Effects of Indonesian Shortfin Eel (Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Oil Preparation
2.3. Oil Composition
2.4. Oil Dose Determination
2.5. Metabolic Parameters and Blood Sampling
2.6. HOMA-IR Calculation
2.7. Statistical Analysis
2.8. Ethical Consideration
3. Results
3.1. Changes in HOMA-IR Levels before and after Interventions
3.2. Changes in Lipid Profile Levels before and after Interventions
4. Discussion
4.1. The Effects of Indonesian Shortfin Eel By-Product Oil Supplementation on Insulin Resistance in Male Obese Wistar Rats
4.2. The Effects of Indonesian Shortfin Eel By-Product Oil Supplementation on Lipid Profile in Male Obese Wistar Rats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 February 2022).
- Chong, B.; Jayabaskaran, J.; Kong, G.; Chan, Y.H.; Chin, Y.H.; Goh, R.; Kannan, S.; Ng, C.H.; Loong, S.; Kueh, M.T.W.; et al. Trends and Predictions of Malnutrition and Obesity in 204 Countries and Territories: An Analysis of the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 57, 101850. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Strandberg, T.; Pentti, J.; Nyberg, S.T.; Frank, P.; Jokela, M.; Ervasti, J.; Suominen, S.B.; Vahtera, J.; Sipilä, P.N.; et al. Body-Mass Index and Risk of Obesity-Related Complex Multimorbidity: An Observational Multicohort Study. Lancet Diabetes Endocrinol. 2022, 10, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Kaabi, J. Al Epidemiology of Type 2 Diabetes-Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for Medical Care of Patients with Obesity. Endocr. Pract. 2016, 22, 1–203. [Google Scholar] [CrossRef]
- Feldman, H.; ElSayed, N.A.; McCoy, R.G.; Moverley, J.; Oser, S.M.; Segal, A.R.; Trujillo, J.; Jones, C.W.; Pilla, S.J.; Aung, N.L.; et al. Standards of Care in Diabetes—2023 Abridged for Primary Care Providers. Clin. Diabetes 2023, 41, 4–31. [Google Scholar] [CrossRef]
- Samson, S.L.; Vellanki, P.; Blonde, L.; Christofides, E.A.; Galindo, R.J.; Hirsch, I.B.; Isaacs, S.D.; Izuora, K.E.; Low Wang, C.C.; Twining, C.L.; et al. American Association of Clinical Endocrinology Consensus Statement: Comprehensive Type 2 Diabetes Management Algorithm-2023 Update. Endocr. Pract. 2023, 29, 305–340. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Ettinger, S. (Nutrition educator) Nutritional Pathophysiology of Obesity and Its Comorbidities: A Case-Study Approach; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128030134. [Google Scholar]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation 2019, 140, E673–E691. [Google Scholar] [CrossRef]
- Shibabaw, T. Omega-3 Polyunsaturated Fatty Acids: Anti-Inflammatory and Anti-Hypertriglyceridemia Mechanisms in Cardiovascular Disease. Mol. Cell. Biochem. 2021, 476, 993–1003. [Google Scholar] [CrossRef]
- Natto, Z.S.; Yaghmoor, W.; Alshaeri, H.K.; van Dyke, T.E. Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 18867. [Google Scholar] [CrossRef]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPAR Gamma Signaling and Metabolism: The Good, The Bad & The Future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed]
- de Camargo Talon, L.; de Oliveira, E.P.; Moreto, F.; Portero-McLellan, K.C.; Burini, R.C. Omega-3 Fatty Acids Supplementation Decreases Metabolic Syndrome Prevalence After Lifestyle Modification Program. J. Funct. Foods 2015, 19, 922–928. [Google Scholar] [CrossRef]
- Sethi, S.; Ziouzenkova, O.; Ni, H.; Wagner, D.D.; Plutzky, J.; Mayadas, T.N. Oxidized Omega-3 Fatty Acids in Fish Oil Inhibit Leukocyte-Endothelial Interactions Through Activation of PPARα. Hemost. Thromb. Vasc. Biol. 2002, 100, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.S.D.; Deminice, R.; Simões-Ambrosio, L.M.C.; Calder, P.C.; Jordão, A.A.; Vannucchi, H. Dietary Docosahexaenoic Acid and Eicosapentaenoic Acid Influence Liver Triacylglycerol and Insulin Resistance in Rats Fed a High-Fructose Diet. Mar. Drugs 2015, 13, 1864. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Claycombe, K.; Newman, S.J.; Stewart, T.; Siriwardhana, N.; Matthan, N.; Lichtenstein, A.H.; Moustaid-Moussa, N. Eicosapentaenoic Acid Prevents and Reverses Insulin Resistance in High-Fat Diet-Induced Obese Mice via Modulation of Adipose Tissue Inflammation. J. Nutr. 2010, 140, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, L.; Mollica, M.P.; Sica, R.; Donizzetti, I.; Gifuni, G.; Pignalosa, A.; Cavaliere, G.; Putti, R. Differential Effects of High-Fish Oil and High-Lard Diets on Cells and Cytokines Involved in the Inflammatory Process in Rat Insulin-Sensitive Tissues. Int. J. Mol. Sci. 2014, 15, 3040. [Google Scholar] [CrossRef]
- Liu, X.; Xue, Y.; Liu, C.; Lou, Q.; Wang, J.; Yanagita, T.; Xue, C.; Wang, Y. Eicosapentaenoic Acid-Enriched Phospholipid Ameliorates Insulin Resistance and Lipid Metabolism in Diet-Induced-Obese Mice. Lipids Health Dis. 2013, 12, 109. [Google Scholar] [CrossRef]
- Lee, C.H.; Shih, A.Z.L.; Woo, Y.C.; Fong, C.H.Y.; Leung, O.Y.; Janus, E.; Cheung, B.M.Y.; Lam, K.S.L. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A15-Year Prospective Study in Chinese. PLoS ONE 2016, 11, e0163424. [Google Scholar] [CrossRef]
- Carrillo-Larco, R.M.; Miranda, J.J.; Gilman, R.H.; Checkley, W.; Smeeth, L.; Bernabe-Ortiz, A. The HOMA-IR Performance to Identify New Diabetes Cases by Degree of Urbanization and Altitude in Peru: The Cronicas Cohort Study. J. Diabetes Res. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Avtanski, D.; Pavlov, V.A.; Tracey, K.J.; Poretsky, L. Characterization of Inflammation and Insulin Resistance in High-Fat Diet-Induced Male C57BL/6J Mouse Model of Obesity. Anim. Model. Exp. Med. 2019, 2, 252–258. [Google Scholar] [CrossRef]
- Antunes, L.C.; Elkfury, J.L.; Jornada, M.N.; Foletto, K.C.; Bertoluci, M.C. Validation of HOMA-IR in A Model of Insulin-Resistance Induced by A High-Fat Diet in Wistar Rats. Arch. Endocrinol. Metab. 2016, 60, 138–142. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Hashim, N.A.; Abdul Mudalip, S.K.; Sulaiman, S.Z.; Md Shaarani, S. Nutritional Values and Microencapsulation Techniques of Fish Oil from Different Sources: A Mini Review. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 42, pp. 222–228. [Google Scholar]
- Globefish Research Programme Food and Agriculture Organization of the United Nations Products. Eel (Anguilla spp.): Production and Trade; FAO: Rome, Italy, 2014; Volume 114. [Google Scholar]
- Seo, J.S.; Choi, J.H.; Seo, J.H.; Ahn, T.H.; Chong, W.S.; Kim, S.H.; Cho, H.S.; Ahn, J.C. Comparison of Major Nutrients in Eels Anguilla Japonica Cultured with Different Formula Feeds or at Different Farms. Fish Aquatic. Sci. 2013, 16, 85–92. [Google Scholar] [CrossRef]
- Zydlewski, J.; Wilkie, M.P. Freshwater to Seawater Transitions in Migratory Fishes. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 32, pp. 253–326. [Google Scholar]
- Kontostathi, M.; Isou, S.; Mostratos, D.; Vasdekis, V.; Demertzis, N.; Kourounakis, A.; Vitsos, A.; Kyriazi, M.; Melissos, D.; Tsitouris, C.; et al. Influence of Omega-3 Fatty Acid-Rich Fish Oils on Hyperlipidemia: Effect of Eel, Sardine, Trout, and Cod Oils on Hyperlipidemic Mice. J. Med. Food 2021, 24, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Sasongko, H.; Ayu Rahmawati, A.; Indriana Kusumastuti, N.; Ros Alifa, G. In-Vivo Analgesic And Anti-Inflammatory Effects Of Eel (Anguilla bicolor bicolor) Oil. Pharmaciana 2019, 9, 59–70. [Google Scholar] [CrossRef]
- Wibowo, A.; Widria, Y. Sidat Indonesia di Pasar Dunia. Available online: https://kkp.go.id/djpdspkp/bbp2hp/artikel/37168-sidat-indonesia-di-pasar-dunia (accessed on 21 March 2022).
- Widyasari, R.H.E.; Kusharto, C.M.; Wiryawan, B.; Wiyono, E.S.; Suseno, S.H. Pemanfaatan Limbah Ikan Sidat Indonesia (Anguilla bicolor) Sebagai Tepung Pada Industri Pengolahan Ikan di Palabuhanratu, Kabupaten Sukabumi. J. Gizi Dan Pangan 2013, 8, 217–220. [Google Scholar] [CrossRef]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the Arrive Guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar]
- Mead, R. The Design of Experiments: Statistical Principles for Practical Applications; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Gondim, P.N.; Rosa, P.V.; Okamura, D.; Silva, V.D.O.; Andrade, E.F.; Biihrer, D.A.; Pereira, L.J. Benefits of Fish Oil Consumption over Other Sources of Lipids on Metabolic Parameters in Obese Rats. Nutrients 2018, 10, 65. [Google Scholar] [CrossRef]
- Yamazaki, R.K.; Brito, G.A.P.; Coelho, I.; Pequitto, D.C.T.; Yamaguchi, A.A.; Borghetti, G.; Schiessel, D.L.; Kryczyk, M.; MacHado, J.; Rocha, R.E.R.; et al. Low Fish Oil Intake Improves Insulin Sensitivity, Lipid Profile and Muscle Metabolism on Insulin Resistant MSG-Obese Rats. Lipids Health Dis. 2011, 10, 66. [Google Scholar] [CrossRef]
- Warnick, G.R.; Remaley, A.T. Measurement of Cholesterol in Plasma and Other Body Fluids. Curr. Atheroscler. Rep. 2001, 3, 404–411. [Google Scholar] [CrossRef]
- Nauck, M.; Warnick, G.R.; Rifai, N. Methods for Measurement of LDL-Cholesterol: A Critical Assessment of Direct Measurement by Homogeneous Assays versus Calculation. Clin. Chem. 2002, 48, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Virella, M.F.; Stone, P.; Ellis, S.; Colwell, J.A. Colwell Cholesterol Determination in High-Density Lipoproteins Separated by Three Different Methods. Clin. Chem. 1977, 23, 882–884. [Google Scholar] [CrossRef] [PubMed]
- Nuffield Council on Bioethics. The Ethics of Research Involving Animals; Nuffield Council on Bioethics: London, UK, 2005; ISBN 1904384102. [Google Scholar]
- Minister of Agriculture, Fisheries, and Food; Farm Aminal Welfare Council. Press Statement: Surrey, UK, 1979. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20121010012427/http://www.fawc.org.uk/freedoms.htm (accessed on 21 March 2022).
- Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-Van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; et al. Polyunsaturated Fatty Acids of Marine Origin Upregulate Mitochondrial Biogenesis and Induce β-Oxidation in White Fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Bryhn, M.; Kopecky, J. Cellular and Molecular Effects of N-3 Polyunsaturated Fatty Acids on Adipose Tissue Biology and Metabolism. Clin. Sci. 2009, 116, 1–16. [Google Scholar] [CrossRef]
- Martínez-Fernández, L.; Laiglesia, L.M.; Huerta, A.E.; Martínez, J.A.; Moreno-Aliaga, M.J. Omega-3 Fatty Acids and Adipose Tissue Function in Obesity and Metabolic Syndrome. Prostaglandins Other Lipid Mediat. 2015, 121, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front. Endocrinol. 2016, 7, 1–16. [Google Scholar] [CrossRef]
- Sethi, J.K.; Vidal-Puig, A.J. Thematic Review Series: Adipocyte Biology. Adipose Tissue Function and Plasticity Orchestrate Nutritional Adaptation. J. Lipid Res. 2007, 48, 1253–1262. [Google Scholar] [CrossRef]
- Hainault, I.; Carlotti, M.; Hajduch, E.; Guichard, C.; Lavau, M. Fish Oil in a High Lard Diet Prevents Obesity, Hyperlipemia, and Adipocyte Insulin Resistance in Rats. Ann. N. Y. Acad. Sci. 1993, 683, 98–101. [Google Scholar] [CrossRef]
- Belzung, F.; Raclot, T.; Groscolas, R. Fish Oil N-3 Fatty Acids Selectively Limit The Hypertrophy of Abdominal Fat Depots in Growing Rats Fed High-Fat Diets. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1993, 264, R1111–R1118. [Google Scholar] [CrossRef]
- Baillie, R.A.; Takada, R.; Nakamura, M.; Clarke, S.D. Coordinate Induction of Peroxisomal Acyl-CoA Oxidase and UCP-3 by Dietary Fish Oil: A Mechanism for Decreased Body Fat Deposition. Natl. Libr. Med. 1999, 60, 351–356. [Google Scholar] [CrossRef]
- Ruzickova, J.; Rossmeisl, M.; Prazak, T.; Flachs, P.; Sponarova, J.; Vecka, M.; Tvrzicka, E.; Bryhn, M.; Kopecky, J. Omega-3 PUFA of Marine Origin Limit Diet-Induced Obesity in Mice by Reducing Cellularity of Adipose Tissue. Lipids 2004, 39, 1177–1185. [Google Scholar] [CrossRef]
- Buckley, J.D.; Howe, P.R.C. Long-Chain Omega-3 Polyunsaturated Fatty Acids May Be Beneficial for Reducing Obesity-A Review. Nutrients 2010, 2, 1212–1230. [Google Scholar] [CrossRef] [PubMed]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Soltan, S.S.A.M. The Effects of Varieties Sources of Omega-3 Fatty Acids on Diabetes in Rats. Food Nutr. Sci. 2012, 03, 1404–1412. [Google Scholar] [CrossRef]
- Pinel, A.; Pitois, E.; Rigaudiere, J.P.; Jouve, C.; Saint-Vincent, S.D.; Laillet, B.; Montaurier, C.; Huertas, A.; Morio, B.; Capel, F. EPA Prevents Fat Mass Expansion and Metabolic Disturbances in Mice Fed With A Western Diet. J. Lipid Res. 2016, 57, 1382–1397. [Google Scholar] [CrossRef]
- Tardy, A.L.; Giraudet, C.; Rousset, P.; Rigaudière, J.P.; Laillet, B.; Chalancon, S.; Salles, J.; Loreau, O.; Chardigny, J.M.; Morio, B. Effects of Trans MUFA from Dairy and Industrial Sources on Muscle Mitochondrial Function and Insulin Sensitivity. J. Lipid Res. 2008, 49, 1445–1455. [Google Scholar] [CrossRef]
- Song, J.; Li, C.; Lv, Y.; Zhang, Y.; Amakye, W.K.; Mao, L. DHA Increases Adiponectin Expression More Effectively Than EPA at Relative Low Concentrations by Regulating PPARγ and Its Phosphorylation at Ser273 in 3t3-L1 Adipocytes. Nutr. Metab. 2017, 14, 1–11. [Google Scholar] [CrossRef]
- Macedo de Araújo, S.; Silva Raposo, R.; Azevedo Moreira, R.; Brito Queiroz, D.; Pierdoná Guzen, F. Anti Obesity Action of Omega-3 Supplementation in Wistar Rats. J. Pharmacol. Chem. Biol. Sci. 2021, 3, 68–77. [Google Scholar] [CrossRef]
- Manz Koule, J.C.; Ndomou, M.; Njinkoue, J.M.; Tchoumbougnang, F.; Milong Melong, C.S.; Djopnang, J.D.; Oumbe, A.V.S.; Nchoutpouen, M.N.; Foumedzo, R.; Gouado, I. Antihyperlipidemic Potential of Oil Extracted from Ilisha Africana on Rats. Sci. Afr. 2020, 8, e00322. [Google Scholar] [CrossRef]
- Nestel, P.J. Fish Oil and Cardiovascular Disease: Lipids and Arterial Function. Am. Soc. Clin. Nutr. 2000, 71, 228S–231S. [Google Scholar] [CrossRef]
- Thota, R.N.; Ferguson, J.J.A.; Abbott, K.A.; Dias, C.B.; Garg, M.L. Science behind the Cardio-Metabolic Benefits of Omega-3 Polyunsaturated Fatty Acids: Biochemical Effects vs. Clinical Outcomes. Food Funct. 2018, 9, 3576–3596. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Wang, L.P.; Liu, S.H.; Chiang, M.T. Fish Oil Supplementation Alleviates the Altered Lipid Homeostasis in Blood, Liver, and Adipose Tissues in High-Fat Diet-Fed Rats. J. Agric. Food Chem. 2018, 66, 4118–4128. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, M.Q. Hypolipidemic Efficacy of Omega-3 Fatty Acids in Comparison with Rosuvastatin in Induced Hyperlipidemic Albino Rats. Int. J. Pharm. Phytopharm. Res. 2020, 10, 170–178. [Google Scholar]
- Kuda, O.; Jelenik, T.; Jilkova, Z.; Flachs, P.; Rossmeisl, M.; Hensler, M.; Kazdova, L.; Ogston, N.; Baranowski, M.; Gorski, J.; et al. N-3 Fatty Acids and Rosiglitazone Improve Insulin Sensitivity through Additive Stimulatory Effects on Muscle Glycogen Synthesis in Mice Fed a High-Fat Diet. Diabetologia 2009, 52, 941–951. [Google Scholar] [CrossRef]
- Sato, A.; Kawano, H.; Notsu, T.; Ohta, M.; Nakakuki, M.; Mizuguchi, K.; Itoh, M.; Suganami, T.; Ogawa, Y. Antiobesity Effect of Eicosapentaenoic Acid in High-Fat/High-Sucrose Diet-Induced Obesity: Importance of Hepatic Lipogenesis. Diabetes 2010, 59, 2495–2504. [Google Scholar] [CrossRef]
- Rossmeisl, M.; Macek Jilkova, Z.; Kuda, O.; Jelenik, T.; Medrikova, D.; Stankova, B.; Kristinsson, B.; Haraldsson, G.G.; Svensen, H.; Stoknes, I.; et al. Metabolic Effects of N-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids. PLoS ONE 2012, 7, e38834. [Google Scholar] [CrossRef] [PubMed]
- Kasbi Chadli, F.; Andre, A.; Prieur, X.; Loirand, G.; Meynier, A.; Krempf, M.; Nguyen, P.; Ouguerram, K. N-3 PUFA Prevent Metabolic Disturbances Associated with Obesity and Improve Endothelial Function in Golden Syrian Hamsters Fed with a High-Fat Diet. Br. J. Nutr. 2012, 107, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Echarri, N.; Pérez-Matute, P.; Marcos-Gómez, B.; Martínez, J.A.; Moreno-Aliaga, M.J. Effects of Eicosapentaenoic Acid Ethyl Ester on Visfatin and Apelin in Lean and Overweight (Cafeteria Diet-Fed) Rats. Br. J. Nutr. 2009, 101, 1059–1067. [Google Scholar] [CrossRef]
- Pighin, D.; Karabatas, L.; Rossi, A.; Chicco, A.; Basabe, J.C.; Lombardo, Y.B. Biochemical and Molecular Actions of Nutrients Fish Oil Affects Pancreatic Fat Storage, Pyruvate Dehydrogenase Complex Activity and Insulin Secretion in Rats Fed a Sucrose-Rich Diet. J. Nutr. 2003, 133, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Raclot, T.; Groscolas, R.; Langin, D.; Ferré, P. Site-Specific Regulation of Gene Expression by n-3 Polyunsaturated Fatty Acids in Rat White Adipose Tissues. J. Lipid Res. 1997, 38, 1963–1972. [Google Scholar] [CrossRef]
- Flachs, P.; Rühl, R.; Hensler, M.; Janovska, P.; Zouhar, P.; Kus, V.; MacEk Jilkova, Z.; Papp, E.; Kuda, O.; Svobodova, M.; et al. Synergistic Induction of Lipid Catabolism and Anti-Inflammatory Lipids in White Fat of Dietary Obese Mice in Response to Calorie Restriction and n-3 Fatty Acids. Diabetologia 2011, 54, 2626–2638. [Google Scholar] [CrossRef] [PubMed]
- Horakova, O.; Medrikova, D.; van Schothorst, E.M.; Bunschoten, A.; Flachs, P.; Kus, V.; Kuda, O.; Bardova, K.; Janovska, P.; Hensler, M.; et al. Preservation of Metabolic Flexibility in Skeletal Muscle by a Combined Use of N-3 PUFA and Rosiglitazone in Dietary Obese Mice. PLoS ONE 2012, 7, e43764. [Google Scholar] [CrossRef] [PubMed]
- Ferré, P. The Biology of Peroxisome Proliferator-Activated Receptors Relationship With Lipid Metabolism and Insulin Sensitivity. Diabetes 2004, 53 (Suppl. S1), S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2018, 8, 1–22. [Google Scholar] [CrossRef]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Takahashi, M.; Ezaki, O. Fish Oil Feeding Decreases Mature Sterol Regulatory Element-Binding Protein 1 (SREBP-1) by down-Regulation of SREBP-1c MRNA in Mouse Liver. A Possible Mechanism for down-Regulation of Lipogenic Enzyme MRNAs. J. Biol. Chem. 1999, 274, 25892–25898. [Google Scholar] [CrossRef]
- Nakatani, T.; Kim, H.J.; Kaburagi, Y.; Yasuda, K.; Ezaki, O. A Low Fish Oil Inhibits SREBP-1 Proteolytic Cascade, While a High-Fish-Oil Feeding Decreases SREBP-1 MRNA in Mice Liver: Relationship to Anti-Obesity. J. Lipid Res. 2003, 44, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Tu, H.; Shan, B.; Luk, A.; Debose-Boyd, R.A.; Bashmakov, Y.; Goldstein, J.L.; Brown, M.S. Unsaturated Fatty Acids Inhibit Transcription of the Sterol Regulatory Element-Binding Protein-1c (SREBP-1c) Gene by Antagonizing Ligand-Dependent Activation of the LXR. Proc. Natl. Acad. Sci. USA 2001, 98, 6027–6032. [Google Scholar]
- Ahmed, S.; Shah, P.; Ahmed, O. Biochemistry, Lipids; StatPears Publishing: St. Petersburg, FL, USA, 2021. [Google Scholar]
- Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennely, P.J.; Weil, P.A. (Eds.) Harper’s Illustrated Biochemistry, 31st ed.; Anthony Weil (z-Lib.Org); Citeseer: New York, NY, USA, 2018; ISBN 978-1-259-83793-7; 978-1-259-83794-4. [Google Scholar]
- Venugopal, S.K.; Anoruo, M.; Jialal, I. Biochemistry, Low Density Lipoprotein; StatPearls Publishing: St. Petersburg, FL, USA, 2021. [Google Scholar]
- Marques, L.R.; Diniz, T.A.; Antunes, B.M.; Rossi, F.E.; Caperuto, E.C.; Lira, F.S.; Gonçalves, D.C. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-Medical Approach to Enhance HDL Cholesterol. Front. Physiol. 2018, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Daidj, N.B.B.; Lamri-Senhadji, M. Hepatoprotective and Anti-Obesity Properties of Sardine by-Product Oil in Rats Fed a High-Fat Diet. Prev. Nutr. Food Sci. 2021, 26, 285–295. [Google Scholar] [CrossRef]
- Seno Handayani, S.; Ryantin Gunawan, E.; Kurniawati, L. Lalu Haris Budiarto, dan Analisis Asam Lemak Omega-3 Dari Minyak Kepala Ikan Sunglir Analisis Asam Lemak Omega-3 Dari Minyak Kepala Ikan Sunglir (Elagatis bipinnulata) Melalui Esterifikasi Enzimatik. J. Nat. Indones. 2013, 15, 75–83. [Google Scholar] [CrossRef]
- Suseno, S.H. Fatty Acid Profiles of Tropical Eel (Anguilla sp.) by-Products. Adv. J. Food Sci. Technol. 2014, 6, 802–806. [Google Scholar] [CrossRef]
- Putri, D.N.; Wibowo, Y.M.N.; Santoso, E.N.; Romadhani, P. Sifat Fisikokimia Dan Profil Asam Lemak Minyak Ikan Dari Kepala Kakap Merah (Lutjanus malabaricus). AgriTECH 2020, 40, 31. [Google Scholar] [CrossRef]
- Apituley, D.A.N.; Sormin, R.B.D.; Nanlohy, E.E.E.M. Karakteristik Dan Profil Asam Lemak Minyak Ikan Dari Kepala Dan Tulang Ikan Tuna (Thunnus albacares). AGRITEKNO J. Teknol. Pertan. 2020, 9, 10–19. [Google Scholar] [CrossRef]
- Mensink, R.P. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Effects of Dietary Fats on Blood Lipids: A Review of Direct Comparison Trials. Open Heart 2018, 5, e000871. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef]
Characteristics | C Group (n = 5) | CO Group (n = 5) | EO Group (n = 5) | p-Value |
---|---|---|---|---|
Weight (g) | ||||
Before treatment | 223.60 (40.15) | 258.40 (39.59) | 239.00 (33.33) | 0.300 |
After treatment | 234.20 (40.28) | 265.60 (49.56) | 241.80 (19.57) | 0.430 |
Food intake (g) | 15.41 (1.99) | 12.69 (2.33) | 11.82 (1.66) | 0.004 * |
Total caloric intake (Kcal) ** | 90.15 (11.67) | 79.65 (13.66) | 74.57 (9.74) | 0.003 * |
Total fat tissue weight (g) | 3.82 (1.63) | 3.07 (1.03) | 3.29 (0.83) | 0.620 |
Liver weight (g) | 9.77 (0.70) | 10.81 (1.33) | 10.27 (0.70) | 0.260 |
Waist circumference | 15.28 (0.49) | 15.66 (1.56) | 15.400 (1.04) | 0.860 |
Insulin (µIU/mL) | ||||
Before treatment | 5.45 (1.31) | 5.23 (0.56) | 5.37 (0.57) | 0.920 |
After treatment | 5.52 (0.64) | 6.12 (0.91) | 5.50 (0.49) | 0.320 |
Glucose (mg/dL) | ||||
Before treatment | 90.92 (30.30) | 112.68 (29.13) | 105.45 (39.19) | 0.580 |
After treatment | 149.13 (34.67) | 150.00 (27.40) | 158.06 (29.28) | 0.880 |
Fatty Acids | Indonesian Shortfin Eel By-Product Oil | Commercial Fish Oil |
---|---|---|
Lauric acid | 0.09 | n/a |
Myristic acid | 1.62 | 7.5 |
Palmitate | 18.80 | 15.7 |
Stearic acid | 6.27 | 3.1 |
Total SFA | 26.79 | 26.3 |
Myristoleic acid | 0.09 | n/a |
Palmitoleic acid | 5.62 | 8.7 |
Oleic acid | 33.90 | 8.5 |
11-Octadecenoic acid | 2.52 | 7.1 |
Total MUFA | 42.13 | 24.3 |
Linoleic acid | 1.63 | 3.5 |
Arachidonate acid | 6.10 | 1.1 |
Eicosanoic acid | 0.23 | 1.07 |
EPA | 5.58 | 17.5 |
DHA | 17.45 | 12.4 |
Total PUFA | 31.09 | 35.57 |
Omega-3 | 23.13 | 29.9 |
Omega-6 | 7.96 | 5.67 |
Interventions | n | HOMA-IR | F | p-Value * | ||
---|---|---|---|---|---|---|
Before | After | Differences | ||||
C | 5 | 1.22 (0.220) | 2.01 (0.193) | 0.79 (0.385) | 0.008 | 0.99 |
CO | 5 | 1.47 (0.223) | 2.31 (0.336) | 0.83 (0.478) | ||
EO | 5 | 1.38 (0.213) | 2.15 (0.227) | 0.77 (0.189) |
Treatment | n | Before (mg/dL) | After | Delta | F | p-Value * |
---|---|---|---|---|---|---|
Total Cholesterol | Mean (SD) | 23.83 | 0.001 * | |||
C | 5 | 145 (11.328) | 167.90 (21.219) | 22.26 (16.00) | ||
CO | 5 | 182.05 (83.253) | 105.05 (46.552) | −77.00 (38.84) | ||
EO | 5 | 155.64 (8.485) | 87.48 (9.925) | −68.97 (11.60) | ||
LDL | Mean (SD) | 18.296 | 0.001 ** | |||
C | 5 | 32.59 (11.099) | 91.13 (28.056) | 60.53 (25.935) | ||
CO | 5 | 82.23 (67.716) | 47.90 (33.164) | −34.33 (35.517) | ||
EO | 5 | 54.89 (16.354) | 22.82 (7.776) | −32.07 (21.631) | ||
HDL | Mean (SD) | 0.983 | 0.402 | |||
C | 5 | 100.65 (13.079) | 56.74 (14.716) | −43.91 (23.874) | ||
CO | 5 | 79.66 (14.439) | 45.28 (10.319) | −34.38 (15.827) | ||
EO | 5 | 77.60 (23.805) | 49.85 (11.795) | −27.75 (13.660) | ||
Triglyceride | Mean (SD) | 7.918 | 0.006 ** | |||
C | 5 | 61.99 (36.007) | 90.21 (26.134) | 28.21 (15.500) | ||
CO | 5 | 100.800 (76.757) | 59.29 (33.480) | −41.50 (44.957) | ||
EO | 5 | 115.70 (33.049) | 74.01 (56.881) | −41.68 (28.554) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megawati, G.; Syahruddin, S.S.; Tjandra, W.; Kusumawati, M.; Herawati, D.M.D.; Gurnida, D.A.; Musfiroh, I. Effects of Indonesian Shortfin Eel (Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats. Nutrients 2023, 15, 3904. https://doi.org/10.3390/nu15183904
Megawati G, Syahruddin SS, Tjandra W, Kusumawati M, Herawati DMD, Gurnida DA, Musfiroh I. Effects of Indonesian Shortfin Eel (Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats. Nutrients. 2023; 15(18):3904. https://doi.org/10.3390/nu15183904
Chicago/Turabian StyleMegawati, Ginna, Siti Shofiah Syahruddin, Winona Tjandra, Maya Kusumawati, Dewi Marhaeni Diah Herawati, Dida Achmad Gurnida, and Ida Musfiroh. 2023. "Effects of Indonesian Shortfin Eel (Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats" Nutrients 15, no. 18: 3904. https://doi.org/10.3390/nu15183904
APA StyleMegawati, G., Syahruddin, S. S., Tjandra, W., Kusumawati, M., Herawati, D. M. D., Gurnida, D. A., & Musfiroh, I. (2023). Effects of Indonesian Shortfin Eel (Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats. Nutrients, 15(18), 3904. https://doi.org/10.3390/nu15183904