023. "Magnetic Resonance Imaging Can Be Used to Assess Sarcopenia in Children with Newly Diagnosed Crohn’s Disease" Nutrients 15, no. 17: 3838. https://doi.org/10.3390/nu15173838
APA StyleBlagec, P., Sara, S., Tripalo Batoš, A., Trivić Mažuranić, I., Močić Pavić, A., Mišak, Z., & Hojsak, I. (2023). Magnetic Resonance Imaging Can Be Used to Assess Sarcopenia in Children with Newly Diagnosed Crohn’s Disease. Nutrients, 15(17), 3838. https://doi.org/10.3390/nu15173838