Preventive Roles of Rice-koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rice-koji Extracts (Rice-koji) and Ergothioneine (EGT)
2.2. Quantification of EGT in Rice-koji
2.3. In Vivo Study
2.3.1. Animals
2.3.2. Psychophysical Stress Model
2.3.3. Oral Administration of Rice-koji and EGT
2.3.4. Experimental Design
2.3.5. Anxiety and Cognitive Assessments
- Immobility time during FST
- 2.
- Open field (OF) test
- 3.
- Social interaction (SI) test
- 4.
- Elevated plus maze (EPM) test
- 5.
- Dark and light box (DL) test
- 6.
- Novel object recognition (OR) test
2.3.6. Assessment of the Hindpaw Nociception (Pain-like Behaviors)
- Hindpaw heat sensitivity
- 2.
- Hindpaw mechanical pressure sensitivity
- 3.
- Hindpaw formalin test
2.3.7. c-Fos and FosB Immunohistochemistry (IHC)
2.4. In Vitro Study
2.4.1. Cell Culture of SH-SY5Y
2.4.2. Assessment of Cell Viability
2.4.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Data Analysis
3. Results
3.1. Measurement of Ergothioneine (EGT)
3.2. Effects of Rice-koji and EGT on Anxiety and Recognition
3.2.1. Immobility Time during FST
3.2.2. OF Test
3.2.3. SI Test
3.2.4. EPM Test
3.2.5. DL Test
3.2.6. OR Test
3.3. Effects of Rice-koji and EGT on Pain-like Behaviors
3.3.1. Heat Stimulation
3.3.2. Mechanical Stimulation
3.3.3. Formalin Test
3.4. c-Fos and FosB Immunohistochemistry
3.4.1. PVN
3.4.2. NRM
3.4.3. DH
3.5. MTT Assay
3.6. The Level of BDNF Measured by ELISA
4. Discussion
4.1. Effects of Rice-koji on Anxiety- and Pain-like Behaviors
4.2. Effects of Rice-koji and EGT on c-Fos and FosB Expressions in the PVN, NRM, and DH
4.3. Effects of Rice-koji and EGT on the Neural Function of SH-SY5Y Cells
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarris, J.; O’Neil, A.; Coulson, C.E.; Schweitzer, I.; Berk, M. Lifestyle Medicine for Depression. BMC Psychiatry 2014, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, A.; Enomoto, T.; Oguro, Y.; Kojima-Nakamura, A.; Kodaira, K.; Watanabe, K.; Ozaki, N.; Goto, H.; Hirayama, M. Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults. J. Fungi 2021, 7, 782. [Google Scholar] [CrossRef]
- Murooka, Y.; Yamshita, M. Traditional Healthful Fermented Products of Japan. J. Ind. Microbiol. Biotechnol. 2008, 35, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, A. Ingredients, Functionality, and Safety of the Japanese Traditional Sweet Drink Amazake. J. Fungi 2021, 7, 469. [Google Scholar] [CrossRef]
- Yagi, T.; Ataka, K.; Cheng, K.-C.; Suzuki, H.; Ogata, K.; Yoshizaki, Y.; Takamine, K.; Kato, I.; Miyawaki, S.; Inui, A.; et al. Red Rice Koji Extract Alleviates Hyperglycemia by Increasing Glucose Uptake and Glucose Transporter Type 4 Levels in Skeletal Muscle in Two Diabetic Mouse Models. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef]
- Yoshizaki, Y.; Kawasaki, C.; Cheng, K.-C.; Ushikai, M.; Amitani, H.; Asakawa, A.; Okutsu, K.; Sameshima, Y.; Takamine, K.; Inui, A. Rice Koji Reduced Body Weight Gain, Fat Accumulation, and Blood Glucose Level in High-Fat Diet-Induced Obese Mice. PeerJ 2014, 2, e540. [Google Scholar] [CrossRef]
- Kitagaki, H. Medical Application of Substances Derived from Non-Pathogenic Fungi Aspergillus oryzae and A. luchuensis-Containing Koji. J. Fungi 2021, 7, 243. [Google Scholar] [CrossRef]
- Nakatani, Y.; Kakihara, Y.; Shimizu, S.; Kurose, M.; Sato, T.; Kaneoke, M.; Saeki, M.; Takagi, R.; Yamamura, K.; Okamoto, K. Japanese Rice Wine Can Reduce Psychophysical Stress-Induced Depression-like Behaviors and Fos Expression in the Trigeminal Subnucleus Caudalis Evoked by Masseter Muscle Injury in the Rats. Biosci. Biotechnol. Biochem. 2019, 83, 155–165. [Google Scholar] [CrossRef]
- Shimizu, S.; Nakatani, Y.; Kakihara, Y.; Taiyoji, M.; Saeki, M.; Takagi, R.; Yamamura, K.; Okamoto, K. Daily Administration of Sake Lees (Sake Kasu) Reduced Psychophysical Stress-Induced Hyperalgesia and Fos Responses in the Lumbar Spinal Dorsal Horn Evoked by Noxious Stimulation to the Hindpaw in the Rats. Biosci. Biotechnol. Biochem. 2020, 84, 159–170. [Google Scholar] [CrossRef]
- Ichikawa, E.; Hirata, S.; Hata, Y.; Yazawa, H.; Tamura, H.; Kaneoke, M.; Iwashita, K.; Hirata, D. Effect of Koji Starter on Metabolites in Japanese Alcoholic Beverage Sake Made from the Sake Rice Koshitanrei. Biosci. Biotechnol. Biochem. 2020, 84, 1714–1723. [Google Scholar] [CrossRef]
- Putri Wisman, A.; Tamada, Y.; Hirohata, S.; Fukusaki, E.; Shimma, S. Metabolic Visualization Reveals the Distinct Distribution of Sugars and Amino Acids in Rice Koji. Mass Spectrom 2020, 9, A0089. [Google Scholar] [CrossRef] [PubMed]
- Cheah, I.K.; Halliwell, B. Ergothioneine, Recent Developments. Redox Biol. 2021, 42, 101868. [Google Scholar] [CrossRef] [PubMed]
- Horie, Y.; Goto, A.; Imamura, R.; Itoh, M.; Ikegawa, S.; Ogawa, S.; Higashi, T. Quantification of Ergothioneine in Aspergillus oryzae-Fermented Rice Bran by a Newly-Developed LC/ESI-MS/MS Method. LWT 2020, 118, 108812. [Google Scholar] [CrossRef]
- Nakamichi, N.; Nakayama, K.; Ishimoto, T.; Masuo, Y.; Wakayama, T.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Iseki, S.; Kato, Y. Food-Derived Hydrophilic Antioxidant Ergothioneine Is Distributed to the Brain and Exerts Antidepressant Effect in Mice. Brain Behav. 2016, 6, e00477. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Takeuchi, K.; Hosoda, A.; Sugano, S.; Morisaki, E.; Ohishi, A.; Nagasawa, K. Ergothioneine Ameliorates Oxaliplatin-Induced Peripheral Neuropathy in Rats. Life Sci. 2018, 207, 516–524. [Google Scholar] [CrossRef]
- Benson, K.F.; Ager, D.M.; Landes, B.; Aruoma, O.I.; Jensen, G.S. Improvement of Joint Range of Motion (ROM) and Reduction of Chronic Pain after Consumption of an Ergothioneine-Containing Nutritional Supplement. Prev. Med. 2012, 54, S83–S89. [Google Scholar] [CrossRef]
- Vestring, S.; Serchov, T.; Normann, C. Animal Models of Depression—Chronic Despair Model (CDM). J. Vis. Exp. 2021, 175, e62579. [Google Scholar] [CrossRef]
- Barroca, N.C.B.; Della Santa, G.; Suchecki, D.; García-Cairasco, N.; de Lima Umeoka, E.H. Challenges in the Use of Animal Models and Perspectives for a Translational View of Stress and Psychopathologies. Neurosci. Biobehav. Rev. 2022, 140, 104771. [Google Scholar] [CrossRef]
- Moreira, P.S.; Almeida, P.R.; Leite-Almeida, H.; Sousa, N.; Costa, P. Impact of Chronic Stress Protocols in Learning and Memory in Rodents: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0163245. [Google Scholar] [CrossRef]
- Ennaceur, A.; Delacour, J. A New One-Trial Test for Neurobiological Studies of Memory in Rats. 1: Behavioral Data. Behav. Brain Res. 1988, 31, 47–59. [Google Scholar] [CrossRef]
- Ghafarimoghadam, M.; Mashayekh, R.; Gholami, M.; Fereydani, P.; Shelley-Tremblay, J.; Kandezi, N.; Sabouri, E.; Motaghinejad, M. A Review of Behavioral Methods for the Evaluation of Cognitive Performance in Animal Models: Current Techniques and Links to Human Cognition. Physiol. Behav. 2022, 244, 113652. [Google Scholar] [CrossRef] [PubMed]
- Morales-Medina, J.C.; Bautista-Carro, M.A.; Serrano-Bello, G.; Sánchez-Teoyotl, P.; Vásquez-Ramírez, A.G.; Iannitti, T. Persistent Peripheral Inflammation and Pain Induces Immediate Early Gene Activation in Supraspinal Nuclei in Rats. Behav. Brain Res. 2023, 446, 114395. [Google Scholar] [CrossRef]
- Lamotte, G.; Shouman, K.; Benarroch, E.E. Stress and Central Autonomic Network. Auton. Neurosci. 2021, 235, 102870. [Google Scholar] [CrossRef] [PubMed]
- Daviu, N.; Füzesi, T.; Rosenegger, D.G.; Rasiah, N.P.; Sterley, T.-L.; Peringod, G.; Bains, J.S. Paraventricular Nucleus CRH Neurons Encode Stress Controllability and Regulate Defensive Behavior Selection. Nat. Neurosci. 2020, 23, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Pagliusi, M.; Gomes, F.V. The Role of The Rostral Ventromedial Medulla in Stress Responses. Brain Sci. 2023, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Nakatani, Y.; Kurose, M.; Imbe, H.; Ikeda, N.; Takagi, R.; Yamamura, K.; Okamoto, K. Modulatory Effects of Repeated Psychophysical Stress on Masseter Muscle Nociception in the Nucleus Raphe Magnus of Rats. J. Oral Sci. 2020, 62, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Piriyaprasath, K.; Otake, M.; Kamimura, R.; Saito, I.; Fujii, N.; Yamamura, K.; Okamoto, K. Effect of Daily Treadmill Running Exercise on Masseter Muscle Nociception Associated with Social Defeat Stress in Mice. Eur. J. Oral Sci. 2022, 130, e12882. [Google Scholar] [CrossRef]
- Okamoto, K.; Hasegawa, M.; Piriyaprasath, K.; Kakihara, Y.; Saeki, M.; Yamamura, K. Preclinical Models of Deep Craniofacial Nociception and Temporomandibular Disorder Pain. Jpn. Dent. Sci. Rev. 2021, 57, 231–241. [Google Scholar] [CrossRef]
- Condés-Lara, M.; Martínez-Lorenzana, G.; Rubio-Beltrán, E.; Rodríguez-Jiménez, J.; Rojas-Piloni, G.; González-Hernández, A. Hypothalamic Paraventricular Nucleus Stimulation Enhances C-Fos Expression in Spinal and Supraspinal Structures Related to Pain Modulation. Neurosci. Res. 2015, 98, 59–63. [Google Scholar] [CrossRef]
- Condés-Lara, M.; Rojas-Piloni, G.; Martínez-Lorenzana, G.; Diez-Martínez, D.C.; Rodríguez-Jiménez, J. Functional Interactions between the Paraventricular Hypothalamic Nucleus and Raphe Magnus. A Comparative Study of an Integrated Homeostatic Analgesic Mechanism. Neuroscience 2012, 209, 196–207. [Google Scholar] [CrossRef]
- Ishimoto, T.; Kato, Y. Ergothioneine in the Brain. FEBS Lett. 2022, 596, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Dravid, A.; Raos, B.; Svirskis, D.; O’Carroll, S.J. Optimised Techniques for High-Throughput Screening of Differentiated SH-SY5Y Cells and Application for Neurite Outgrowth Assays. Sci. Rep. 2021, 11, 23935. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Liu, Y.; Zhang, J.; Lai, W.; Long, H. NGF-Induced Upregulation of CGRP in Orofacial Pain Induced by Tooth Movement Is Dependent on Atp6v0a1 and Vesicle Release. Int. J. Mol. Sci. 2022, 23, 11440. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.G.; da Silva Junior, J.D.; Rabelo, T.K.; Moreira, J.C.F.; Gelain, D.P.; Rodrigues, E.; Augusti, P.R.; de Oliveira Rios, A.; Flôres, S.H. Bioactive Compounds and Protective Effect of Red and Black Rice Brans Extracts in Human Neuron-like Cells (SH-SY5Y). Food Res. Int. 2018, 113, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, S.; Engmann, O.; Brancato, A. BDNF as a Mediator of Antidepressant Response: Recent Advances and Lifestyle Interactions. Int. J. Mol. Sci. 2022, 23, 14445. [Google Scholar] [CrossRef] [PubMed]
- Cheah, M.; Fawcett, J.W.; Andrews, M.R. Assessment of Thermal Pain Sensation in Rats and Mice Using the Hargreaves Test. Bio-Protocol 2017, 7, e2506. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef]
- Franklin, K.B.J.; Paxinos, G. The Mouse Brain in Stereotaxic Coordinates, Compact, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2008; ISBN 978-0-12-374244-5. [Google Scholar]
- Piriyaprasath, K.; Hasegawa, M.; Kakihara, Y.; Iwamoto, Y.; Kamimura, R.; Saito, I.; Fujii, N.; Yamamura, K.; Okamoto, K. Effects of Stress Contagion on Anxiogenic- and Orofacial Inflammatory Pain-like Behaviors with Brain Activation in Mice. Eur. J. Oral Sci. 2023, 131, e12942. [Google Scholar] [CrossRef]
- Correia, A.S.; Fraga, S.; Teixeira, J.P.; Vale, N. Cell Model of Depression: Reduction of Cell Stress with Mirtazapine. Int. J. Mol. Sci. 2022, 23, 4942. [Google Scholar] [CrossRef]
- Bufalo, M.C.; de Almeida, M.E.S.; Jensen, J.R.; DeOcesano-Pereira, C.; Lichtenstein, F.; Picolo, G.; Chudzinski-Tavassi, A.M.; Sampaio, S.C.; Cury, Y.; Zambelli, V.O. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds. Cells 2022, 11, 247. [Google Scholar] [CrossRef]
- Gomez, R.L.; Woods, L.M.; Ramachandran, R.; Abou Tayoun, A.N.; Philpott, A.; Ali, F.R. Super-Enhancer Associated Core Regulatory Circuits Mediate Susceptibility to Retinoic Acid in Neuroblastoma Cells. Front. Cell Dev. Biol. 2022, 10, 943924. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Kojima-Nakamura, A.; Kodaira, K.; Oguro, Y.; Kurahashi, A. Koji Amazake Maintains Water Content in the Left Cheek Skin of Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Comparative Trial. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, S.; Kyung, S.; Ryu, J.; Kang, S.; Park, M.; Lee, C. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites 2021, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Kikushima, K.; Nakagawa, T.; Shimizu, K.; Ohnuki, K. Regular Intake of Japanese Traditional Rice Fermented Beverage, Koji Amazake for 4 Weeks Decreases Systolic Blood Pressure A Randomized, Double-Blind,Placebo-Controlled, Parallel-Group Comparative Study. Jpn. Pharmacol. Ther. 2020, 48, 305–312. [Google Scholar]
- Hor, P.K.; Pal, S.; Mondal, J.; Halder, S.K.; Ghosh, K.; Santra, S.; Ray, M.; Goswami, D.; Chakrabarti, S.; Singh, S.; et al. Antiobesity, Antihyperglycemic, and Antidepressive Potentiality of Rice Fermented Food Through Modulation of Intestinal Microbiota. Front. Microbiol. 2022, 13, 794503. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ozawa, N.; Shinozaki, T.; Wakabayashi, K.-I.; Suzuki, K.; Kawano, Y.; Ohtsu, I.; Tatebayashi, Y. Ergothioneine, a Metabolite of the Gut Bacterium Lactobacillus Reuteri, Protects against Stress-Induced Sleep Disturbances. Transl. Psychiatry 2020, 10, 170. [Google Scholar] [CrossRef]
- Riveros, M.E.; Ávila, A.; Schruers, K.; Ezquer, F. Antioxidant Biomolecules and Their Potential for the Treatment of Difficult-to-Treat Depression and Conventional Treatment-Resistant Depression. Antioxidants 2022, 11, 540. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A New Animal Model Sensitive to Antidepressant Treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Armario, A. The Forced Swim Test: Historical, Conceptual and Methodological Considerations and Its Relationship with Individual Behavioral Traits. Neurosci. Biobehav. Rev. 2021, 128, 74–86. [Google Scholar] [CrossRef]
- Gorman-Sandler, E.; Hollis, F. The Forced Swim Test: Giving up on Behavioral Despair (Commentary on Molendijk & de Kloet, 2021). Eur. J. Neurosci. 2022, 55, 2832–2835. [Google Scholar] [CrossRef]
- Cheah, I.K.; Feng, L.; Tang, R.M.Y.; Lim, K.H.C.; Halliwell, B. Ergothioneine Levels in an Elderly Population Decrease with Age and Incidence of Cognitive Decline; a Risk Factor for Neurodegeneration? Biochem. Biophys. Res. Commun. 2016, 478, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Hano, C.; Bousta, D. Assessment of Antidepressant-like, Anxiolytic Effects and Impact on Memory of Pimpinella anisum L. Total Extract on Swiss Albino Mice. Plants 2021, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Kagawa, D.; Fujii, A.; Ochiai, R.; Tokimitsu, I.; Saito, I. Short- and Long-Term Effects of Ferulic Acid on Blood Pressure in Spontaneously Hypertensive Rats. Am. J. Hypertens. 2002, 15, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sato, A.; Takahashi, I.; Ito, T.; Takano, K.; Noge, K.; Okuda, M.; Hashizume, K. Identification of Enzymes from Genus Trichoderma That Can Accelerate Formation of Ferulic Acid and Ethyl Ferulate in Collaboration with Rice Koji Enzyme in Sake Mash. J. Biosci. Bioeng. 2019, 128, 177–182. [Google Scholar] [CrossRef]
- Pitcher, G.M.; Henry, J.L. Second Phase of Formalin-Induced Excitation of Spinal Dorsal Horn Neurons in Spinalized Rats Is Reversed by Sciatic Nerve Block. Eur. J. Neurosci. 2002, 15, 1509–1515. [Google Scholar] [CrossRef]
- Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L.; Fossat, P.; Boué-Grabot, E.; Hleihel, W.; Landry, M. Animal Models of Pain: Diversity and Benefits. J. Neurosci. Methods 2021, 348, 108997. [Google Scholar] [CrossRef]
- De Oliveira, R.P.; De Andrade, J.S.; Spina, M.; Chamon, J.V.; Silva, P.H.D.; Werder, A.K.; Ortolani, D.; Thomaz, L.D.S.C.; Romariz, S.; Ribeiro, D.A.; et al. Clozapine Prevented Social Interaction Deficits and Reduced C-Fos Immunoreactivity Expression in Several Brain Areas of Rats Exposed to Acute Restraint Stress. PLoS ONE 2022, 17, e0262728. [Google Scholar] [CrossRef]
- Palkovits, M. Stress-Induced Activation of Neurons in the Ventromedial Arcuate Nucleus: A Blood-Brain-CSF Interface of the Hypothalamus. Ann. N. Y. Acad. Sci. 2008, 1148, 57–63. [Google Scholar] [CrossRef]
- Osacka, J.; Horvathova, L.; Cernackova, A.; Kiss, A. Clozapine Impact on FosB/ΔFosB Expression in Stress Preconditioned Rats: Response to a Novel Stressor. Endocr. Regul. 2019, 53, 83–92. [Google Scholar] [CrossRef]
- Cotella, E.M.; Gómez, A.S.; Lemen, P.; Chen, C.; Fernández, G.; Hansen, C.; Herman, J.P.; Paglini, M.G. Long-Term Impact of Chronic Variable Stress in Adolescence versus Adulthood. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 303–310. [Google Scholar] [CrossRef]
- Kwon, M.-S.; Seo, Y.-J.; Shim, E.-J.; Choi, S.-S.; Lee, J.-Y.; Suh, H.-W. The Effect of Single or Repeated Restraint Stress on Several Signal Molecules in Paraventricular Nucleus, Arcuate Nucleus and Locus Coeruleus. Neuroscience 2006, 142, 1281–1292. [Google Scholar] [CrossRef]
- Kiss, A.; Osacka, J. The Effect of Amisulpride, Olanzapine, Quetiapine, and Aripiprazole Single Administration on c-Fos Expression in Vasopressinergic and Oxytocinergic Neurons of the Rat Hypothalamic Paraventricular Nucleus. Neuropeptides 2021, 87, 102148. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.; Vanneste, S.; Smith, M.; Adhia, D. Pain and the Triple Network Model. Front. Neurol. 2022, 13, 757241. [Google Scholar] [CrossRef] [PubMed]
- Imbe, H.; Ihara, H. Mu Opioid Receptor Expressing Neurons in the Rostral Ventromedial Medulla Are the Source of Mechanical Hypersensitivity Induced by Repeated Restraint Stress. Brain Res. 2023, 1815, 148465. [Google Scholar] [CrossRef]
- Nakatani, Y.; Kurose, M.; Shimizu, S.; Hasegawa, M.; Ikeda, N.; Yamamura, K.; Takagi, R.; Okamoto, K. Inhibitory Effects of Fluoxetine, an Antidepressant Drug, on Masseter Muscle Nociception at the Trigeminal Subnucleus Caudalis and Upper Cervical Spinal Cord Regions in a Rat Model of Psychophysical Stress. Exp. Brain Res. 2018, 236, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.L.; Sharma, L.; Sharma, M. 18β-Glycyrrhetinic Acid Ameliorates Neuroinflammation Linked Depressive Behavior Instigated by Chronic Unpredictable Mild Stress via Triggering BDNF/TrkB Signaling Pathway in Rats. Neurochem. Res. 2023, 48, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, P.I.; Ben-Azu, B.; Ugwu, S.U.; Uruaka, C.I.; Nworgu, C.C.; Okorie, P.O.; Okafor, K.O.; Anachuna, K.K.; Elendu, M.U.; Ugwu, A.O.; et al. Preventive Putative Mechanisms Involved in the Psychopathologies of Mice Passively Coping with Psychosocial Defeat Stress by Quercetin. Brain Res. Bull. 2022, 183, 127–141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piriyaprasath, K.; Kakihara, Y.; Kurahashi, A.; Taiyoji, M.; Kodaira, K.; Aihara, K.; Hasegawa, M.; Yamamura, K.; Okamoto, K. Preventive Roles of Rice-koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients 2023, 15, 3989. https://doi.org/10.3390/nu15183989
Piriyaprasath K, Kakihara Y, Kurahashi A, Taiyoji M, Kodaira K, Aihara K, Hasegawa M, Yamamura K, Okamoto K. Preventive Roles of Rice-koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients. 2023; 15(18):3989. https://doi.org/10.3390/nu15183989
Chicago/Turabian StylePiriyaprasath, Kajita, Yoshito Kakihara, Atsushi Kurahashi, Mayumi Taiyoji, Kazuya Kodaira, Kotaro Aihara, Mana Hasegawa, Kensuke Yamamura, and Keiichiro Okamoto. 2023. "Preventive Roles of Rice-koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice" Nutrients 15, no. 18: 3989. https://doi.org/10.3390/nu15183989
APA StylePiriyaprasath, K., Kakihara, Y., Kurahashi, A., Taiyoji, M., Kodaira, K., Aihara, K., Hasegawa, M., Yamamura, K., & Okamoto, K. (2023). Preventive Roles of Rice-koji Extracts and Ergothioneine on Anxiety- and Pain-like Responses under Psychophysical Stress Conditions in Male Mice. Nutrients, 15(18), 3989. https://doi.org/10.3390/nu15183989