Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identifying the Potential Targets of Compounds and Diseases
2.2. Finding and Acquiring Potential Targets
2.3. Construction and Investigation of Protein–Protein Interaction Network
2.4. Findings of Hub-Genes and GO-KEGG Pathway Enrichment Analysis
2.5. Molecular Docking Analysis
2.6. ADMET Prediction
2.7. Molecular Dynamics Simulation
2.8. Pass Analysis
2.9. Cell Culture
2.10. Cell Viability Assay
2.11. Wound-Healing Assay
2.12. Transwell Migration Assay
3. Results
3.1. Target Prediction and Analysis of Potential Targets
3.2. Construction and Analysis of Compounds–Disease Common Target Network
3.3. Functional and Pathway Enrichment Analysis
3.4. Molecular Docking and ADMET Analysis
3.5. MD Simulation Analysis
3.6. PASS Analysis of Daidzein
3.7. Anticancer Activity of Daidzein
3.8. Anti-Metastasis Activity of Daidzein
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu Rous, F.; Singhi, E.K.; Sridhar, A.; Faisal, M.S.; Desai, A. Lung cancer treatment advances in 2022. Cancer Investig. 2023, 41, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Winslow, M.M.; Sage, J. Mechanisms of small cell lung cancer metastasis. EMBO Mol. Med. 2021, 13, e13122. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA A Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest 2003, 123, 21S–49S. [Google Scholar] [CrossRef]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef]
- Wangchuk, P. Therapeutic applications of natural products in herbal medicines, biodiscovery programs, and biomedicine. J. Biol. Act. Prod. Nat. 2018, 8, 1–20. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Hao, L.; Zhang, G.; Jin, Z.; Li, C.; Yang, Y.; Rao, J.; Chen, B. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 2022, 62, 1971–1989. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Cao, Z.-H.; Green-Johnson, J.M.; Buckley, N.D.; Lin, Q.-Y. Bioactivity of soy-based fermented foods: A review. Biotechnol. Adv. 2019, 37, 223–238. [Google Scholar] [CrossRef]
- Rai, A.K.; Jeyaram, K. Health benefits of functional proteins in fermented foods. Health Benefits Fermented Foods Beverages 2015, 44, 455–474. [Google Scholar]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Romulo, A.; Surya, R. Tempe: A traditional fermented food of Indonesia and its health benefits. Int. J. Gastron. Food Sci. 2021, 26, 100413. [Google Scholar] [CrossRef]
- Lima, A.; Oliveira, J.; Saúde, F.; Mota, J.; Ferreira, R.B. Proteins in soy might have a higher role in cancer prevention than previously expected: Soybean protein fractions are more effective MMP-9 inhibitors than non-protein fractions, even in cooked seeds. Nutrients 2017, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Rangel, M.; Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J. Analysis of isoflavones in foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411. [Google Scholar] [CrossRef]
- Guan, L. Hypocholesterolemic Activity and Potential Reproductive Toxicity of Isoflavones in Soybean and Gegen. Master’s Thesis, Chinese University of Hong Kong, Hong Kong, China, 2005. [Google Scholar]
- Cassidy, A.; Brown, J.E.; Hawdon, A.; Faughnan, M.S.; King, L.J.; Millward, J.; Zimmer-Nechemias, L.; Wolfe, B.; Setchell, K.D. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J. Nutr. 2006, 136, 45–51. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, K.; Zhang, Z.; Zhang, C.; Sun, Y.; Feng, Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res. Int. 2022, 158, 111575. [Google Scholar] [CrossRef]
- Sahin, I.; Bilir, B.; Ali, S.; Sahin, K.; Kucuk, O. Soy isoflavones in integrative oncology: Increased efficacy and decreased toxicity of cancer therapy. Integr. Cancer Ther. 2019, 18, 1534735419835310. [Google Scholar] [CrossRef]
- Nurkolis, F.; Qhabibi, F.R.; Yusuf, V.M.; Bulain, S.; Praditya, G.N.; Lailossa, D.G.; Mahira, M.F.N.A.; Prima, E.N.; Arjuna, T.; Rahayu, S. Anticancer properties of soy-based tempe: A proposed opinion for future meal. Front. Oncol. 2022, 12, 1054399. [Google Scholar] [CrossRef]
- Chandran, U.; Mehendale, N.; Patil, S.; Chaguturu, R.; Patwardhan, B. Network pharmacology. Innov. Approaches Drug Discov. 2017, 127–164. [Google Scholar] [CrossRef]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef]
- Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Olson, A.J. Using autodock for ligand-receptor docking. Curr. Protoc. Bioinform. 2008, 24, 8–14. [Google Scholar] [CrossRef]
- Accelrys. Discovery Studio, 2.1; Accelrys: San Diego, CA, USA, 2008; Available online: https://accelrys-discovery-studio.software.informer.com/ (accessed on 1 February 2023).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Baell, J.B. Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod. 2016, 79, 616–628. [Google Scholar] [CrossRef]
- Arunkumar, R.; Sharmila, G.; Elumalai, P.; Senthilkumar, K.; Banudevi, S.; Gunadharini, D.; Benson, C.; Daisy, P.; Arunakaran, J. Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine 2012, 19, 912–923. [Google Scholar] [CrossRef]
- Adnan, M.; Anwar, S.; DasGupta, D.; Patel, M.; Elasbali, A.M.; Alhassan, H.H.; Shafie, A.; Siddiqui, A.J.; Bardakci, F.; Snoussi, M. Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer’s disease. Int. J. Biol. Macromol. 2023, 224, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Shamsi, A.; Elasbali, A.M.; Siddiqui, A.J.; Patel, M.; Alshammari, N.; Alharethi, S.H.; Alhassan, H.H.; Bardakci, F.; Hassan, M.I. Structure-guided approach to discover tuberosin as a potent activator of pyruvate kinase M2, targeting cancer therapy. Int. J. Mol. Sci. 2022, 23, 13172. [Google Scholar] [CrossRef] [PubMed]
- Bahaman, A.H.; Wahab, R.A.; Abdul Hamid, A.A.; Abd Halim, K.B.; Kaya, Y. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. J. Biomol. Struct. Dyn. 2021, 39, 2628–2641. [Google Scholar] [CrossRef]
- Bouali, N.; Ahmad, I.; Patel, H.; Alhejaili, E.B.; Hamadou, W.S.; Badraoui, R.; Hadj Lajimi, R.; Alreshidi, M.; Siddiqui, A.J.; Adnan, M. GC–MS screening of the phytochemical composition of Ziziphus honey: ADME properties and in vitro/in silico study of its antimicrobial activity. J. Biomol. Struct. Dyn. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In Proceedings of the Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, 2–3 April 2014; Revised Selected Papers 2. pp. 3–27. [Google Scholar]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.; Qanash, H.; Bazaid, A.S.; Binsaleh, N.K.; Abdelghany, T.M. Pharmacological evaluation of Acacia nilotica flower extract against Helicobacter pylori and human hepatocellular carcinoma in vitro and in silico. J. Funct. Biomater. 2023, 14, 237. [Google Scholar] [CrossRef]
- Elasbali, A.M.; Al-Soud, W.A.; Al-Oanzi, Z.H.; Qanash, H.; Alharbi, B.; Binsaleh, N.K.; Alreshidi, M.; Patel, M.; Adnan, M. Cytotoxic activity, cell cycle inhibition, and apoptosis-inducing potential of Athyrium hohenackerianum (Lady Fern) with its phytochemical profiling. Evid.-Based Complement. Altern. Med. 2022, 2022, 2055773. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Hamadou, W.S.; Snoussi, M.; Badraoui, R.; Ashraf, S.A.; Jamal, A.; Awadelkareem, A.M.; Sachidanandan, M.; Hadi, S. Deciphering the molecular mechanism responsible for efficiently inhibiting metastasis of human non-small cell lung and colorectal cancer cells targeting the matrix metalloproteinases by Selaginella repanda. Plants 2021, 10, 979. [Google Scholar] [CrossRef]
- Wu, J.-G.; Ma, L.; Lin, S.-H.; Wu, Y.-B.; Yi, J.; Yang, B.-J.; Wu, J.-Z.; Wong, K.-H. Anticancer and anti-angiogenic activities of extract from Actinidia eriantha Benth root. J. Ethnopharmacol. 2017, 203, 1–10. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Adnan, M.; Siddiqui, A.J.; Noumi, E.; Hannachi, S.; Ashraf, S.A.; Awadelkareem, A.M.; Snoussi, M.; Badraoui, R.; Bardakci, F.; Sachidanandan, M. Integrating network pharmacology approaches to decipher the multi-target pharmacological mechanism of microbial biosurfactants as novel green antimicrobials against listeriosis. Antibiotics 2022, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Elasbali, A.M.; Al-Soud, W.A.; Mousa Elayyan, A.E.; Al-Oanzi, Z.H.; Alhassan, H.H.; Mohamed, B.M.; Alanazi, H.H.; Ashraf, M.S.; Moiz, S.; Patel, M. Integrating network pharmacology approaches for the investigation of multi-target pharmacological mechanism of 6-shogaol against cervical cancer. J. Biomol. Struct. Dyn. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Zhou, Z.; Wang, X.; Lv, H.; Wang, M.; Pan, G.; Wang, Y.; Fan, G.; Gao, X.; Feng, Y. Network pharmacology-guided development of a novel integrative regimen to prevent acute graft-vs.-host disease. Front. Pharmacol. 2018, 9, 1440. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H. Architecture of the human interactome defines protein communities and disease networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef]
- Gu, L.; Lu, J.; Li, Q.; Wu, N.; Zhang, L.; Li, H.; Xing, W.; Zhang, X. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation. J. Ethnopharmacol. 2020, 251, 112488. [Google Scholar] [CrossRef] [PubMed]
- Mogi, A.; Kuwano, H. TP53 mutations in nonsmall cell lung cancer. BioMed Res. Int. 2011, 2011, 583929. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.; Duan, Y.; Wu, Y.; Wang, X. Prognostic role of pre-treatment serum ALB in Patients with oropharyngeal cancer: A retrospective cohort study. Front. Oncol. 2022, 12, 924210. [Google Scholar] [CrossRef]
- Gong, K.; Guo, G.; Beckley, N.; Zhang, Y.; Yang, X.; Sharma, M.; Habib, A.A. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia 2021, 23, 189–196. [Google Scholar] [CrossRef]
- Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors 2018, 18, 3249. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, Y.; Fan, Z.; Yu, L.; Bai, H.; Zhou, B.; Wu, X.; Xu, H.; Fang, M.; Shen, A. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene 2015, 34, 5570–5581. [Google Scholar] [CrossRef]
- Augoff, K.; Hryniewicz-Jankowska, A.; Tabola, R.; Stach, K. MMP9: A tough target for targeted therapy for cancer. Cancers 2022, 14, 1847. [Google Scholar] [CrossRef]
- Javid, J.; Mir, R.; Saxena, A. Involvement of CASP3 promoter polymorphism (−1337 C> G) in the development and progression of non-small cell lung cancer. Tumor Biol. 2016, 37, 9255–9262. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, S.; Jiang, L.; Tan, Z.; Wang, J. A systematic pan-cancer analysis of CASP3 as a potential target for immunotherapy. Front. Mol. Biosci. 2022, 9, 776808. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Yang, C.-T.; Jablons, D.M.; You, L. The crosstalk between Src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC). Cancers 2020, 12, 1361. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, S.I.; Gautschi, O. Src tyrosine kinase inhibitors in the treatment of lung cancer: Rationale and clinical data. Clin. Investig. 2012, 2, 387–396. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, B.; Li, L.; Su, Z.; Pu, W.; Zhao, C.; Wei, L.; Lian, P.; Lu, R.; Wang, R. Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer. Front. Pharmacol. 2022, 12, 724192. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Gupta, S.; Sharma, S.; Soni, A.; Bagabir, S.A.; Bhattacharyya, M.; Mukherjee, A.; Almalki, A.H.; Alkhanani, M.F.; Haque, S. CDK1 and HSP90AA1 appear as the novel regulatory genes in non-small cell lung cancer: A bioinformatics approach. J. Pers. Med. 2022, 12, 393. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, M.; Li, J.; Fang, T.; Hu, J.; Bai, C. Knockdown of annexin A5 restores gefitinib sensitivity by promoting G2/M cell cycle arrest. Respir. Res. 2018, 19, 96. [Google Scholar] [CrossRef]
- Mathiot, L.; Herbreteau, G.; Robin, S.; Fenat, C.; Bennouna, J.; Blanquart, C.; Denis, M.; Pons-Tostivint, E. HRAS Q61L mutation as a possible target for non-small cell lung cancer: Case series and review of literature. Curr. Oncol. 2022, 29, 3748–3758. [Google Scholar] [CrossRef]
- Lin, X.-M.; Luo, W.; Wang, H.; Li, R.-Z.; Huang, Y.-S.; Chen, L.-K.; Wu, X.-P. The role of prostaglandin-endoperoxide synthase-2 in chemoresistance of non-small cell lung cancer. Front. Pharmacol. 2019, 10, 836. [Google Scholar] [CrossRef]
- Hsu, L.-H.; Chu, N.-M.; Kao, S.-H. Estrogen, estrogen receptor and lung cancer. Int. J. Mol. Sci. 2017, 18, 1713. [Google Scholar] [CrossRef] [PubMed]
- Alevizakos, M.; Kaltsas, S.; Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother. Pharmacol. 2013, 72, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Guo, G.; Gerber, D.E.; Gao, B.; Peyton, M.; Huang, C.; Minna, J.D.; Hatanpaa, K.J.; Kernstine, K.; Cai, L. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J. Clin. Investig. 2018, 128, 2500–2518. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef]
- Girondel, C.; Meloche, S. Interleukin-17 receptor D in physiology, inflammation and cancer. Front. Oncol. 2021, 11, 656004. [Google Scholar] [CrossRef]
- Mikkola, T.; Almahmoudi, R.; Salo, T.; Al-Samadi, A. Variable roles of interleukin-17F in different cancers. BMC Cancer 2022, 22, 54. [Google Scholar] [CrossRef]
- Rex, D.; Dagamajalu, S.; Gouda, M.M.; Suchitha, G.; Chanderasekaran, J.; Raju, R.; Prasad, T.K.; Bhandary, Y.P. A comprehensive network map of IL-17A signaling pathway. J. Cell Commun. Signal. 2023, 17, 209–215. [Google Scholar] [CrossRef]
- Hayashi, S.-i.; Yamaguchi, Y. Estrogen signaling pathway and hormonal therapy. Breast Cancer 2008, 15, 256–261. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Wang, J.; Zhang, T.; Xu, D.; Hu, W.; Feng, Z. The interplay between tumor suppressor p53 and hypoxia signaling pathways in cancer. Front. Cell Dev. Biol. 2021, 9, 648808. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, J.; Zhang, C. Synthesis, regulatory factors, and signaling pathways of estrogen in the ovary. Reprod. Sci. 2023, 30, 350–360. [Google Scholar] [CrossRef]
- Lin, J.; Lu, A. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 1997, 49, 403–449. [Google Scholar]
- Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018, 13, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Demirtürk, E.; Ugur Kaplan, A.B.; Cetin, M.; Akıllıoğlu, K.; Dönmez Kutlu, M.; Köse, S.; Aksu, F. Assessment of pharmacokinetic parameters of daidzein-containing nanosuspension and nanoemulsion formulations after oral administration to rats. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 247–257. [Google Scholar] [CrossRef]
- Montalesi, E.; Cipolletti, M.; Cracco, P.; Fiocchetti, M.; Marino, M. Divergent Effects of Daidzein and its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Gercel-Taylor, C.; Feitelson, A.K.; Taylor, D.D. Inhibitory effect of genistein and daidzein on ovarian cancer cell growth. Anticancer. Res. 2004, 24, 795–800. [Google Scholar] [PubMed]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxidative Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- Hershberger, P.; Siegfried, J. Estrogen Receptor Signaling in Lung Cancer. In Cell Signaling & Molecular Targets in Cancer; Springer: New York, NY, USA, 2011; pp. 191–210. [Google Scholar]
- Tang, H.; Liao, Y.; Chen, G.; Xu, L.; Zhang, C.; Ju, S.; Zhou, S. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-β. Med. Oncol. 2012, 29, 2640–2648. [Google Scholar] [CrossRef]
- Fan, S.; Liao, Y.; Qiu, W.; Huang, Q.; Xiao, H.; Liu, C.; Li, D.; Cao, X.; Li, L.; Liang, H. Estrogen promotes the metastasis of non-small cell lung cancer via estrogen receptor β by upregulation of Toll-like receptor 4 and activation of the myd88/NF-κB/MMP2 pathway. Oncol. Rep. 2020, 43, 2105–2119. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, X.; Zhang, Y.; Qiao, J.; Sasano, H.; McNamara, K.; Zhao, B.; Zhang, D.; Fan, Y.; Liu, L. Estradiol-induced MMP-9 expression via PELP1-mediated membrane-initiated signaling in ERα-positive breast cancer cells. Horm. Cancer 2020, 11, 87–96. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Compound Name | MW | MF | Canonical Smile |
---|---|---|---|---|
1 | Daidzein | 254.24 g/mol | C15H10O4 | C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)O)O |
2 | Genistein | 270.24 g/mol | C15H10O5 | C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O |
3 | Glycitein | 284.26 g/mol | C16H12O5 | COC1=C(C=C2C(=C1)C(=O)C(=CO2)C3=CC=C(C=C3) O)O |
4 | Malonylgenistin | 518.4 g/mol | C24H22O13 | C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)OC4C (C(C(C(O4)COC(=O)CC(=O)O)O)O)O)O |
5 | Genistin | 432.4 g/mol | C21H20O10 | C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)OC4C (C(C(C(O4)CO)O)O)O)O |
6 | Malonyldaidzin | 502.4 g/mol | C24H22O12 | C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)OC4C(C (C(C(O4)COC(=O)CC(=O)O)O)O)O)O |
Sr. No. | Genes | Degree | Subgraph | Betweenness | Closeness |
---|---|---|---|---|---|
1 | TP53 | 93 | 1.70309E+16 | 1810.2233 | 0.30588236 |
2 | AKT1 | 85 | 1.50395E+16 | 1209.3981 | 0.30023095 |
3 | ALB | 84 | 1.45701E+16 | 1478.0452 | 0.29885057 |
4 | EGFR | 79 | 1.42350E+16 | 767.9312 | 0.29411766 |
5 | HSP90AA1 | 74 | 1.33435E+16 | 759.32733 | 0.29213482 |
6 | TNF | 74 | 1.30945E+16 | 661.356 | 0.29147983 |
7 | HRAS | 74 | 1.35786E+16 | 549.0256 | 0.29082775 |
8 | SRC | 72 | 1.37217E+16 | 405.83185 | 0.2888889 |
9 | CASP3 | 71 | 1.36318E+16 | 412.17584 | 0.29017857 |
10 | ESR1 | 70 | 1.25796E+16 | 633.2289 | 0.28761062 |
11 | IGF1 | 61 | 1.10979E+16 | 277.7639 | 0.2832244 |
12 | MMP9 | 59 | 1.03265E+16 | 269.15085 | 0.28199565 |
13 | PTGS2 | 56 | 9.70134E+15 | 210.61162 | 0.2801724 |
14 | RHOA | 52 | 8.16216E+15 | 242.6943 | 0.27542374 |
15 | BCL2L1 | 50 | 9.06884E+15 | 108.008354 | 0.2760085 |
16 | ANXA5 | 50 | 9.48677E+15 | 84.69625 | 0.2760085 |
17 | PPARG | 49 | 7.89432E+15 | 152.48575 | 0.27542374 |
18 | MDM2 | 47 | 7.67214E+15 | 143.88704 | 0.27310926 |
19 | MMP2 | 47 | 7.70540E+15 | 102.22551 | 0.2736842 |
20 | MAPK8 | 45 | 7.24961E+15 | 159.74908 | 0.2725367 |
21 | CAT | 44 | 5.77340E+15 | 371.0654 | 0.2736842 |
22 | MAPK14 | 44 | 6.64498E+15 | 191.85359 | 0.2725367 |
23 | KDR | 43 | 6.42202E+15 | 77.25879 | 0.26915115 |
24 | IGF1R | 42 | 7.03299E+15 | 61.846313 | 0.27083334 |
25 | SIRT1 | 42 | 6.57843E+15 | 140.43245 | 0.27139875 |
26 | MAP2K1 | 39 | 6.27801E+15 | 48.690422 | 0.26804122 |
27 | JAK2 | 39 | 5.92678E+15 | 45.057877 | 0.26639345 |
28 | GSK3B | 38 | 5.85577E+15 | 62.118233 | 0.26859504 |
29 | IL2 | 37 | 5.63596E+15 | 53.313896 | 0.26859504 |
30 | MET | 37 | 5.14777E+15 | 47.117413 | 0.26530612 |
31 | PTPN11 | 37 | 4.66587E+15 | 83.82157 | 0.26694044 |
32 | MCL1 | 36 | 5.70959E+15 | 23.01386 | 0.26530612 |
33 | KIT | 36 | 4.97521E+15 | 37.521946 | 0.26530612 |
34 | HMOX1 | 36 | 3.76490E+15 | 423.8162 | 0.26804122 |
35 | AKT2 | 34 | 4.84180E+15 | 38.98536 | 0.26530612 |
36 | XIAP | 34 | 4.75574E+15 | 66.42771 | 0.26639345 |
37 | RAF1 | 32 | 3.72559E+15 | 44.643333 | 0.26262626 |
38 | CDK2 | 31 | 3.69572E+15 | 63.396782 | 0.2631579 |
39 | TERT | 31 | 3.84351E+15 | 67.03833 | 0.2631579 |
40 | PARP1 | 31 | 4.07886E+15 | 32.731937 | 0.26476577 |
41 | ABL1 | 31 | 3.41464E+15 | 43.111977 | 0.2615694 |
42 | SERPINE1 | 30 | 3.35331E+15 | 46.154045 | 0.2636917 |
43 | GSTP1 | 29 | 1.44186E+15 | 219.61592 | 0.26584867 |
44 | SOD2 | 28 | 2.63405E+15 | 253.57841 | 0.2636917 |
45 | MMP7 | 27 | 3.03206E+15 | 27.786367 | 0.26052105 |
46 | ABCB1 | 27 | 2.60193E+15 | 63.017616 | 0.26262626 |
47 | PRKCA | 26 | 2.65481E+15 | 40.49914 | 0.25948104 |
48 | ERBB4 | 25 | 2.46818E+15 | 16.559324 | 0.25742576 |
49 | ACE | 25 | 2.32904E+15 | 53.887497 | 0.2615694 |
50 | ESR2 | 25 | 2.77889E+15 | 89.329414 | 0.26052105 |
51 | CDK6 | 25 | 2.86819E+15 | 13.577173 | 0.26 |
52 | PLAU | 24 | 2.59795E+15 | 15.441549 | 0.25948104 |
53 | NQO1 | 24 | 1.84276E+15 | 101.50741 | 0.26052105 |
54 | MMP1 | 24 | 2.40993E+15 | 14.511479 | 0.26 |
55 | TYMS | 24 | 7.98944E+14 | 325.19824 | 0.25896415 |
56 | FGFR1 | 23 | 2.36267E+15 | 10.2922325 | 0.25844932 |
57 | IGFBP3 | 22 | 2.32580E+15 | 7.1022153 | 0.2579365 |
58 | NOS2 | 22 | 2.14672E+15 | 16.07283 | 0.26052105 |
59 | RAC1 | 22 | 1.68039E+15 | 21.24138 | 0.2524272 |
60 | ABCG2 | 22 | 1.74603E+15 | 37.594463 | 0.26 |
61 | AHR | 22 | 1.66178E+15 | 42.12418 | 0.26 |
62 | EIF4E | 20 | 2.10336E+15 | 2.9916174 | 0.25641027 |
63 | ALK | 20 | 1.55143E+15 | 24.844717 | 0.2579365 |
64 | PIK3CG | 19 | 1.76235E+15 | 3.1658723 | 0.25390625 |
65 | PLK1 | 19 | 1.42448E+15 | 19.416132 | 0.256917 |
66 | GART | 18 | 4.12615E+14 | 142.35718 | 0.25490198 |
67 | LGALS3 | 18 | 1.53411E+15 | 33.23837 | 0.25742576 |
68 | BRAF | 18 | 1.21536E+15 | 9.635091 | 0.2534113 |
69 | CTNNA1 | 17 | 9.45736E+14 | 9.677067 | 0.24667932 |
70 | VDR | 17 | 1.24125E+15 | 38.346687 | 0.25540274 |
71 | ADAM17 | 17 | 1.03272E+15 | 27.434246 | 0.25291827 |
72 | CYP1B1 | 17 | 5.92961E+14 | 53.069645 | 0.25291827 |
73 | ARG1 | 17 | 8.11169E+14 | 160.89526 | 0.25390625 |
74 | AURKA | 17 | 1.21561E+15 | 13.74725 | 0.2534113 |
75 | FGFR2 | 17 | 1.17520E+15 | 2.511399 | 0.2504817 |
76 | RHEB | 17 | 1.20739E+15 | 4.2154365 | 0.2524272 |
77 | CSK | 16 | 1.20519E+15 | 3.0542948 | 0.2504817 |
78 | GSTM1 | 16 | 5.24847E+14 | 38.11805 | 0.2559055 |
79 | TGFBR2 | 16 | 1.32542E+15 | 3.1019523 | 0.25440314 |
80 | AXL | 16 | 1.19384E+15 | 5.4183025 | 0.2514507 |
81 | CYP19A1 | 16 | 1.35939E+15 | 3.7160077 | 0.25540274 |
82 | SERPINA1 | 15 | 5.03674E+14 | 47.63756 | 0.24952015 |
83 | DHFR | 15 | 5.34485E+14 | 81.25459 | 0.25641027 |
84 | CA9 | 15 | 1.04730E+15 | 46.289696 | 0.25390625 |
85 | BCL2 | 15 | 1.15746E+15 | 1.0431849 | 0.25096524 |
86 | AHCY | 15 | 8.65762E+13 | 173.01955 | 0.24436091 |
87 | CXCR2 | 14 | 1.02009E+15 | 4.7516828 | 0.2534113 |
88 | TPI1 | 14 | 1.48572E+14 | 95.91854 | 0.2524272 |
89 | MMP13 | 14 | 1.00270E+15 | 1.3570788 | 0.2524272 |
90 | EPHA2 | 14 | 9.88097E+14 | 2.7505817 | 0.25096524 |
91 | ELANE | 13 | 5.21488E+14 | 5.72029 | 0.24809161 |
92 | ALOX5 | 12 | 5.73864E+14 | 11.384069 | 0.251938 |
93 | ABCC1 | 12 | 6.35524E+14 | 2.7090664 | 0.25390625 |
94 | PRKCE | 12 | 6.03043E+14 | 1.6471758 | 0.24574669 |
95 | PON1 | 11 | 2.56962E+14 | 11.408818 | 0.24528302 |
96 | TK1 | 11 | 7.71143E+13 | 59.961258 | 0.24436091 |
97 | MMP12 | 10 | 3.26467E+14 | 3.6299863 | 0.24436091 |
98 | None | 10 | 1.69141E+14 | 23.737284 | 0.24856597 |
99 | TTR | 10 | 1.84150E+14 | 28.287405 | 0.24574669 |
100 | MAPKAPK2 | 9 | 4.17365E+14 | 1.1214042 | 0.24904214 |
101 | GSTM2 | 9 | 2.13918E+14 | 3.2141564 | 0.24856597 |
102 | DAPK1 | 9 | 3.42158E+14 | 4.8307686 | 0.24809161 |
103 | RARB | 9 | 1.69496E+14 | 12.325137 | 0.24856597 |
104 | KIF5B | 9 | 2.27112E+14 | 5.4027066 | 0.23853211 |
105 | None | 8 | 1.54169E+14 | 28.305624 | 0.24714829 |
106 | CRYZ | 8 | 5.75053E+13 | 16.664522 | 0.22530329 |
107 | PPIA | 8 | 3.42044E+14 | 1.9932245 | 0.24856597 |
108 | CES1 | 7 | 1.05845E+14 | 15.055967 | 0.24074075 |
109 | IMPDH2 | 7 | 2.41610E+13 | 35.958282 | 0.24074075 |
110 | FHIT | 7 | 1.66404E+14 | 2.121033 | 0.24482109 |
111 | TNK2 | 7 | 3.15551E+14 | 0.51937443 | 0.24761905 |
112 | GPI | 6 | 1.24437E+13 | 3.1605623 | 0.2249135 |
113 | None | 6 | 3.15992E+13 | 44.775955 | 0.24253732 |
114 | CDA | 6 | 2.41221E+13 | 32.566826 | 0.2416357 |
115 | GC | 6 | 2.50051E+13 | 2.7650793 | 0.23423423 |
116 | SHMT1 | 6 | 6.31168E+12 | 1.602381 | 0.21630615 |
117 | THRB | 6 | 6.41589E+13 | 7.0238786 | 0.24118738 |
118 | CFB | 6 | 4.76834E+13 | 1.9542947 | 0.23593466 |
119 | AZGP1 | 5 | 1.72523E+13 | 0 | 0.23339318 |
120 | PLA2G2A | 5 | 1.38081E+14 | 0.7182914 | 0.24299066 |
121 | SLC6A3 | 4 | 1.00602E+14 | 0.13263159 | 0.24390244 |
122 | AKR1C1 | 4 | 1.99457E+13 | 0.3605042 | 0.2184874 |
123 | UCK2 | 4 | 1.33363E+12 | 1.3484849 | 0.20866774 |
124 | DUSP3 | 4 | 7.62479E+13 | 0.08695652 | 0.23423423 |
125 | SRM | 3 | 1.14269E+12 | 3.9150116 | 0.21207178 |
126 | NQO2 | 2 | 2.88130E+12 | 0 | 0.21276596 |
127 | DOT1L | 2 | 2.71917E+13 | 0 | 0.23593466 |
128 | CA12 | 2 | 1.26821E+13 | 0 | 0.22569445 |
129 | ATOX1 | 2 | 2.22952E+12 | 0.44444445 | 0.21416804 |
130 | TAP1 | 0 | 1.00000E+00 | 0 | 0.007633588 |
131 | ISG20 | 0 | 1.00000E+00 | 0 | 0.007633588 |
Sr. No. | Compound | Degree | Subgraph | Betweenness | Closeness |
---|---|---|---|---|---|
1 | Genistin | 104 | 4.68021088 | 3297.1821 | 0.6974359 |
2 | Genistein | 102 | 4.27065824 | 4020.0435 | 0.6834171 |
3 | Malonylgenistin | 99 | 4.34833952 | 2831.665 | 0.6634147 |
4 | Malonyldaidzin | 99 | 4.34633984 | 2870.7095 | 0.6634147 |
5 | Glycitein | 95 | 3.95949600 | 3162.9502 | 0.6384977 |
6 | Daidzein | 86 | 3.36311648 | 2407.4497 | 0.5887446 |
Sr. No. | Compound | TPSA | C Log Po/w | GI Absorption | BBB Permeant | Lipinski Rule | PAINS #Alerts | Drug-Likeness |
---|---|---|---|---|---|---|---|---|
1 | Daidzein | 70.67 | 2.24 | High | Yes | Yes | 0 | Yes |
2 | Genistein | 90.9 | 2.04 | High | No | Yes | 0 | Yes |
3 | Genistin | 79.9 | 2.3 | High | No | Yes | 0 | Yes |
4 | Glycitein | 213.42 | 0.13 | Low | No | No | 0 | No |
5 | Malonyldaidzin | 170.05 | 0.35 | Low | No | Yes | 0 | Yes |
6 | Malonylgenistin | 193.19 | 0.22 | Low | No | No | 0 | No |
Sr. No. | Compound | LD50 | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | Cytotoxicity |
---|---|---|---|---|---|---|---|
1 | Daidzein | 2430 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
2 | Genistein | 2500 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
3 | Genistin | 2500 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
4 | Glycitein | 2500 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
5 | Malonyldaidzin | 5000 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
6 | Malonylgenistin | 5000 mg/kg | Inactive | Inactive | Inactive | Inactive | Inactive |
Sr. No. | Protein | Receptor–Ligand | Interaction Type | Distance |
---|---|---|---|---|
1 | ALB | A:ARG186:HN—N:UNK1:O | Conventional Hydrogen Bond | 2.89731 |
A:LEU115:CD1—N:UNK1 | Pi–Sigma | 3.99866 | ||
A:TYR138—N:UNK1 | Pi–Pi T-shaped | 5.2795 | ||
A:TYR161—N:UNK1 | Pi–Pi T-shaped | 5.16975 | ||
N:UNK1—A:LEU115 | Pi–Alkyl | 4.36943 | ||
N:UNK1—A:ARG117 | Pi–Alkyl | 5.35004 | ||
N:UNK1—A:LYS137 | Pi–Alkyl | 5.49534 | ||
N:UNK1—A:LEU182 | Pi–Alkyl | 4.9687 | ||
N:UNK1—A:ARG186 | Pi–Alkyl | 5.10462 | ||
2 | ANXA5 | A:ASN232:ND2—UNL1:O | Conventional Hydrogen Bond | 3.0243 |
UNL1:H—A:THR254:OG1 | Conventional Hydrogen Bond | 2.20903 | ||
A:LYS108:NZ—UNL1 | Pi–Cation | 3.9575 | ||
A:LYS108:NZ—UNL1 | Pi–Cation | 4.62916 | ||
A:LYS108:HN—UNL1 | Pi-Donor–Hydrogen Bond | 3.56838 | ||
A:GLN235:NE2—UNL1 | Pi-Donor–Hydrogen Bond | 3.97156 | ||
A:GLU107:C,O;LYS108:N—UNL1 | Amide–Pi Stacked | 4.45834 | ||
UNL1—A:LYS108 | Pi–Alkyl | 4.73111 | ||
UNL1—A:LYS108 | Pi–Alkyl | 4.14464 | ||
3 | CASP3 | UNL1—A:LYS105 | Pi–Alkyl | 5.30293 |
UNL1—A:ARG147 | Pi–Alkyl | 5.1608 | ||
UNL1—A:ARG147 | Pi–Alkyl | 4.14092 | ||
UNL1—A:LYS105 | Pi–Alkyl | 4.38979 | ||
4 | HRAS | A:GLY15:HN—UNL1:O | Conventional Hydrogen Bond | 2.93639 |
UNL1:H—A:ASP119:OD1 | Conventional Hydrogen Bond | 2.16104 | ||
UNL1:H—A:TYR32:O | Conventional Hydrogen Bond | 2.18025 | ||
A:ASP30:CA—UNL1:O | Carbon–Hydrogen Bond | 3.48989 | ||
A:LYS117:NZ—UNL1 | Pi–Cation | 4.71779 | ||
A:PHE28—UNL1 | Pi–Pi T-shaped | 4.82189 | ||
UNL1—A:ALA18 | Pi–Alkyl | 4.3544 | ||
UNL1—A:ALA18 | Pi–Alkyl | 4.95631 | ||
UNL1—A:ALA18 | Pi–Alkyl | 5.43033 | ||
UNL1—A:LYS117 | Pi–Alkyl | 4.23559 | ||
UNL1—A:ALA146 | Pi–Alkyl | 5.42915 | ||
UNL1—A:LYS147 | Pi–Alkyl | 5.43249 | ||
5 | HSP90AA1 | UNL1:H—A:ASP93:OD2 | Conventional Hydrogen Bond | 2.35485 |
A:LEU107:CD2—UNL1 | Pi–Sigma | 3.88062 | ||
A:LEU107:CD2—UNL1 | Pi–Sigma | 3.24717 | ||
A:PHE138—UNL1 | Pi–Pi Stacked | 4.22964 | ||
A:PHE138—UNL1 | Pi–Pi Stacked | 5.49423 | ||
UNL1—A:VAL186 | Pi–Alkyl | 5.23903 | ||
6 | MMP9 | B:LEU418:CD1—UNL1 | Pi–Sigma | 3.69972 |
B:THR426:CG2—UNL1 | Pi–Sigma | 3.62835 | ||
B:HIS401—UNL1 | Pi–Pi Stacked | 5.87543 | ||
B:HIS401—UNL1 | Pi–Pi Stacked | 4.30408 | ||
B:TYR423—UNL1 | Pi–Pi T-shaped | 5.31933 | ||
UNL1—B:LEU397 | Pi–Alkyl | 5.05191 | ||
UNL1—B:VAL398 | Pi–Alkyl | 5.30563 | ||
UNL1—B:ARG424 | Pi–Alkyl | 5.09726 | ||
7 | PTGS2 | B:ARG469:HN—UNL1:O | Conventional Hydrogen Bond | 1.41545 |
UNL1:H—B:GLY135:O | Conventional Hydrogen Bond | 2.22526 | ||
B:CYS47:HN—UNL1 | Pi-Donor–Hydrogen Bond | 2.67525 | ||
B:LEU152:CD2—UNL1 | Pi–Sigma | 3.66252 | ||
UNL1—B:CYS47 | Pi–Alkyl | 5.40895 | ||
UNL1—B:PRO153 | Pi–Alkyl | 4.36592 | ||
UNL1—B:VAL46 | Pi–Alkyl | 5.45328 | ||
UNL1—B:CYS47 | Pi–Alkyl | 4.76239 | ||
UNL1—B:PRO153 | Pi–Alkyl | 4.21059 | ||
8 | SRC | UNL1:H—A:MET341:O | Conventional Hydrogen Bond | 1.98724 |
UNL1:C—A:THR338:OG1 | Carbon–Hydrogen Bond | 3.30631 | ||
A:LEU393:CD1—UNL1 | Pi–Sigma | 3.64069 | ||
A:TYR340—UNL1 | Pi–Pi Stacked | 5.95556 | ||
UNL1—A:VAL281 | Pi–Alkyl | 5.42465 | ||
UNL1—A:ALA293 | Pi–Alkyl | 3.82388 | ||
UNL1—A:LEU273 | Pi–Alkyl | 5.40809 | ||
UNL1—A:ALA293 | Pi–Alkyl | 4.88406 | ||
UNL1—A:LEU393 | Pi–Alkyl | 4.89681 | ||
UNL1—A:LYS295 | Pi–Alkyl | 4.75793 | ||
9 | TNF | UNL1:H—A:LYS128:O | Conventional Hydrogen Bond | 2.61045 |
A:GLU127:OE1—UNL1 | Pi–Anion | 4.79338 | ||
A:TYR87—UNL1 | Pi–Pi Stacked | 4.12668 | ||
A:TYR87—UNL1 | Pi–Pi Stacked | 3.71965 | ||
10 | TP53 | A:ARG10:HH2—UNL1:O | Conventional Hydrogen Bond | 2.76819 |
UNL1:C—A:ASN17:O | Carbon Hydrogen Bond | 3.39087 | ||
UNL1—A:LYS20 | Pi–Alkyl | 5.48083 |
Sr. No. | Pa | Pi | Activity |
---|---|---|---|
1 | 0.967 | 0.002 | Aldehyde oxidase inhibitor |
2 | 0.960 | 0.001 | Histidine kinase inhibitor |
3 | 0.915 | 0.005 | HIF1A expression inhibitor |
4 | 0.887 | 0.014 | Membrane integrity agonist |
5 | 0.864 | 0.002 | MMP9 expression inhibitor |
6 | 0.850 | 0.005 | Membrane permeability inhibitor |
7 | 0.836 | 0.003 | Antimutagenic |
8 | 0.831 | 0.002 | AR expression inhibitor |
9 | 0.771 | 0.014 | TP53 expression enhancer |
10 | 0.756 | 0.001 | RELA expression inhibitor |
11 | 0.755 | 0.010 | Apoptosis agonist |
12 | 0.740 | 0.013 | JAK2 expression inhibitor |
13 | 0.712 | 0.007 | HMOX1 expression enhancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhalifa, A.E.O.; Banu, H.; Khan, M.I.; Ashraf, S.A. Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer. Nutrients 2023, 15, 3949. https://doi.org/10.3390/nu15183949
Elkhalifa AEO, Banu H, Khan MI, Ashraf SA. Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer. Nutrients. 2023; 15(18):3949. https://doi.org/10.3390/nu15183949
Chicago/Turabian StyleElkhalifa, Abd Elmoneim O., Humera Banu, Mohammad Idreesh Khan, and Syed Amir Ashraf. 2023. "Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer" Nutrients 15, no. 18: 3949. https://doi.org/10.3390/nu15183949
APA StyleElkhalifa, A. E. O., Banu, H., Khan, M. I., & Ashraf, S. A. (2023). Integrated Network Pharmacology, Molecular Docking, Molecular Simulation, and In Vitro Validation Revealed the Bioactive Components in Soy-Fermented Food Products and the Underlying Mechanistic Pathways in Lung Cancer. Nutrients, 15(18), 3949. https://doi.org/10.3390/nu15183949