Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Dietary Data Collection and Computation of Three Different Pro-Vegetarian Food Patterns
2.3. Baseline Covariate Assessment
2.4. Outcome Definition and Assessment
3. Statistical Analysis
4. Results
Subgroup and Sensitivity Analyses
5. Discussion
6. Strengths and Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cancer Prevention. Available online: https://www.who.int/health-topics/cancer#tab=tab_2 (accessed on 17 July 2023).
- World Cancer Research Fund. American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective A Summary of the Third Expert Report 2018. Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf (accessed on 17 July 2023).
- Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive Compounds: Natural Defense Against Cancer? Biomolecules 2019, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An Updated Systematic Review and Meta-Analysis on Adherence to Mediterranean Diet and Risk of Cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and Potential Health Benefits of the Mediterranean Diet: Views from Experts around the World. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, S.M.; Rosenfeld, D.L.; Moreira, A.V.B.; Zandonadi, R.P. Plant-Based and Vegetarian Diets: An Overview and Definition of These Dietary Patterns. Eur. J. Nutr. 2023, 62, 1109–1121. [Google Scholar] [CrossRef]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.L. Health Outcomes Associated with Vegetarian Diets: An Umbrella Review of Systematic Reviews and Meta-Analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lamuela-Raventós, R.M.; Schröder, H.; et al. A Provegetarian Food Pattern and Reduction in Total Mortality in the Prevención Con Dieta Mediterránea (PREDIMED) Study. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 320S–328S. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.A.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef]
- Baden, M.Y.; Liu, G.; Satija, A.; Li, Y.; Sun, Q.; Fung, T.T.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Changes in Plant-Based Diet Quality and Total and Cause-Specific Mortality. Circulation 2019, 140, 979–991. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Giovannucci, E.L. Plant-Based Diet Quality and the Risk of Total and Disease-Specific Mortality: A Population-Based Prospective Study. Clin. Nutr. 2021, 40, 5718–5725. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shen, J.; Xuan, J.; Zhu, A.; Ji, J.S.; Liu, X.; Cao, Y.; Zong, G.; Zeng, Y.; Wang, X.; et al. Plant-Based Dietary Patterns in Relation to Mortality among Older Adults in China. Nat. Aging 2022, 2, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, X.; Wang, Y.; Zhang, Z.; Zhu, Y.; Li, X.; Hu, A.; Zhao, Q.; Yang, W. A Prospective Study of Healthful and Unhealthful Plant-Based Diet and Risk of Overall and Cause-Specific Mortality. Eur. J. Nutr. 2022, 61, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Mahamat-Saleh, Y.; Ait-Hadad, W.; Koemel, N.A.; Varraso, R.; Boutron-Ruault, M.C.; Laouali, N. Long-Term Adherence to Healthful and Unhealthful Plant-Based Diets and Breast Cancer Risk Overall and by Hormone Receptor and Histologic Subtypes among Postmenopausal Females. Am. J. Clin. Nutr. 2023, 117, 467–476. [Google Scholar] [CrossRef]
- Weston, L.J.; Kim, H.; Talegawkar, S.A.; Tucker, K.L.; Correa, A.; Rebholz, C.M. Plant-Based Diets and Incident Cardiovascular Disease and All-Cause Mortality in African Americans: A Cohort Study. PLoS Med. 2022, 19, e1003863. [Google Scholar] [CrossRef]
- Kane-Diallo, A.; Srour, B.; Sellem, L.; Deschasaux, M.; Latino-Martel, P.; Hercberg, S.; Galan, P.; Fassier, P.; Guéraud, F.; Pierre, F.H.; et al. Association between a pro Plant-Based Dietary Score and Cancer Risk in the Prospective NutriNet-Santé Cohort. Int. J. Cancer 2018, 143, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Romanos-Nanclares, A.; Toledo, E.; Sánchez-Bayona, R.; Sánchez-Quesada, C.; Martínez-González, M.Á.; Gea, A. Healthful and Unhealthful Provegetarian Food Patterns and the Incidence of Breast Cancer: Results from a Mediterranean Cohort. Nutrition 2020, 79–80, 110884. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Fu, B.C.; Bauer, S.R.; Pernar, C.H.; Chan, J.M.; Van Blarigan, E.L.; Giovannucci, E.L.; Kenfield, S.A.; Mucci, L.A. Association of Plant-Based Diet Index with Prostate Cancer Risk. Am. J. Clin. Nutr. 2022, 115, 662–670. [Google Scholar] [CrossRef]
- Oncina-Cánovas, A.; González-Palacios, S.; Notario-Barandiaran, L.; Torres-Collado, L.; Signes-Pastor, A.; de-Madaria, E.; Santibañez, M.; García-de la Hera, M.; Vioque, J. Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study). Nutrients 2022, 14, 5288. [Google Scholar] [CrossRef]
- Thompson, A.S.; Tresserra-Rimbau, A.; Karavasiloglou, N.; Jennings, A.; Cantwell, M.; Hill, C.; Perez-Cornago, A.; Bondonno, N.P.; Murphy, N.; Rohrmann, S.; et al. Association of Healthful Plant-Based Diet Adherence with Risk of Mortality and Major Chronic Diseases Among Adults in the UK. JAMA Netw. Open 2023, 6, e234714. [Google Scholar] [CrossRef]
- Iacoviello, L.; Bonanni, A.; Costanzo, S.; Curtis, A.; Castelnuovo, A.; Olivieri, M.; Zito, F.; Donati, M.B.; Gaetano, G. The Moli-Sani Project, a Randomized, Prospective Cohort Study in the Molise Region in Italy; Design, Rationale and Objectives. Ital. J. Public Health 2007, 4, 110–118. [Google Scholar]
- Pisani, P.; Faggiano, F.; Krogh, V.; Palli, D.; Vineis, P.; Berrino, F. Relative Validity and Reproducibility of a Food Frequency Dietary Questionnaire for Use in the Italian EPIC Centres. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S152. [Google Scholar] [CrossRef] [PubMed]
- Salvini, S.; Parpinel, M.; Gnagnarella, P.; Maissoneuve, P.; Turrini, A. Banca Dati Tabella Di Composizione Degli Alimenti—Tabella Di Composizione Degli Alimenti—CREA. Available online: https://www.crea.gov.it/-/tabella-di-composizione-degli-alimenti (accessed on 24 November 2022).
- Pala, V.; Sieri, S.; Palli, D.; Salvini, S.; Berrino, F.; Bellegotti, M.; Frasca, G.; Tumino, R.; Sacerdote, C.; Fiorini, L.; et al. Diet in the Italian Epic Cohorts: Presentation of Data and Methodological Issues. Tumori J. 2018, 89, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Thiene, D.D.; Cimmuto, A.D.; Masala, D.; Vito, E.; Torre, G. International Physical Activity Questionnaire: Validation and Assessment in an Italian Sample. Ital. J. Public. Health 2010, 7, 369–376. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, J.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An Update of Activity Codes and MET Intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef]
- Hernán, M.A.; Hernández-Diaz, S.; Werler, M.M.; Mitchell, A.A. Causal Knowledge as a Prerequisite for Confounding Evaluation: An Application to Birth Defects Epidemiology. Am. J. Epidemiol. 2002, 155, 176–184. [Google Scholar] [CrossRef]
- Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E. Breast Cancer Risk Factors. Prz. Menopauzalny 2015, 14, 196. [Google Scholar] [CrossRef]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological Characteristics of and Risk Factors for Breast Cancer in the World. Breast Cancer Targets Ther. 2019, 11, 151. [Google Scholar] [CrossRef]
- Risk Factors for Cancer—NCI. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk (accessed on 7 July 2023).
- Correlation and Regression. Available online: https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression (accessed on 27 July 2023).
- Chang, C.P.; Meyers, T.J.; Fu, A.; Zhang, M.Y.; Tashkin, D.P.; Rao, J.Y.; Cozen, W.; Mack, T.M.; Hashibe, M.; Morgenstern, H.; et al. Dietary Glycemic Index, Glycemic Load, and Lung Cancer Risk: A Case-Control Study in Los Angeles County. Cancer Epidemiol. 2020, 69, 101824. [Google Scholar] [CrossRef]
- Du, H.; Zhang, T.; Lu, X.; Chen, M.; Li, X.; Li, Z. Glycemic Index, Glycemic Load, and Lung Cancer Risk: A Meta-Analysis of Cohort and Case-Control Studies. PLoS ONE 2022, 17, e0273943. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Donoso, C.; Martínez-González, M.Á.; Martínez, J.A.; Gea, A.; Sanz-Serrano, J.; Perez-Cueto, F.J.A.; Bes-Rastrollo, M. A Provegetarian Food Pattern Emphasizing Preference for Healthy Plant-Derived Foods Reduces the Risk of Overweight/Obesity in the SUN Cohort. Nutrients 2019, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- Maru, G.B.; Hudlikar, R.R.; Kumar, G.; Gandhi, K.; Mahimkar, M.B. Understanding the Molecular Mechanisms of Cancer Prevention by Dietary Phytochemicals: From Experimental Models to Clinical Trials. World J. Biol. Chem. 2016, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.S. Dietary Carotenoids, Connexins and Cancer: What Is the Connection? Biochem. Soc. Trans. 2004, 32, 985–989. [Google Scholar] [CrossRef]
- Toledo, E.; Salas-Salvado, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fito, M.; Hu, F.B.; Aros, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef]
- Farvid, M.S.; Cho, E.; Eliassen, A.H.; Chen, W.Y.; Willett, W.C. Lifetime Grain Consumption and Breast Cancer Risk. Breast Cancer Res. Treat. 2016, 159, 335–345. [Google Scholar] [CrossRef]
- Kang, J.H.; Peng, C.; Rhee, J.J.; Farvid, M.S.; Willett, W.C.; Hu, F.B.; Rosner, B.A.; Tamimi, R.; Heather Eliassen, A. Prospective Study of a Diabetes Risk Reduction Diet and the Risk of Breast Cancer. Am. J. Clin. Nutr. 2020, 112, 1492–1503. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Ma, S.; Zheng, R.; Zhao, P.; Zhang, L.; Liu, Y.; Yu, Q.; Deng, Q.; Zhang, K. Dietary Fibre Intake and Risk of Breast Cancer: A Systematic Review and Meta-Analysis of Epidemiological Studies. Oncotarget 2016, 7, 80980–80989. [Google Scholar] [CrossRef]
- Romanos-Nanclares, A.; Collins, L.C.; Hu, F.B.; Willett, W.C.; Rosner, B.A.; Toledo, E.; Eliassen, A.H. Sugar-Sweetened Beverages, Artificially Sweetened Beverages, and Breast Cancer Risk: Results from 2 Prospective US Cohorts. J. Nutr. 2021, 151, 2768–2779. [Google Scholar] [CrossRef]
- Schernhammer, E.S.; Bertrand, K.A.; Birmann, B.M.; Sampson, L.; Willett, W.C.; Feskanich, D. Consumption of Artificial Sweetener- and Sugar-Containing Soda and Risk of Lymphoma and Leukemia in Men and Women. Am. J. Clin. Nutr. 2012, 96, 1419–1428. [Google Scholar] [CrossRef]
- Romanos-Nanclares, A.; Toledo, E.; Gardeazabal, I.; Jiménez-Moleón, J.J.; Martínez-González, M.A.; Gea, A. Sugar-Sweetened Beverage Consumption and Incidence of Breast Cancer: The Seguimiento Universidad de Navarra (SUN) Project. Eur. J. Nutr. 2019, 58, 2875–2886. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Johnson, T.; Tikk, K.; Sookthai, D.; Tjønneland, A.; Roswall, N.; Overvad, K.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Dossus, L.; et al. Insulin-like Growth Factor I and Risk of Breast Cancer by Age and Hormone Receptor Status—A Prospective Study within the EPIC Cohort. Int. J. Cancer 2014, 134, 2683–2690. [Google Scholar] [CrossRef] [PubMed]
- Duchaine, C.S.; Dumas, I.; Diorio, C. Consumption of Sweet Foods and Mammographic Breast Density: A Cross-Sectional Study. BMC Public. Health 2014, 14, 554. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sayón-Orea, C.; Bullón-Vela, V.; Bes-Rastrollo, M.; Rodríguez-Artalejo, F.; Yusta-Boyo, M.J.; García-Solano, M. Effect of Olive Oil Consumption on Cardiovascular Disease, Cancer, Type 2 Diabetes, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 2659–2682. [Google Scholar] [CrossRef]
- Watling, C.Z.; Schmidt, J.A.; Dunneram, Y.; Tong, T.Y.N.; Kelly, R.K.; Knuppel, A.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Risk of Cancer in Regular and Low Meat-Eaters, Fish-Eaters, and Vegetarians: A Prospective Analysis of UK Biobank Participants. BMC Med. 2022, 20, 73. [Google Scholar] [CrossRef]
- Alexander, D.D.; Morimoto, L.M.; Mink, P.J.; Cushing, C.A. A Review and Meta-Analysis of Red and Processed Meat Consumption and Breast Cancer. Nutr. Res. Rev. 2010, 23, 349–365. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund International. Meat, Fish, Dairy and Cancer Risk—WCRF International. Available online: https://www.wcrf.org/diet-activity-and-cancer/risk-factors/meat-fish-dairy-and-cancer-risk/ (accessed on 17 July 2023).
- Koyratty, N.; McCann, S.E.; Millen, A.E.; Nie, J.; Trevisan, M.; Freudenheim, J.L. Sugar-Sweetened Soda Consumption and Total and Breast Cancer Mortality: The Western New York Exposures and Breast Cancer (WEB) Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial Sweeteners and Cancer Risk: Results from the NutriNet-Santé Population-Based Cohort Study. PLoS Med. 2022, 19, e1003950. [Google Scholar] [CrossRef]
- Chazelas, E.; Pierre, F.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo De Edelenyi, F.; Agaesse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; Srour, B.; et al. Nitrites and Nitrates from Food Additives and Natural Sources and Cancer Risk: Results from the NutriNet-Santé Cohort. Int. J. Epidemiol. 2022, 51, 1106–1119. [Google Scholar] [CrossRef]
- Adani, G.; Filippini, T.; Wise, L.A.; Halldorsson, T.I.; Blaha, L.; Vinceti, M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose⇓response Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Paula Martins, A.; Canella, D.; Louzada, M.; Parra Also with Camila Ricardo, D.; Calixto, G.; et al. NOVA. The Star Shines Bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Monteiro, C.A. Nutrition and Health. The Issue Is Not Food, nor Nutrients, so Much as Processing. Public. Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Edefonti, V.; De Vito, R.; Salvatori, A.; Bravi, F.; Patel, L.; Dalmartello, M.; Ferraroni, M. Reproducibility of A Posteriori Dietary Patterns across Time and Studies: A Scoping Review. Adv. Nutr. 2020, 11, 1255–1281. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Slimani, N.; Riboli, E. Pilot Phase Studies on the Accuracy of Dietary Intake Measurements in the EPIC Project: Overall Evaluation of Results. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26, S26–S36. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
Component | Included Foods | General Pro-Vegetarian | Healthful Pro-Vegetarian | Unhealthful Pro-Vegetarian |
---|---|---|---|---|
Plant food groups (n = 12) | ||||
1. Vegetables | Spinach, turnip greens, salad, green pepper, pumpkin, tomatoes, carrot, beet, broccoli, brussel sprouts, cauliflower, cabbage, kale, mushrooms, garlic, onions, zucchini, artichoke, fennel, olives | Positive | Positive | Reverse |
2. Fruits | Citrus, apple, pear, banana, kiwi, grape, peach, apricot, prune, strawberries, melon, fruit salad, figs, cherries, persimmon | Positive | Positive | Reverse |
3. Legumes | Beans, chickpeas, lentils, peas, broad beans | Positive | Positive | Reverse |
4. Whole grain | Whole grain bread | Positive | Positive | Reverse |
5. Refined grains | Crispbread/rusks, breakfast cereals, white bread, other bread, rice, pasta, and other grains | Positive | Reverse | Positive |
6. Potatoes | Potatoes | Positive | Reverse | Positive |
7. Nuts and dried fruit | Walnut, hazelnut, almond, peanut, dried fruit | Positive | Positive | Reverse |
8. Olive oil | Common olive oil | Positive | Positive | Reverse |
9. Tea and coffee | Tea, caffeinated coffee, decaffeinated coffee | Not scored | Positive | Reverse |
Fruit juices | Fruit juices | Not scored | Reverse | Positive |
Sugar-sweetened beverages | Carbonated/soft/isotonic drinks, diluted syrups | Not scored | Reverse | Positive |
Sweets and desserts | Chocolate, nut spread, candies, cakes, pies, pastries, puddings (non-milk based), biscuits, dry cakes, honey, jam, and sugar | Not scored | Reverse | Positive |
Animal food groups (n = 5) | ||||
Meat and meat products | Chicken or turkey, rabbit, pork, beef, lamb, veal, offal, ham, cured meats, salami, mortadella, sausage, hamburger | Reverse | Reverse | Reverse |
Animal fats for cooking or as a spread | Butter, another animal fat | Reverse | Reverse | Reverse |
Eggs | Eggs | Reverse | Reverse | Reverse |
Fish and other seafood | Hake, sole, sardines, trout, swordfish, shrimp, prawns, squid, cuttlefish, octopus, clams, stock fish, canned fish | Reverse | Reverse | Reverse |
Milk and dairy products | Whole milk, partially-skimmed or skimmed milk, plain yogurt, low-fat yogurt, fruit yogurt, hard cheese, soft cheese, ice cream | Reverse | Reverse | Reverse |
General Pro-Vegetarian Food Pattern (Quintiles of) | |||||||
---|---|---|---|---|---|---|---|
All | Q1 | Q2 | Q3 | Q4 | Q5 | ||
General pro-vegetarian FP (median, IQR) | 36 (32–40) | 29 (27–30) | 33 (32–34) | 36 (35–37) | 39 (38–40) | 43 (42–45) | <0.0001 |
Healthful pro-vegetarian FP (median, IQR) | 47 (43–51) | 41 (38–44) | 44 (42–47) | 47 (44–50) | 49 (46–52) | 53 (50–56) | <0.0001 |
Unhealthful pro-vegetarian FP (median, IQR) | 47 (43–51) | 47 (43–52) | 47.5 (43–52) | 47 (42–51) | 47 (42–51) | 47 (43–51) | <0.0001 |
Mediterranean diet score (median, IQR) | 4.0 (1.6) | 3.0 (2.0–4.0) | 4.0 (3.0–5.0) | 4.0 (3.0–5.0) | 5.0 (4.0–6.0) | 6.0 (5.0–7.0) | <0.0001 |
No. of subjects (%) | 22,081 | 4720 (21.4) | 4042 (18.3) | 4670 (21.2) | 4037 (18.3) | 4612 (20.9) | - |
Age (years; mean, SD) | 55.2 (11.7) | 52.1 (11.2) | 54.6 (11.8) | 55.6 (11.7) | 56.5 (11.6) | 57.2 (11.3) | <0.0001 |
Men | 48.0 | 48.5 | 46.8 | 48.3 | 47.7 | 48.5 | 0.47 |
Urban residence | 67.0 | 66.1 | 66.6 | 66.8 | 67.4 | 68.2 | 0.64 |
Educational level | 0.073 | ||||||
Up to lower secondary | 52.1 | 50.1 | 51.9 | 51.7 | 53.4 | 53.6 | |
Upper secondary | 35.0 | 36.6 | 35.3 | 35.3 | 34.2 | 33.2 | |
Post-secondary | 12.9 | 13.2 | 12.7 | 12.9 | 12.2 | 13.1 | |
Missing data | 0.1 | 0.02 | 0.1 | 0.1 | 0.2 | 0.1 | |
Housing | <0.0001 | ||||||
Rent | 8.9 | 10.1 | 9.3 | 8.7 | 8.3 | 8.0 | |
One dwelling ownership | 82.2 | 83.0 | 83.2 | 82.1 | 82.5 | 80.2 | |
More than one dwelling ownership | 8.9 | 6.7 | 7.4 | 8.9 | 9.1 | 11.6 | |
Missing data | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | 0.2 | |
Occupational class | 0.0032 | ||||||
Professional/managerial | 20.7 | 19.9 | 19.6 | 20.7 | 21.1 | 21.9 | |
Skilled non-manual occupations | 36.5 | 37.6 | 37.0 | 37.1 | 36.3 | 34.3 | |
Skilled manual occupations | 18.0 | 19.5 | 17.8 | 17.2 | 17.4 | 17.9 | |
Partly skilled/Unskilled | 18.7 | 17.0 | 19.5 | 19.0 | 19.3 | 19.1 | |
Unemployed/unclassified | 6.1 | 6.0 | 6.1 | 6.0 | 5.9 | 6.8 | |
Smoking status | 0.10 | ||||||
Non-smokers | 49.5 | 47.5 | 50.8 | 48.1 | 50.5 | 51.2 | |
Current | 23.3 | 26.8 | 24.0 | 23.8 | 21.1 | 20.4 | |
Former | 27.1 | 25.7 | 25.1 | 28.0 | 28.3 | 28.3 | |
Missing data | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | |
Leisure-time PA, MET-h/day (mean, SD) 2 | 3.6 (4.0) | 3.3 (3.9) | 3.3 (3.7) | 3.5 (3.9) | 3.7 (4.1) | 4.0 (4.5) | <0.0001 |
Body mass index | 0.12 | ||||||
Normal weight | 27.7 | 30.2 | 28.1 | 26.1 | 26.8 | 27.1 | |
Overweight | 42.9 | 41.4 | 43.2 | 43.4 | 43.2 | 43.3 | |
Obese | 29.3 | 28.3 | 28.6 | 30.4 | 29.9 | 29.5 | |
Missing data | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
Cardiovascular disease | 0.0043 | ||||||
Yes | 5.0 | 3.4 | 4.1 | 5.5 | 5.6 | 6.6 | |
Missing data | 1.6 | 1.4 | 1.3 | 1.4 | 1.9 | 1.8 | |
Diabetes | 0.0001 | ||||||
Yes | 4.7 | 3.9 | 5.0 | 5.4 | 5.1 | 4.1 | |
Missing data | 1.3 | 1.4 | 1.3 | 1.1 | 1.3 | 1.1 | |
Hypertension | 0.027 | ||||||
Yes | 27.8 | 21.6 | 25.6 | 29.1 | 31.2 | 31.9 | |
Missing data | 0.7 | 0.8 | 0.8 | 0.8 | 0.6 | 0.6 | |
Hyperlipidemia | <0.0001 | ||||||
Yes | 7.6 | 4.7 | 6.5 | 8.0 | 8.6 | 10.3 | |
Missing data | 0.9 | 0.7 | 0.8 | 0.8 | 0.8 | 1.3 | |
Aspirin use | 0.030 | ||||||
Yes | 4.6 | 2.8 | 4.1 | 4.7 | 5.7 | 5.7 | |
Missing data | 1.9 | 1.6 | 1.6 | 1.8 | 1.8 | 2.5 | |
Menopausal status | 0.91 | ||||||
Yes | 56.4 | 46.4 | 54.4 | 57.3 | 60.9 | 64.1 | |
Missing data | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | |
Hormone replacement therapy | 0.028 | ||||||
Yes | 5.6 | 4.7 | 4.6 | 6.6 | 5.6 | 6.4 | |
Missing data | 0.01 | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | |
Oral contraception use | 0.72 | ||||||
Yes | 28.2 | 31.8 | 28.2 | 28.8 | 26.4 | 25.6 | |
Missing data | 0.02 | 0.04 | 0.05 | 0.0 | 0.0 | 0.0 | |
Family history of cancer | 40.4 | 39.1 | 40.2 | 40.6 | 40.7 | 41.5 | 0.91 |
Quintiles of Dietary Scores | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | P for Trend | 1 SD Increment | |
General pro-vegetarian FP | |||||||
No. of cancer hospitalizations/no. of subjects | 470/4720 | 407/4042 | 485/4670 | 448/4037 | 496/4612 | - | - |
Person-years, n | 58,225 | 49,523 | 57,285 | 49,385 | 57,472 | - | - |
Event rates per 10,000 person-years | 80.7 | 82.2 | 84.7 | 90.7 | 86.3 | - | - |
Model 1 (HR; 95%CI) | -1- | 0.90 (0.79–1.03) | 0.89 (0.78–1.01) | 0.92 (0.80–1.04) | 0.84 (0.74–0.95) | 0.020 | 0.94 (0.90–0.98) |
Model 2 (HR; 95%CI) | -1- | 0.91 (0.80–1.04) | 0.89 (0.78–1.01) | 0.93 (0.82–1.06) | 0.85 (0.75–0.97) | 0.045 | 0.95 (0.91–0.99) |
Healthful pro-vegetarian FP | |||||||
No. of cancer hospitalizations/no. of subjects | 382/4017 | 512/5121 | 465/4263 | 501/4690 | 446/3990 | – | – |
Person-years, n | 48,743 | 62,380 | 52,232 | 58,222 | 50,313 | – | – |
Event rates per 10,000 person-years | 78.4 | 82.1 | 89.0 | 86.0 | 88.6 | – | – |
Model 1 (HR; 95%CI) | -1- | 0.93 (0.82–1.07) | 1.01 (0.88–1.15) | 0.94 (0.83–1.08) | 0.98 (0.85–1.12) | 0.90 | 0.99 (0.95–1.03) |
Model 2 (HR; 95%CI) | -1- | 0.92 (0.80–1.05) | 0.98 (0.85–1.12) | 0.91 (0.80–1.05) | 0.93 (0.81–1.07) | 0.41 | 0.97 (0.93–1.01) |
Unhealthful pro-vegetarian FP | |||||||
No. of cancer hospitalizations/no. of subjects | 474/4427 | 509/4639 | 396/3901 | 490/4752 | 437/4362 | – | – |
Person-years, n | 55,347 | 57,138 | 47,920 | 58,328 | 53,157 | – | – |
Event rates per 10,000 person-years | 85.6 | 89.1 | 82.6 | 84.0 | 82.2 | – | – |
Model 1 (HR; 95%CI) | -1- | 1.04 (0.91–1.17) | 0.97 (0.84–1.10) | 0.97 (0.86–1.10) | 0.97 (0.85–1.11) | 0.41 | 0.99 (0.95–1.03) |
Model 2 (HR; 95%CI) | -1- | 1.05 (0.93–1.19) | 1.00 (0.87–1.14) | 1.01 (0.89–1.15) | 1.04 (0.91–1.18) | 0.85 | 1.01 (0.97–1.06) |
General Pro-Vegetarian FP | Healthful Pro-Vegetarian FP | Unhealthful Pro-Vegetarian FP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. of Cases/ No. of Subjects | HR (95%CI) | p-Value | P for Interaction | HR (95%CI) | p-Value | P for Interaction | HR (95%CI) | p-Value | P for Interaction | |
Subgroup analyses | ||||||||||
Sex | ||||||||||
Men | 1335/10,600 | 0.93 (0.88–0.98) | 0.011 | 0.55 | 0.96 (0.90–1.01) | 0.13 | 0.56 | 1.04 (0.98–1.10) | 0.19 | 0.32 |
Women | 971/11,481 | 0.97 (0.91–1.04) | 0.45 | 0.98 (0.92–1.05) | 0.62 | 1.00 (0.94–1.07) | 0.92 | |||
Age | ||||||||||
<65 y | 1434/17,239 | 0.93 (0.88–0.98) | 0.011 | 0.86 | 0.95 (0.90–1.00) | 0.054 | 0.73 | 1.03 (0.97–1.08) | 0.32 | 0.96 |
≥65 y | 872/4842 | 0.94 (0.88–1.01) | 0.10 | 0.97 (0.91–1.05) | 0.49 | 1.02 (0.95–1.10) | 0.57 | |||
Body mass index | ||||||||||
Normal weight (≤25 kg/m2) | 540/6119 | 0.93 (0.85–1.02) | 0.11 | 0.83 | 0.93 (0.86–1.02) | 0.11 | 0.59 | 1.10 (1.01–1.20) | 0.035 | 0.12 |
Overweight (>25 ≤30 kg/m2) | 991/9473 | 0.95 (0.89–1.02) | 0.14 | 0.98 (0.91–1.04) | 0.47 | 1.01 (0.95–1.08) | 0.68 | |||
Obese (>30 kg/m2) | 775/6489 | 0.96 (0.89–1.04) | 0.31 | 0.99 (0.92–1.07) | 0.89 | 0.96 (0.90–1.04) | 0.33 | |||
Smoking status | ||||||||||
Non-smokers | 919/10,950 | 0.96 (0.90–1.03) | 0.27 | 0.94 | 0.99 (0.92–1.06) | 0.72 | 0.80 | 1.00 (0.94–1.07) | 0.89 | 0.28 |
Current smokers | 588/5140 | 0.93 (0.85–1.01) | 0.076 | 0.97 (0.89–1.05) | 0.42 | 0.98 (0.90–1.07) | 0.69 | |||
Former smokers | 799/5991 | 0.95 (0.89–1.03) | 0.22 | 0.95 (0.88–1.02) | 0.18 | 1.06 (0.99–1.14) | 0.10 | |||
Sensitivity analyses | ||||||||||
Excluding CVD | 2143/20,943 | 0.95 (0.91–0.99) | 0.019 | − | 0.97 (0.93–1.02) | 0.21 | − | 1.00 (0.96–1.05) | 0.84 | − |
Excluding diabetes | 2122/21,010 | 0.94 (0.90–0.98) | 0.0046 | − | 0.96 (0.92–1.01) | 0.11 | − | 1.01 (0.97–1.06) | 0.52 | − |
Excluding early cancer hospitalizations | 2031/21,806 | 0.96 (0.91–1.00) | 0.060 | − | 0.99 (0.94–1.03) | 0.59 | − | 1.00 (0.96–1.05) | 0.85 | − |
General Pro-Vegetarian FP | Healthful Pro-Vegetarian FP | Unhealthful Pro-Vegetarian FP | ||||
---|---|---|---|---|---|---|
Cancer site | 1 SD Increase HR (95%CI) | Q5 vs. Q1 HR (95%CI) | 1 SD Increase HR (95%CI) | Q5 vs. Q1 HR (95%CI) | 1 SD Increase HR (95%CI) | Q5 vs. Q1 HR (95%CI) |
Respiratory tract (n = 183) | 0.88 (0.76–1.03) | 0.61 (0.38–0.98) | 0.87 (0.75–1.02) | 0.70 (0.41–1.19) | 1.14 (0.98–1.33) | 1.68 (1.06–2.68) |
Digestive (n = 598) | 0.88 (0.81–0.96) | 0.74 (0.57–0.95) | 0.92 (0.85–1.00) | 0.76 (0.58–0.99) | 1.00 (0.92–1.08) | 0.92 (0.70–1.21) |
Genitourinary organs (n = 395) | 0.97 (0.87–1.08) | 0.86 (0.63–1.18) | 1.00 (0.90–1.11) | 1.07 (0.76–1.51) | 0.99 (0.90–1.10) | 0.94 (0.68–1.29) |
Breast (n = 285) | 0.98 (0.87–1.10) | 0.94 (0.66–1.36) | 0.98 (0.87–1.10) | 0.85 (0.58–1.24) | 1.09 (0.96–1.22) | 1.40 (0.95–2.05) |
Prostate (n = 219) | 1.08 (0.94–1.24) | 1.37 (0.88–2.13) | 1.07 (0.94–1.23) | 1.37 (0.84–2.23) | 1.03 (0.90–1.19) | 1.21 (0.80–1.82) |
Lymphatic and Hematopoietic Tissue (n = 178) | 1.03 (0.88–1.20) | 1.03 (0.65–1.63) | 1.06 (0.90–1.23) | 1.03 (0.631.71) | 1.04 (0.90–1.22) | 1.24 (0.77–2.00) |
Brain and nervous system (n = 41) | 0.93 (0.68–1.27) | 0.92 (0.37–2.29) | 1.15 (0.85–1.56) | 1.36 (0.54–3.44) | 1.04 (0.76–1.43) | 0.82 (0.31–2.18) |
Other (n = 407) | 0.94 (0.86–1.05) | 0.80 (0.59–1.08) | 0.96 (0.87–1.06) | 1.03 (0.73–1.44) | 0.94 (0.85–1.04) | 0.78 (0.56–1.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, C.F.; Di Castelnuovo, A.; Costanzo, S.; Panzera, T.; Esposito, S.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; et al. Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort. Nutrients 2023, 15, 3976. https://doi.org/10.3390/nu15183976
Martínez CF, Di Castelnuovo A, Costanzo S, Panzera T, Esposito S, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Bonaccio M, et al. Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort. Nutrients. 2023; 15(18):3976. https://doi.org/10.3390/nu15183976
Chicago/Turabian StyleMartínez, Claudia Francisca, Augusto Di Castelnuovo, Simona Costanzo, Teresa Panzera, Simona Esposito, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Licia Iacoviello, Marialaura Bonaccio, and et al. 2023. "Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort" Nutrients 15, no. 18: 3976. https://doi.org/10.3390/nu15183976
APA StyleMartínez, C. F., Di Castelnuovo, A., Costanzo, S., Panzera, T., Esposito, S., Cerletti, C., Donati, M. B., de Gaetano, G., Iacoviello, L., Bonaccio, M., & on behalf of the Moli-Sani Study Investigators. (2023). Pro-Vegetarian Food Patterns and Cancer Risk among Italians from the Moli-Sani Study Cohort. Nutrients, 15(18), 3976. https://doi.org/10.3390/nu15183976