Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH)
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Population
2.2. Data on Sweetened Soda and ASB Consumption and Dietary Patterns
2.3. Assessment of NAFLD and NASH
2.4. Covariates
2.5. BMI and Clinical Measurements
- SCr (standardized serum creatinine) = mg/dL
- κ = 0.7 (females) or 0.9 (males)
- α = −0.241 (females) or −0.302 (males)
- min = the minimum of SCr/κ or 1
- max = the maximum of SCr/κ or 1
- age = years
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Liver Foundation. NASH Causes & Risk Factors. Available online: https://liverfoundation.org/liver-diseases/fatty-liver-disease/nonalcoholic-steatohepatitis-nash/nash-causes-risk-factors/ (accessed on 5 June 2023).
- Kim, D.; Kim, W.R.; Kim, H.J.; Therneau, T.M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 2013, 57, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- The Nash Education Program. How Prevalent is NASH? 2022. Available online: https://www.the-nash-education-program.com/what-is-nash/how-prevalent-is-nash/ (accessed on 30 June 2023).
- National Institute of Diabetes and Digestive and Kidney Diseases. Definitions & Facts of NAFLD & NASH. 2021. Available online: https://www.niddk.nih.gov/health-information/liver-disease/nafld-nash/definition-facts#:~:text=Experts (accessed on 5 February 2023).
- American Liver Foundation. Nonalcoholic Fatty Liver Disease (NAFLD). 2023. Available online: https://liverfoundation.org/liver-diseases/fatty-liver-disease/nonalcoholic-fatty-liver-disease-nafld/ (accessed on 30 June 2023).
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 20, 101133. [Google Scholar] [CrossRef]
- Papatheodoridi, M.; Cholongitas, E. Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Curr. Pharm. Des. 2019, 24, 4574–4586. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2015, 13, 643–654.e9. [Google Scholar] [CrossRef]
- Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, D.S.; An, T.H.; Park, H.-J.; Kim, W.K.; Bae, K.-H.; Oh, K.-J. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int. J. Mol. Sci. 2021, 22, 4495. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Semmler, G.; Datz, C.; Reiberger, T.; Trauner, M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int. 2021, 41, 2249–2268. [Google Scholar] [CrossRef]
- Vos, M.B.; Colvin, R.; Belt, P.; Molleston, J.P.; Murray, K.F.; Rosenthal, P. Correlation of vitamin E, uric acid, and diet composition with histologic features of pediatric NAFLD. J. Pediatr. Gastroenterol. 2012, 54, 90–96. [Google Scholar] [CrossRef]
- Schwimmer, J.; Ugalde-Nicalo, P.; Welsh, J. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys A Randomized Clinical Trial. J. Am. Med. Assoc. 2019, 321, 256–265. [Google Scholar] [CrossRef]
- Nasiri-Ansari, N.; Androutsakos, T.; Flessa, C.M.; Kyrou, I.; Siasos, G.; Randeva, H.S.; Kassi, E.; Papavassiliou, A.G. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022, 11, 2511. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, S.; Khan, J.; Dai, Z.; Li, C.; Hu, X.; Shen, Q.; Xue, Y. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2636. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Li, Z.; Wai Kei Lam, C.; Xiao, Y.; Wu, Q.; Zhang, W. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2192. [Google Scholar] [CrossRef] [PubMed]
- Wijarnpreecha, K.; Thongprayoon, C.; Edmonds, P.J.; Cheungpasitporn, W. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Int. J. Med. 2015, 109, 461–466. [Google Scholar] [CrossRef]
- Emamat, H.; Ghalandari, H.; Tangestani, H.; Abdollahi, A.; Hekmatdoost, A. Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI J. 2020, 19, 620. [Google Scholar] [CrossRef]
- Grand Review Research. Carbonated Soft Drink Market Size, Share & Trends Analysis Report by Flavor (Cola, Citrus), by Distribution Channel (Hypermarkets, Supermarkets & Mass Merchandisers, Online Stores & D2C), and Segment Forecasts, 2021–2028. 2021. Available online: https://www.grandviewresearch.com/industry-analysis/carbonated-soft-drinks-market (accessed on 18 July 2023).
- Chhimwal, J.; Patial, V.; Padwad, Y. Beverages and Non-alcoholic fatty liver disease (NAFLD): Think before you drink. Clin. Nutr. 2021, 40, P2508–P2519. [Google Scholar] [CrossRef]
- Vlassara, H.; Cai, W.; Crandall, J.; Goldberg, T.; Oberstein, R.; Dardaine, V.; Peppa, M.; Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 2002, 99, 15596–15601. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Rother, K.I. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. J. Toxicol. Environ. Health 2013, 16, 399–451. [Google Scholar] [CrossRef]
- Ma, J.; Fox, C.; Jacques, P.; Speliotes, E.; Hoffmann, U.; Smith, C.; Saltzman, E.; McKeown, N. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J. Hepatol. 2015, 63, 462–469. [Google Scholar] [CrossRef]
- Zani, F.; Blagih, J.; Gruber, T.; Buck, M.; Jones, N.; Hennequart, M.; Newell, C.; Pilley, S.; Soro-Barrio, P.; Kelly, G.; et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 2023, 615, 705–711. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey (NHANES). Methods and Analytic Guidelines. 2023. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 5 February 2023).
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey (NHANES). NCHS Ethics Review Board (ERB) Approval. 2023. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 5 February 2023).
- The American Heart Association (AHA). Added Sugars. 2018. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/sugar/added-sugars (accessed on 5 March 2023).
- Centers for Disease Control and Prevention (CDC). Liver Ultrasound Transient Elastography. 2022. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_LUX.htm (accessed on 18 February 2023).
- Karlas, T.; Petroff, D.; Sasso, M.; Fan, J.A.-G.; Mi, Y.-Q.; de Ledinghen, V.; Kumar, M.; Lupsor-Platon, M.; Han, K.-H.; Cardoso, A.; et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 2017, 66, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- National Institute on Alcohol Abuse Alcoholism. Alcohol’s Effects on Health. 2023. Available online: https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking (accessed on 15 March 2023).
- The World Health Organization (WHO). Global Strategy on Diet, Physical Activity and Health. 2023. Available online: https://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed on 18 February 2023).
- Centers for Disease Control and Prevention (CDC). Defining Adult Overweight and Obesity. 2018. Available online: https://www.cdc.gov/obesity/adult/defining.html. (accessed on 10 March 2023).
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey (NHANES). Standard Biochemistry Profile. 2023. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BIOPRO.htm#LBXSATSI (accessed on 25 March 2023).
- National Kidney Foundation. CKD-EPI Creatinine Equation (2021). 2021. Available online: https://www.kidney.org/content/ckd-epi-creatinine-equation-2021 (accessed on 10 February 2023).
- Avignon, A. Protecting the Liver: Should We Substitute Fruit Juices for SugarSweetened Beverages? Diabetes Care 2022, 45, 1032–1034. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.; Abdelmalek, M.; Sullivan, S.; Nadeau, K.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.-H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Park, W.Y.; Yiannakou, I.; Petersen, J.M.; Hoffmann, U.; Ma, J.; Long, M.T. Sugar-Sweetened Beverage, Diet Soda, and Nonalcoholic Fatty Liver Disease Over 6 Years: The Framingham Heart Study. Clin. Gastroenterol. Hepatol. 2022, 20, 2524–2532.e2. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 1. [Google Scholar] [CrossRef]
- Ipsen, D.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar] [CrossRef]
- Uebanso, T.; Ohnishi, A.; Kitayama, R.; Yoshimoto, A.; Nakahashi, M.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 2017, 9, 560. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.; Verheij, J.; Nieuwdorp, M.; Clement, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 279–297. [Google Scholar] [CrossRef]
- Huby, T.; Gautier, E. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. 2022, 22, 429–443. [Google Scholar] [CrossRef]
- Kawano, Y.; Edwards, M.; Huang, Y.; Bilate, A.; Araujo, L.; Tanoue, T.; Atarashi, K.; Ladinsky, M.; Reiner, S.; Wang, H.; et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 2022, 185, 3501–3519. [Google Scholar] [CrossRef]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ventura, E.; Davis, J.; Goran, M. Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity 2011, 19, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Cirillo, P.; Sautin, Y.; McCall, S.; Bruchette, J.; Diehl, A.M.; Johnson, R.; Abdelmalek, M. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 2008, 48, 993–999. [Google Scholar] [CrossRef]
- Wolfe, B.M.; Ahuja, S.P.; Marliss, E.B. Effects of intravenously administered fructose and glucose on splanchnic amino acid and carbohydrate metabolism in hypertriglyceridemic men. J. Clin. Investig. 1975, 56, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.; Stephenson, M.; Crossland, H.; Cordon, S.; Palcidi, E.; Cox, E.; Taylor, M.; Aithal, G.; Macdonald, I. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 2013, 145, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Maersk, M.; Belza, A.; Stodkilde-Jorgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Bruun, J.M.; Maersk, M.; Belza, A.; Astrup, A.; Richelsen, B. Consumption of sucrose-sweetened soft drinks increases plasma levels of uric acid in overweight and obese subjects: A 6-month randomised controlled trial. Eur. J. Clin. Nutr. 2015, 69, 949–953. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, J.; Li, X.; Fan, R.; Arsenault, B.; Gill, D.; Giovannucci, E.L.; Zheng, J.s.; Larsson, S.C. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur. J. Epidemiol. 2022, 37, 723–733. [Google Scholar] [CrossRef]
- Sewter, R.; Heaney, S.; Patterson, A. Coffee Consumption and the Progression of NAFLD: A Systematic Review. Nutrients 2021, 13, 2381. [Google Scholar] [CrossRef]
- Vuppalanchi, R.; Siddiqui, M.S.; Van Natta, M.L.; Hallinan, E.; Brandman, D.; Kowdley, K.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Abdelmalek, M.; et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology 2018, 67, 134–144. [Google Scholar] [CrossRef]
Factors | Liver Examination Status | p Value | |||
---|---|---|---|---|---|
Total | Normal | NAFLD 1 | NASH | ||
Raw population 2 | N = 3739 | N = 1636 | N = 1367 | N = 736 | |
Survey-weighted 3 | 100% | 46.8% | 32.7% | 20.5% | |
Personal characteristics | |||||
Age, years (mean ± se) | 48.0 ± 0.7 | 43.9 ± 0.9 | 53.6 ± 1.1 | 48.4 ± 0.9 | <0.001 |
Gender | |||||
male | 45.7% | 41.4% | 28.7% | 30.0% | <0.001 |
female | 54.3% | 51.4% | 36.0% | 12.6% | |
Race | |||||
non-Hispanic White | 63.3% | 47.1% | 32.6% | 20.3% | 0.002 |
non-Hispanic Black | 11.5% | 56.2% | 33.1% | 10.7% | |
Mexican-American | 7.1% | 36.2% | 36.2% | 27.5% | |
other Hispanic | 7.3% | 43.9% | 31.7% | 24.4% | |
other Race | 10.8% | 43.7% | 30.8% | 25.5% | |
PIR | |||||
below poverty | 11.3% | 48.4% | 32.8% | 18.8% | 0.754 |
1–1.99 | 16.2% | 42.4% | 38.9% | 19.7% | |
2–2.99 | 15.6% | 46.3% | 31.1% | 22.7% | |
3–3.00 | 13.9% | 49.0% | 29.5% | 21.6% | |
≥4 | 43.1% | 47.6% | 32.3% | 20.1% |
Factors | Liver Examination Status | p Value | |||
---|---|---|---|---|---|
Total | Normal | NAFLD 1 | NASH | ||
Raw population 2 | N = 3739 | N = 1636 | N = 1367 | N = 736 | |
Survey-weighted 3 | 100% | 46.8% | 32.7% | 20.5% | |
Lifestyle patterns | |||||
Cigarettes use | |||||
none | 63.7% | 65.5% | 62.1% | 62.1% | 0.513 |
former | 23.0% | 20.4% | 25.0% | 12.2% | |
current | 13.3% | 14.1% | 12.9% | 25.7% | |
Alcohol use | |||||
none | 21.6% | 19.2% | 26.5% | 19.1% | 0.003 |
light to moderate | 78.4% | 80.8% | 73.5% | 80.9% | |
Physical activity (h/week) | |||||
low | 58.0% | 50.2% | 68.0% | 60.0% | <0.001 |
adequate | 42.0% | 49.8% | 32.0% | 40.0% | |
Medical conditions 4 | |||||
no | 43.2% | 51.7% | 32.0% | 41.8% | <0.001 |
yes | 56.8% | 48.3% | 68.0% | 58.2% | |
Daily dietary pattern, mean ± se | |||||
Total caloric (kcal) | 2047 ± 25 | 2002 ± 31 | 2020 ± 35 | 2191 ± 43 | <0.001 |
Total sugar (gm) | 102 ± 1.6 | 99 ± 1.7 | 103 ± 2.5 | 109 ± 4.5 | 0.019 |
Total fat (gm) | 84.4 ± 1.3 | 83.2 ± 1.7 | 82.9 ± 1.5 | 89.6 ± 2.2 | 0.017 |
Total caffeine (mg) | 162 ± 5.4 | 151 ± 6.1 | 176 ± 10.1 | 167 ± 8.9 | 0.037 |
Total alcohol (gm) | 7.1 ± 0.4 | 6.3 ± 0.4 | 7.4 ± 0.8 | 8.8 ± 1.2 | 0.030 |
SSB-related elements | |||||
Sugar intake from total SSBs (gm), mean ± se | 38.1 ± 1.4 | 35.4 ± 1.3 | 40.3 ± 2.9 | 40.7 ± 2.9 | 0.023 |
Sugar intake from each SSBs, mean ± se | |||||
Soda (gm) | 20.7 ± 1.2 | 19.1 ± 1.3 | 21.3 ± 1.6 | 23.4 ± 2.5 | 0.067 |
Fruit drinks (gm) | 5.1 ± 0.4 | 5.0 ± 0.6 | 5.4 ± 0.6 | 4.9 ± 0.7 | 0.990 |
Sweetened tea/coffee | 9.8 ± 0.9 | 8.6 ± 0.7 | 11.7 ± 1.8 | 9.4 ± 1.6 | 0.350 |
Sport/energy drinks | 2.5 ± 0.3 | 2.7 ± 0.3 | 2.0 ± 0.5 | 3.0 ± 0.7 | 0.914 |
Type of SSB intake | |||||
non-SSB intake | 26.9% | 29.9% | 25.9% | 21.9% | 0.065 |
non-soda intake 5 | 21.7% | 22.7% | 19.1% | 23.5% | |
ASB intake only 6 | 10.5% | 7.3% | 13.0% | 11.4% | |
regular soda only | 19.8% | 18.6% | 18.9% | 24.1% | |
multiple types | 21.1% | 20.5% | 23.2% | 19.1% | |
Clinical Examination | |||||
LSM (kPa), mean ± se | 5.5 ± 0.1 | 4.8 ± 0.1 | 5.8 ± 0.2 | 6.5 ± 0.3 | <0.001 |
ALT (U/L), mean ± se | 21.7 ± 0.4 | 18.3 ± 0.6 | 15.8 ± 0.2 | 38.5 ± 0.9 | <0.001 |
AST (U/L), mean ± se | 21.1 ± 0.3 | 20.4 ± 0.6 | 17.2 ± 0.1 | 29.0 ± 0.6 | <0.001 |
eGFR, mL/min/1.73 m2, mean ± se | 96.3 ± 0.8 | 99.0 ± 0.9 | 92.0 ± 1.4 | 97.2 ± 1.4 | 0.056 |
BMI | |||||
normal weight | 29.3% | 53.3% | 13.4% | 7.1% | <0.001 |
overweight | 32.2% | 32.1% | 37.0% | 28.4% | |
obese | 38.5% | 14.6% | 49.6% | 64.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, T.-S.; Lin, W.-T.; Ting, P.-S.; Huang, C.-K.; Chen, P.-H.; Gonzalez, G.V.; Lin, H.-Y. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023, 15, 3997. https://doi.org/10.3390/nu15183997
Tseng T-S, Lin W-T, Ting P-S, Huang C-K, Chen P-H, Gonzalez GV, Lin H-Y. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients. 2023; 15(18):3997. https://doi.org/10.3390/nu15183997
Chicago/Turabian StyleTseng, Tung-Sung, Wei-Ting Lin, Peng-Sheng Ting, Chiung-Kuei Huang, Po-Hung Chen, Gabrielle V. Gonzalez, and Hui-Yi Lin. 2023. "Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH)" Nutrients 15, no. 18: 3997. https://doi.org/10.3390/nu15183997
APA StyleTseng, T. -S., Lin, W. -T., Ting, P. -S., Huang, C. -K., Chen, P. -H., Gonzalez, G. V., & Lin, H. -Y. (2023). Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients, 15(18), 3997. https://doi.org/10.3390/nu15183997