Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Results
2.1. Compared with Other Body Composition Measurement
2.2. Pre-Dialysis CKD
2.2.1. Lean Tissue and Fat
2.2.2. Phase Angle
2.2.3. Body Water
2.3. Hemodialysis
2.3.1. Lean Tissue and Fat
2.3.2. Phase Angle
2.3.3. Body Water
2.4. Peritoneal Dialysis
2.4.1. Lean Tissue and Fat
2.4.2. Phase Angle
2.4.3. Body Water
2.5. Kidney Transplantation
2.5.1. Lean Tissue and Fat
2.5.2. Phase Angle
2.5.3. Body Water
2.6. Intervention Research
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Fosbol, M.O.; Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 2015, 35, 81–97. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Johnson, P.E.; Bolonchuk, W.W.; Lykken, G.I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985, 41, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Earthman, C.P. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. JPEN J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef]
- Lee, S.W.; Ngoh, C.L.Y.; Chua, H.R.; Haroon, S.; Wong, W.K.; Lee, E.J.; Lau, T.W.; Sethi, S.; Teo, B.W. Evaluation of different bioimpedance methods for assessing body composition in Asian non-dialysis chronic kidney disease patients. Kidney Res. Clin. Pract. 2019, 38, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Broers, N.J.H.; Canaud, B.; Dekker, M.J.E.; van der Sande, F.M.; Stuard, S.; Wabel, P.; Kooman, J.P. Three compartment bioimpedance spectroscopy in the nutritional assessment and the outcome of patients with advanced or end stage kidney disease: What have we learned so far? Hemodial. Int. Int. Symp. Home Hemodial. 2020, 24, 148–161. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Ekramzadeh, M.; Santoro, D.; Kopple, J.D. The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients 2022, 14, 2129. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Furstenberg, A.; Davenport, A. Comparison of multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry assessments in outpatient hemodialysis patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2011, 57, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Furstenberg, A.; Davenport, A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy x-ray absorptiometry. Am. J. Nephrol. 2011, 33, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Lowrie, E.G.; Wilmore, D.W.; Gonzalez, J.; Lew, N.L.; Ling, J.; Leboff, M.S.; Gottlieb, M.N.; Huang, W.; Zebrowski, B.; et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J. Am. Soc. Nephrol. JASN 1995, 6, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pelle, G.; Branche, I.; Kossari, N.; Tricot, L.; Delahousse, M.; Dreyfus, J.F. Is 3-compartment bioimpedance spectroscopy useful to assess body composition in renal transplant patients? J. Ren. Nutr. 2013, 23, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Teh, J.B.; He, T.; Peng, K.; Iukuridze, A.; Atencio, L.; Nakamura, R.; Mostoufi-Moab, S.; McCormack, S.; Lee, K.; et al. Association Between Body Composition and Development of Glucose Intolerance after Allogeneic Hematopoietic Cell Transplantation. Cancer Epidemiol. Biomark. Prev. 2022, 31, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Li, A.; Liu, G.; Wang, P.; Zhang, B. Comparison of bioimpedance equations and dual-energy X-ray for assessment of fat free mass in a Chinese dialysis population. Ren. Fail. 2023, 45, 2182131. [Google Scholar] [CrossRef]
- Eyre, S.; Bosaeus, I.; Jensen, G.; Saeed, A. Using Bioimpedance Spectroscopy for Diagnosis of Malnutrition in Chronic Kidney Disease Stage 5-Is It Useful? J. Ren. Nutr. 2022, 32, 170–177. [Google Scholar] [CrossRef]
- Barreto Silva, M.I.; Menna Barreto, A.P.M.; Pontes, K.; Costa, M.S.D.; Rosina, K.T.C.; Souza, E.; Bregman, R.; Prado, C.M.; Klein, M. Accuracy of surrogate methods to estimate skeletal muscle mass in non-dialysis dependent patients with chronic kidney disease and in kidney transplant recipients. Clin. Nutr. 2021, 40, 303–312. [Google Scholar] [CrossRef]
- De Abreu, A.M.; Wilvert, L.C.; Wazlawik, E. Comparison of Body Mass Index, Skinfold Thickness, and Bioelectrical Impedance Analysis With Dual-Energy X-Ray Absorptiometry in Hemodialysis Patients. Nutr. Clin. Pract. 2020, 35, 1021–1028. [Google Scholar] [CrossRef]
- Bross, R.; Chandramohan, G.; Kovesdy, C.P.; Oreopoulos, A.; Noori, N.; Golden, S.; Benner, D.; Kopple, J.D.; Kalantar-Zadeh, K. Comparing body composition assessment tests in long-term hemodialysis patients. Am. J. Kidney Dis. 2010, 55, 885–896. [Google Scholar] [CrossRef]
- Rigalleau, V.; Lasseur, C.; Chauveau, P.; Barthes, N.; Raffaitin, C.; Combe, C.; Perlemoine, C.; Baillet-Blanco, L.; Gin, H. Body composition in diabetic subjects with chronic kidney disease: Interest of bio-impedance analysis, and anthropometry. Ann. Nutr. Metab. 2004, 48, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.I.; Vale, B.S.; Lemos, C.C.; Torres, M.R.; Bregman, R. Body adiposity index assess body fat with high accuracy in nondialyzed chronic kidney disease patients. Obesity 2013, 21, 546–552. [Google Scholar] [CrossRef]
- Ravindranath, J.; Pillai, P.P.; Parameswaran, S.; Kamalanathan, S.K.; Pal, G.K. Body Fat Analysis in Predialysis Chronic Kidney Disease: Multifrequency Bioimpedance Assay and Anthropometry Compared With Dual-Energy X-Ray Absorptiometry. J. Ren. Nutr. 2016, 26, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, M.A.; Avesani, C.M.; Cendoroglo, M.; Canziani, M.E.; Draibe, S.A.; Cuppari, L. Comparison of skinfold thicknesses and bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body fat in patients on long-term haemodialysis therapy. Nephrol. Dial. Transplant. 2003, 18, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Bellafronte, N.T.; Diani, L.M.; Vega-Piris, L.; Cuadrado, G.B.; Chiarello, P.G. Comparison between dual-energy x-ray absorptiometry and bioelectrical impedance for body composition measurements in adults with chronic kidney disease: A cross-sectional, longitudinal, multi-treatment analysis. Nutrition 2021, 82, 111059. [Google Scholar] [CrossRef]
- Melo, D.A.; Hortegal, E.V.F.; Guimaraes, A.; Franca, A.; Alves, J.; Santos, E.M.D.; Silva, T.; Silva, J.; Nunes, L.C.R.; Carvalho, S.C.R.; et al. Sum of skinfolds measurement can be used in the estimation of total body fat in patients with chronic kidney disease undergoing hemodialysis. Nutr. Hosp. 2021, 38, 94–99. [Google Scholar] [CrossRef]
- Ruperto, M.; Barril, G. Nutritional Status, Body Composition, and Inflammation Profile in Older Patients with Advanced Chronic Kidney Disease Stage 4-5: A Case-Control Study. Nutrients 2022, 14, 3650. [Google Scholar] [CrossRef]
- Kittiskulnam, P.; Nitesnoppakul, M.; Metta, K.; Suteparuk, S.; Praditpornsilpa, K.; Eiam-Ong, S. Alterations of body composition patterns in pre-dialysis chronic kidney disease patients. Int. Urol. Nephrol. 2021, 53, 137–145. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Wang, X.; Xiong, M.; Cao, H.; Jiang, L.; Yang, J. Serum PTH Associated with Malnutrition Determined by Bioelectrical Impedance Technology in Chronic Kidney Disease Patients. Int. J. Endocrinol. 2022, 2022, 1222480. [Google Scholar] [CrossRef]
- Barril, G.; Nogueira, A.; Ruperto Lopez, M.; Castro, Y.; Sanchez-Tomero, J.A. Influence of dietary protein intake on body composition in chronic kidney disease patients in stages 3-5: A cross-sectional study. Nefrologia 2018, 38, 647–654. [Google Scholar] [CrossRef]
- Jiang, K.; Singh Maharjan, S.R.; Slee, A.; Davenport, A. Differences between anthropometric and bioimpedance measurements of muscle mass in the arm and hand grip and pinch strength in patients with chronic kidney disease. Clin. Nutr. 2021, 40, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Yongsiri, S.; Thammakumpee, J.; Prongnamchai, S.; Dinchuthai, P.; Chueansuwan, R.; Tangjaturonrasme, S.; Chaivanit, P. The association between bioimpedance analysis and quality of life in pre-dialysis stage 5 chronic kidney disease, hemodialysis and peritoneal dialysis patients. J. Med. Assoc. Thail. 2014, 97, 293–299. [Google Scholar]
- Perez-Torres, A.; Gonzalez Garcia, M.E.; San Jose-Valiente, B.; Bajo Rubio, M.A.; Celadilla Diez, O.; Lopez-Sobaler, A.M.; Selgas, R. Protein-energy wasting syndrome in advanced chronic kidney disease: Prevalence and specific clinical characteristics. Nefrologia 2018, 38, 141–151. [Google Scholar] [CrossRef]
- Bellafronte, N.T.; Sizoto, G.R.; Vega-Piris, L.; Chiarello, P.G.; Cuadrado, G.B. Bed-side measures for diagnosis of low muscle mass, sarcopenia, obesity, and sarcopenic obesity in patients with chronic kidney disease under non-dialysis-dependent, dialysis dependent and kidney transplant therapy. PLoS ONE 2020, 15, e0242671. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Grams, M.E.; Ndumele, C.E.; Wagenknecht, L.; Boerwinkle, E.; North, K.E.; Rebholz, C.M.; Giovannucci, E.L.; Coresh, J. Association Between Midlife Obesity and Kidney Function Trajectories: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2021, 77, 376–385. [Google Scholar] [CrossRef]
- Vettoretti, S.; Caldiroli, L.; Armelloni, S.; Ferrari, C.; Cesari, M.; Messa, P. Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients 2019, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.R.; Urooj, A.; Nalloor, S. Changes in body composition in relation to estimated glomerular filtration rate and physical activity in predialysis chronic kidney disease. Chronic Dis. Transl. Med. 2022, 8, 305–313. [Google Scholar] [CrossRef]
- Pereira, R.A.; Cordeiro, A.C.; Avesani, C.M.; Carrero, J.J.; Lindholm, B.; Amparo, F.C.; Amodeo, C.; Cuppari, L.; Kamimura, M.A. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015, 30, 1718–1725. [Google Scholar] [CrossRef]
- Han, B.G.; Lee, J.Y.; Kim, J.S.; Yang, J.W. Decreased Bioimpedance Phase Angle in Patients with Diabetic Chronic Kidney Disease Stage 5. Nutrients 2019, 11, 2874. [Google Scholar] [CrossRef]
- Bellizzi, V.; Scalfi, L.; Terracciano, V.; De Nicola, L.; Minutolo, R.; Marra, M.; Guida, B.; Cianciaruso, B.; Conte, G.; Di Iorio, B.R. Early changes in bioelectrical estimates of body composition in chronic kidney disease. J. Am. Soc. Nephrol. JASN 2006, 17, 1481–1487. [Google Scholar] [CrossRef]
- Seo, Y.K.; Lee, H.; Kim, H.; Kim, T.Y.; Ryu, H.; Ju, D.L.; Jang, M.; Oh, K.H.; Ahn, C.; Han, S.N. Foods contributing to nutrients intake and assessment of nutritional status in pre-dialysis patients: A cross-sectional study. BMC Nephrol. 2020, 21, 301. [Google Scholar] [CrossRef]
- Han, B.G.; Lee, J.Y.; Kim, J.S.; Yang, J.W. Clinical Significance of Phase Angle in Non-Dialysis CKD Stage 5 and Peritoneal Dialysis Patients. Nutrients 2018, 10, 1331. [Google Scholar] [CrossRef] [PubMed]
- Barril, G.; Nogueira, A.; Alvarez-Garcia, G.; Nunez, A.; Sanchez-Gonzalez, C.; Ruperto, M. Nutritional Predictors of Mortality after 10 Years of Follow-Up in Patients with Chronic Kidney Disease at a Multidisciplinary Unit of Advanced Chronic Kidney Disease. Nutrients 2022, 14, 3848. [Google Scholar] [CrossRef]
- Wang, K.; Zelnick, L.R.; Chertow, G.M.; Himmelfarb, J.; Bansal, N. Body Composition Changes Following Dialysis Initiation and Cardiovascular and Mortality Outcomes in CRIC (Chronic Renal Insufficiency Cohort): A Bioimpedance Analysis Substudy. Kidney Med. 2021, 3, 327–334. [Google Scholar] [CrossRef]
- Hassan, M.O.; Duarte, R.; Dix-Peek, T.; Vachiat, A.; Dickens, C.; Grinter, S.; Naidoo, S.; Manga, P.; Naicker, S. Volume overload and its risk factors in South African chronic kidney disease patients: An appraisal of bioimpedance spectroscopy and inferior vena cava measurements. Clin. Nephrol. 2016, 86, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Dumler, F.; Kilates, C. Prospective nutritional surveillance using bioelectrical impedance in chronic kidney disease patients. J. Ren. Nutr. 2005, 15, 148–151. [Google Scholar] [CrossRef]
- Ohashi, Y.; Otani, T.; Tai, R.; Tanaka, Y.; Sakai, K.; Aikawa, A. Assessment of body composition using dry mass index and ratio of total body water to estimated volume based on bioelectrical impedance analysis in chronic kidney disease patients. J. Ren. Nutr. 2013, 23, 28–36. [Google Scholar] [CrossRef]
- Chua, H.R.; Xiang, L.; Chow, P.Y.; Xu, H.; Shen, L.; Lee, E.; Teo, B.W. Quantifying acute changes in volume and nutritional status during haemodialysis using bioimpedance analysis. Nephrology 2012, 17, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Aatif, T.; Hassani, K.; Alayoud, A.; Maoujoud, O.; Ahid, S.; Benyahia, M.; Oualim, Z. Parameters to assess nutritional status in a Moroccan hemodialysis cohort. Arab J. Nephrol. Transplant. 2013, 6, 89–97. [Google Scholar]
- Beberashvili, I.; Sinuani, I.; Azar, A.; Yasur, H.; Feldman, L.; Efrati, S.; Averbukh, Z.; Weissgarten, J. Nutritional and inflammatory status of hemodialysis patients in relation to their body mass index. J. Ren. Nutr. 2009, 19, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Torun, D.; Micozkadioglu, H.; Torun, N.; Ozelsancak, R.; Sezer, S.; Adam, F.U.; Ozdemir, F.N.; Haberal, M. Increased body mass index is not a reliable marker of good nutrition in hemodialysis patients. Ren. Fail. 2007, 29, 487–493. [Google Scholar] [CrossRef]
- Garagarza, C.; Flores, A.L.; Valente, A. Influence of Body Composition and Nutrition Parameters in Handgrip Strength: Are There Differences by Sex in Hemodialysis Patients? Nutr. Clin. Pract. 2018, 33, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Shin, J.; Hwang, J.H.; Kim, S.H. Utility of the Global Leadership Initiative on Malnutrition criteria for the nutritional assessment of patients with end-stage renal disease receiving chronic hemodialysis. J. Hum. Nutr. Diet. 2023, 36, 97–107. [Google Scholar] [CrossRef]
- Vannini, F.D.; Antunes, A.A.; Caramori, J.C.; Martin, L.C.; Barretti, P. Associations between nutritional markers and inflammation in hemodialysis patients. Int. Urol. Nephrol. 2009, 41, 1003–1009. [Google Scholar] [CrossRef]
- Mayrink Ivo, J.F.; Sugizaki, C.S.A.; Souza Freitas, A.T.V.; Costa, N.A.; Peixoto, M. Age, hemodialysis time, gait speed, but not mortality, are associated with muscle quality index in end-stage renal disease. Exp. Gerontol. 2023, 171, 112035. [Google Scholar] [CrossRef]
- Segall, L.; Mardare, N.G.; Ungureanu, S.; Busuioc, M.; Nistor, I.; Enache, R.; Marian, S.; Covic, A. Nutritional status evaluation and survival in haemodialysis patients in one centre from Romania. Nephrol. Dial. Transplant. 2009, 24, 2536–2540. [Google Scholar] [CrossRef]
- Segall, L.; Covic, A.; Mardare, N.; Ungureanu, S.; Marian, S.; Busuioc, M.; Nistor, I.; Enache, R.; Veisa, G.; Covic, M. Nutritional status evaluation in maintenance hemodialysis patients. Rev. Med. Chir. A Soc. Med. Nat. Din Iasi 2008, 112, 343–350. [Google Scholar]
- Rymarz, A.; Bartoszewicz, Z.; Szamotulska, K.; Niemczyk, S. The Associations Between Body Cell Mass and Nutritional and Inflammatory Markers in Patients With Chronic Kidney Disease and in Subjects Without Kidney Disease. J. Ren. Nutr. 2016, 26, 87–92. [Google Scholar] [CrossRef]
- Da, J.; Long, Y.; Li, Q.; Yang, X.; Yuan, J.; Zha, Y. Resting metabolic rate and its adjustments as predictors of risk protein-energy wasting in hemodialysis patients. Biosci. Rep. 2021, 41, BSR20210010. [Google Scholar] [CrossRef]
- Kamimura, M.A.; Draibe, S.A.; Dalboni, M.A.; Cendoroglo, M.; Avesani, C.M.; Manfredi, S.R.; Canziani, M.E.; Cuppari, L. Serum and cellular interleukin-6 in haemodialysis patients: Relationship with energy expenditure. Nephrol. Dial. Transplant. 2007, 22, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Skouroliakou, M.; Stathopoulou, M.; Koulouri, A.; Giannopoulou, I.; Stamatiades, D.; Stathakis, C. Determinants of resting energy expenditure in hemodialysis patients, and comparison with healthy subjects. J. Ren. Nutr. 2009, 19, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, D.; Brand, K.; Ponce, P.; Milkowski, A.; Marelli, C.; Ok, E.; Merello Godino, J.I.; Gurevich, K.; Jirka, T.; Rosenberger, J.; et al. Longitudinal Changes in Body Composition in Patients After Initiation of Hemodialysis Therapy: Results From an International Cohort. J. Ren. Nutr. 2016, 26, 72–80. [Google Scholar] [CrossRef]
- Duong, T.V.; Wu, P.Y.; Wong, T.C.; Chen, H.H.; Chen, T.H.; Hsu, Y.H.; Peng, S.J.; Kuo, K.L.; Liu, H.C.; Lin, E.T.; et al. Mid-arm circumference, body fat, nutritional and inflammatory biomarkers, blood glucose, dialysis adequacy influence all-cause mortality in hemodialysis patients: A prospective cohort study. Medicine 2019, 98, e14930. [Google Scholar] [CrossRef]
- Delgado, C.; Chertow, G.M.; Kaysen, G.A.; Dalrymple, L.S.; Kornak, J.; Grimes, B.; Johansen, K.L. Associations of Body Mass Index and Body Fat With Markers of Inflammation and Nutrition Among Patients Receiving Hemodialysis. Am. J. Kidney Dis. 2017, 70, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N. Association of cardiometabolic risks with body composition in hemodialysis patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2469–2476. [Google Scholar] [CrossRef]
- Erdogan, E.; Tutal, E.; Uyar, M.E.; Bal, Z.; Demirci, B.G.; Sayin, B.; Sezer, S. Reliability of bioelectrical impedance analysis in the evaluation of the nutritional status of hemodialysis patients—A comparison with Mini Nutritional Assessment. Transplant. Proc. 2013, 45, 3485–3488. [Google Scholar] [CrossRef]
- Valente, A.; Caetano, C.; Oliveira, T.; Garagarza, C. Evaluating haemodialysis patient’s nutritional status: Body mass index or body cell mass index? Nephrology 2019, 24, 967–974. [Google Scholar] [CrossRef]
- Arias-Guillen, M.; Perez, E.; Herrera, P.; Romano, B.; Ojeda, R.; Vera, M.; Rios, J.; Fontsere, N.; Maduell, F. Bioimpedance Spectroscopy as a Practical Tool for the Early Detection and Prevention of Protein-Energy Wasting in Hemodialysis Patients. J. Ren. Nutr. 2018, 28, 324–332. [Google Scholar] [CrossRef]
- Macedo, C.; Amaral, T.F.; Rodrigues, J.; Santin, F.; Avesani, C.M. Malnutrition and Sarcopenia Combined Increases the Risk for Mortality in Older Adults on Hemodialysis. Front. Nutr. 2021, 8, 721941. [Google Scholar] [CrossRef]
- Tan, R.S.; Liang, D.H.; Liu, Y.; Zhong, X.S.; Zhang, D.S.; Ma, J. Bioelectrical Impedance Analysis-Derived Phase Angle Predicts Protein-Energy Wasting in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2019, 29, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ge, Y.; Li, F.; Zhang, C.; Zhang, Z.; Xu, N.; Wang, R.; Wu, S.; Geng, X.; Quan, Y.; et al. Elucidating the relationship between nutrition indices and coronary artery calcification in patients undergoing maintenance hemodialysis. Ther. Apher. Dial. 2022, 26, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Leal Escobar, G.; Osuna Padilla, I.A.; Cano Escobar, K.B.; Moguel Gonzalez, B.; Perez Grovas, H.A.; Ruiz Ubaldo, S. Phase angle and mid arm circumference as predictors of protein energy wasting in renal replacement therapy patients. Nutr. Hosp. 2019, 36, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Topete-Reyes, J.F.; Lopez-Lozano, C.A.; Lopez-Baez, S.L.; Barbarin-Vazquez, A.V.; Cervantes-Villalobos, M.L.; Navarro-Rodriguez, J.; Parra-Michel, R.; Pazarin-Villasenor, H.L.; Meza-Guillen, D.; Torres-Tamayo, M.; et al. Determinacion del estado nutricional mediante el angulo de fase en pacientes en hemodialisis. Gac. Med. Mex. 2019, 155, 229–235. [Google Scholar] [CrossRef]
- Shin, J.H.; Kim, C.R.; Park, K.H.; Hwang, J.H.; Kim, S.H. Predicting clinical outcomes using phase angle as assessed by bioelectrical impedance analysis in maintenance hemodialysis patients. Nutrition 2017, 41, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pupim, L.B.; Caglar, K.; Hakim, R.M.; Shyr, Y.; Ikizler, T.A. Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int. 2004, 66, 2054–2060. [Google Scholar] [CrossRef]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Shapiro, G.; Feldman, L.; Stav, K.; Sandbank, J.; Averbukh, Z. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur. J. Clin. Nutr. 2014, 68, 683–689. [Google Scholar] [CrossRef]
- Tabinor, M.; Elphick, E.; Dudson, M.; Kwok, C.S.; Lambie, M.; Davies, S.J. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): Systematic review and subgroup meta-analysis. Sci. Rep. 2018, 8, 4441. [Google Scholar] [CrossRef]
- Garagarza, C.; Joao-Matias, P.; Sousa-Guerreiro, C.; Amaral, T.; Aires, I.; Ferreira, C.; Jorge, C.; Gil, C.; Ferreira, A. Nutritional status and overhydration: Can bioimpedance spectroscopy be useful in haemodialysis patients? Nefrologia 2013, 33, 667–674. [Google Scholar] [CrossRef]
- Sukackiene, D.; Laucyte-Cibulskiene, A.; Vickiene, A.; Rimsevicius, L.; Miglinas, M. Risk stratification for patients awaiting kidney transplantation: Role of bioimpedance derived edema index and nutrition status. Clin. Nutr. 2020, 39, 2759–2763. [Google Scholar] [CrossRef] [PubMed]
- Ruperto, M.; Barril, G. The Extracellular Mass to Body Cell Mass Ratio as a Predictor of Mortality Risk in Hemodialysis Patients. Nutrients 2022, 14, 1659. [Google Scholar] [CrossRef]
- Garcia-Lopes, M.G.; Agliussi, R.G.; Avesani, C.M.; Manfredi, S.R.; Bazanelli, A.P.; Kamimura, M.A.; Draibe, S.A.; Cuppari, L. Nutritional status and body composition after 6 months of patients switching from continuous ambulatorial peritoneal dialysis to automated peritoneal dialysis. Braz. J. Med. Biol. Res. 2008, 41, 1116–1122. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Nakao, T.; Matsumoto, H.; Okada, T.; Hidaka, H.; Yoshino, M.; Shino, T.; Nagaoka, Y.; Takeguchi, F.; Iwasawa, H.; et al. Serial changes in body composition in patients with chronic renal failure on peritoneal dialysis. Nihon Jinzo Gakkai Shi 2001, 43, 589–594. [Google Scholar]
- As’habi, A.; Najafi, I.; Tabibi, H.; Hedayati, M. Prevalence of Sarcopenia and Dynapenia and Their Determinants in Iranian Peritoneal Dialysis Patients. Iran. J. Kidney Dis. 2018, 12, 53–60. [Google Scholar]
- Fan, J.; Ye, H.; Zhang, X.; Cao, P.; Guo, Q.; Mao, H.; Yu, X.; Yang, X. Association of Lean Body Mass Index and Peritoneal Protein Clearance in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2019, 44, 94–102. [Google Scholar] [CrossRef]
- Tabibi, H.; As’habi, A.; Najafi, I.; Hedayati, M. Prevalence of dynapenic obesity and sarcopenic obesity and their associations with cardiovascular disease risk factors in peritoneal dialysis patients. Kidney Res. Clin. Pract. 2018, 37, 404–413. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.K.; Lee, H.S.; Kim, S.G.; Song, Y.R. Longitudinal changes in body composition are associated with all-cause mortality in patients on peritoneal dialysis. Clin. Nutr. 2021, 40, 120–126. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, L.T.; Wang, T.; Wan, J.; Liao, L.L.; Zeng, J.; Qin, C.; Li, K.J. Visceral fat, arterial stiffness, and endothelial function in peritoneal dialysis patients. J. Ren. Nutr. 2008, 18, 495–502. [Google Scholar] [CrossRef]
- Reichel, G. Results of continous therapy with atrovent in diurnal and long-term administration. Wien. Med. Wochenschrift. Suppl. 1974, 21, 26–29. [Google Scholar]
- Cheng, L.T.; Tang, W.; Wang, T. Strong association between volume status and nutritional status in peritoneal dialysis patients. Am. J. Kidney Dis. 2005, 45, 891–902. [Google Scholar] [CrossRef]
- Guo, Q.; Lin, J.; Li, J.; Yi, C.; Mao, H.; Yang, X.; Yu, X. The Effect of Fluid Overload on Clinical Outcome in Southern Chinese Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 691–702. [Google Scholar] [CrossRef]
- Demirci, M.S.; Demirci, C.; Ozdogan, O.; Kircelli, F.; Akcicek, F.; Basci, A.; Ok, E.; Ozkahya, M. Relations between malnutrition-inflammation-atherosclerosis and volume status. The usefulness of bioimpedance analysis in peritoneal dialysis patients. Nephrol. Dial. Transplant. 2011, 26, 1708–1716. [Google Scholar] [CrossRef]
- Avram, M.M.; Mittman, N.; Fein, P.A.; Agahiu, S.; Hartman, W.; Chattopadhyay, N.; Matza, B. Dialysis vintage, body composition, and survival in peritoneal dialysis patients. In Advances in Peritoneal dialysis. Conference on Peritoneal Dialysis; National Library of Medicine: Bethesda, MD, USA, 2012; Volume 28, pp. 144–147. [Google Scholar]
- Jones, C.H.; Newstead, C.G. The ratio of extracellular fluid to total body water and technique survival in peritoneal dialysis patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2004, 24, 353–358. [Google Scholar] [CrossRef]
- Avram, M.M.; Fein, P.A.; Borawski, C.; Chattopadhyay, J.; Matza, B. Extracellular mass/body cell mass ratio is an independent predictor of survival in peritoneal dialysis patients. Kidney Int. Suppl. 2010, 78, S37–S40. [Google Scholar] [CrossRef]
- O’Lone, E.L.; Visser, A.; Finney, H.; Fan, S.L. Clinical significance of multi-frequency bioimpedance spectroscopy in peritoneal dialysis patients: Independent predictor of patient survival. Nephrol. Dial. Transplant. 2014, 29, 1430–1437. [Google Scholar] [CrossRef]
- Tutal, E.; Sezer, S.; Uyar, M.E.; Bal, Z.; Demirci, B.G.; Acar, F.N. Evaluation of nutritional status in renal transplant recipients in accordance with changes in graft function. Transplant. Proc. 2013, 45, 1418–1422. [Google Scholar] [CrossRef]
- Nanmoku, K.; Kawabata, N.; Kinoshita, Y.; Shinzato, T.; Kubo, T.; Shimizu, T.; Yagisawa, T. Deterioration of presarcopenia and its risk factors following kidney transplantation. Clin. Exp. Nephrol. 2020, 24, 379–383. [Google Scholar] [CrossRef]
- Sukackiene, D.; Rimsevicius, L.; Miglinas, M. Standardized Phase Angle for Predicting Nutritional Status of Hemodialysis Patients in the Early Period After Deceased Donor Kidney Transplantation. Front. Nutr. 2022, 9, 803002. [Google Scholar] [CrossRef]
- Kosoku, A.; Iwai, T.; Ishihara, T.; Kabei, K.; Nishide, S.; Maeda, K.; Hanayama, Y.; Ishimura, E.; Uchida, J. Influence of protein intake on the changes in skeletal muscle mass after kidney transplantation. Clin. Nutr. 2022, 41, 1881–1888. [Google Scholar] [CrossRef]
- Heleniak, Z.; Illersperger, S.; Malgorzewicz, S.; Debska-Slizien, A.; Budde, K.; Halleck, F. Arterial Stiffness as a Cardiovascular Risk Factor After Successful Kidney Transplantation in Diabetic and Nondiabetic Patients. Transplant. Proc. 2022, 54, 2205–2211. [Google Scholar] [CrossRef]
- Saxena, A.; Sharma, R.K.; Gupta, A. Graft function and nutritional parameters in stable postrenal transplant patients. Saudi J. Kidney Dis. Transplant. 2016, 27, 356–361. [Google Scholar] [CrossRef]
- Boslooper-Meulenbelt, K.; van Vliet, I.M.Y.; Gomes-Neto, A.W.; de Jong, M.F.C.; Bakker, S.J.L.; Jager-Wittenaar, H.; Navis, G.J. Malnutrition according to GLIM criteria in stable renal transplant recipients: Reduced muscle mass as predominant phenotypic criterion. Clin. Nutr. 2021, 40, 3522–3530. [Google Scholar] [CrossRef]
- Dos Reis, A.S.; Limirio, L.S.; Santos, H.O.; de Oliveira, E.P. Intake of polyunsaturated fatty acids and omega-3 are protective factors for sarcopenia in kidney transplant patients. Nutrition 2021, 81, 110929. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.S.; Boey, L.M.; Morad, Z. Body composition by bioelectrical impedance analysis in renal transplant recipients. Transplant. Proc. 2004, 36, 2186–2187. [Google Scholar] [CrossRef] [PubMed]
- Kosoku, A.; Uchida, J.; Nishide, S.; Kabei, K.; Shimada, H.; Iwai, T.; Maeda, K.; Hanayama, Y.; Ishihara, T.; Naganuma, T.; et al. Association of sarcopenia with phase angle and body mass index in kidney transplant recipients. Sci. Rep. 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.; Bakir, A.; Koseoglu, Y.K.; Velidedeoglu, M.; Trabulus, S.; Seyahi, N. Association of Nutritional Assessment by Phase Angle With Mortality in Kidney Transplant Patients in an 8-Year Follow-Up. Prog. Transplant. 2019, 29, 321–326. [Google Scholar] [CrossRef]
- Abenoza, P.; Manivel, J.C.; Wick, M.R.; Hagen, K.; Dehner, L.P. Hepatoblastoma: An immunohistochemical and ultrastructural study. Hum. Pathol. 1987, 18, 1025–1035. [Google Scholar] [CrossRef]
- Coroas, A.S.; Oliveira, J.G.; Sampaio, S.; Borges, C.; Tavares, I.; Pestana, M.; Almeida, M.D. Body composition assessed by impedance changes very early with declining renal graft function. Nephron. Physiol. 2006, 104, p115–p120. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Hori, S.; Tomizawa, M.; Yoneda, T.; Nakai, Y.; Miyake, M.; Torimoto, K.; Tanaka, N.; Fujimoto, K. Relevance of the perioperative edema index measured by bioelectrical impedance analysis for prediction of cardiovascular disease in living-donor kidney transplantation. Int. J. Urol. 2022, 29, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Sharma, R.K. Hypertension in post-renal transplant patients: Pilot study. Saudi J. Kidney Dis. Transplant. 2014, 25, 22–28. [Google Scholar] [CrossRef]
- Saka, B.; Bektas, M.; Bakkaloglu, O.K.; Amikishiyev, S.; Saribeyliler, G.; Tiryaki, T.O.; Ince, B.; Cakmak, R.; Buyukdemir, S.; Senturk, B.O.; et al. Malnutrition treatment and follow-up in clinical nutrition outpatient clinics associated with increased muscle mass. Nutrition 2022, 101, 111680. [Google Scholar] [CrossRef]
- Lin, Y.L.; Hou, J.S.; Wang, C.H.; Su, C.Y.; Liou, H.H.; Hsu, B.G. Effects of ketoanalogues on skeletal muscle mass in patients with advanced chronic kidney disease: Real-world evidence. Nutrition 2021, 91–92, 111384. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Chen, J.; Wang, Q.; Kong, Y.; Wan, Q.; Tao, H.; Liu, A.; Li, Y.; Lin, Z.; et al. The Effects of Oral Energy-Dense Supplements on Nutritional Status in Nondiabetic Maintenance Hemodialysis Patients: A Randomized Controlled Trial. Clin. J. Am. Soc. Nephrol. CJASN 2021, 16, 1228–1236. [Google Scholar] [CrossRef]
- David, S.; Kumpers, P.; Eisenbach, G.M.; Haller, H.; Kielstein, J.T. Prospective evaluation of an in-centre conversion from conventional haemodialysis to an intensified nocturnal strategy. Nephrol. Dial. Transplant. 2009, 24, 2232–2240. [Google Scholar] [CrossRef]
- Sheshadri, A.; Kittiskulnam, P.; Lai, J.C.; Johansen, K.L. Effect of a pedometer-based walking intervention on body composition in patients with ESRD: A randomized controlled trial. BMC Nephrol. 2020, 21, 100. [Google Scholar] [CrossRef]
Index | Results | Pre-Dialysis CKD | HD | PD | KTR |
---|---|---|---|---|---|
Lean tissue and fat | GFR↓, LTI/MM/SMM/SMI/BCM↓ | √ | √ | ||
Protein intake↓, Lean mass index↓ | √ | √ | √ | ||
Lean mass index↓, grip strength and quality of life↓ | √ | √ | |||
Lean mass index↓, PEW/malnutrition↑ | √ | √ | √ | √ | |
SMI↓, sarcopenia↑ | √ | √ | √ | ||
Visceral fat mass↑, cardiovascular disease↑ | √ | √ | |||
Phase angle | PhA↓(CKD & Diabetes) | √ | √ | √ | |
Inflammatory markers↑, PhA↓ | √ | √ | |||
Albumin↓, PhA↓ | √ | √ | |||
PhA↓, PEW↑ | √ | √ | √ | √ | |
PhA↓, risk of death↑ | √ | √ | √ | √ | |
Body water | Overhydration (OH)↑(CKD) | √ | √ | √ | √ |
OH↑, nutritional status↓ | √ | √ | |||
OH↑, cardiovascular event↑ | √ | √ | |||
OH↑, mortality↑ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhang, M.; Ye, T.; Wang, Z.; Yao, Y. Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients 2023, 15, 3941. https://doi.org/10.3390/nu15183941
Guo Y, Zhang M, Ye T, Wang Z, Yao Y. Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients. 2023; 15(18):3941. https://doi.org/10.3390/nu15183941
Chicago/Turabian StyleGuo, Yanchao, Meng Zhang, Ting Ye, Zhixiang Wang, and Ying Yao. 2023. "Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease" Nutrients 15, no. 18: 3941. https://doi.org/10.3390/nu15183941
APA StyleGuo, Y., Zhang, M., Ye, T., Wang, Z., & Yao, Y. (2023). Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients, 15(18), 3941. https://doi.org/10.3390/nu15183941