Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides
Abstract
:1. Introduction to Underutilized Grains
2. Nutritional Value of Underutilized Grains as the Basis for the Development of Functional Foods
2.1. Amaranth
2.2. Buckwheat
2.3. Chia
2.4. Lupin
2.5. Quinoa
3. Sensorial Properties of Underutilized Grains-Based Functional Foods
4. Production of Bioactive Peptides Derived from Underutilized Grains and Study of Their Health Effects
4.1. Enzymatic Protein Hydrolysis
4.1.1. Amaranth and Quinoa Hydrolyzates
Production of Peptides | Grain Specie | Proteins/Peptides | Bioactivity | Reference | ||
---|---|---|---|---|---|---|
Sample | Responsible Sequence | Biochemical Assay | Cell-Based and Animal Models | |||
Enzymatic protein hydrolysis | Amaranth | Alcalase hydrolyzate | --- | --- | Antihypertensive activity in SHR | [72] |
Hydrolyzates by bromelain, chymotrypsin, or protease | --- | Radical (ABTS, DPPH) scavenging activity Antimicrobial activity against S. aureus, S. typhimurium, E. coli, and E. aerogenes | Non-haemolytic activity in human erythrocytes | [71] | ||
Alcalase hydrolyzate | --- | ACE inhibitory activity | Antihypertensive activity in SHR | [70] | ||
Trypsin hydrolyzate of glutelin fraction | Di-, tri-, and tetra-peptides | ACE inhibitory activity | Induction of endothelial NO production in coronary endothelial cells | [65] | ||
Amaranth (A. hypochondriacus) | Alcalase hydrolyzate of albumin I and globulin fractions | --- | ACE inhibitory activity | --- | [64] | |
Alcalase hydrolyzate of albumin and globulin fractions | --- | DPP-IV inhibitory activity | Control of postprandial glycemia in STZ-induced diabetic mice | [67] | ||
Alcalase hydrolyzate | SSEDIKE | --- | Anti-inflammatory (reduced activation of human intestinal epithelial cell) activity | [68] | ||
Trypsin hydrolyzate of glutelin fraction | Multiple sequences | Multifunctionality | Induction of apoptosis in HeLa cells | [63] | ||
Alcalase hydrolyzate | QAFEDGFEWVSFK, AFEDGFEWVSFK, SFNLPILR, FNLPILR, SFNLPIL, and VNVDDPSKA | Renin inhibitory activity related to peptide hydrophobicity | --- | [69] | ||
Amaranth (A. mantegazzianus) | Alcalase hydrolyzate | --- | ACE inhibitory activity | Antihypertensive activity in SHR | [66] | |
Quinoa (C. quinoa Willd.) | Alcalase hydrolyzate | Peptides with MW lower than 5000 Da | ACE inhibitory activity Radical (DPPH) scavenging activity | --- | [74] | |
Hydrolyzates by bromelain, chymotrypsin, or protease | --- | Radical (ABTS, DPPH) scavenging activity Antimicrobial activity against S. aureus, S. typhimurium, E. coli, and E. aerogenes | Non-haemolytic activity in human erythrocytes | [71] | ||
Pancreatin hydrolyzate | --- | Radical (DPPH) scavenging activity | --- | [77] | ||
Pepsin and alcalase hydrolyzates | --- | Radical (ABTS) scavenging activity | --- | [75] | ||
Corolase® 7089 hydrolyzate | --- | Radical (ABTS) scavenging activity | --- | [76] | ||
Chia (S. hispanica) | Alcalase and Flavourzyme hydrolyzates | --- | ACE inhibitory activity Radical (ABTS) scavenging activity Antimicrobial activity against E. coli, S. typhi, S. flexneri, K. pneumonia, S. aureus, B. subtilis and S. agalactae | --- | [78] | |
Alcalase and alcalase + flavourzyme hydrolyzates | Fraction lower than 3 kDa | Antimicrobial activity towards E. coli, S. enterica, and L. monocytogenes | --- | [79] | ||
Alcalase + flavourzyme hydrolyzates | --- | Antioxidant (β-carotene discoloration) activity FRAP Iron and copper chelating capacity | --- | [80] | ||
Papain hydrolyzate | --- | Radical (ABTS, DPPH) scavenging activity | --- | [81] | ||
Pepsin + pancreatin hydrolyzate | Fraction lower than 3 kDa | --- | Neuroprotective effect on H2O2-induced damage on N1E-115 cells | [82] | ||
Alcalase, pepsin, trypsin, or α-chymotrypsin hydrolyzates | LIVSPLAGRL | ACE inhibitory activity | --- | [83] | ||
Alcalase, flavourzyme and sequential alcalase-flavourzyme hydrolyzates | Fraction lower than 3 kDa | Antimicrobial activity against S. aureus Hypocholesterolemic activity through inhibition of HMG-CoA reductase | --- | [84] | ||
Alcalase-flavourzyme and pepsin-pancreatin hydrolyzates | Fractions 5–10 kDa and higher than 10 kDa | α-amylase and α-glucosidase inhibitory activity | --- | [85] | ||
Alcalase and sequential alcalase-flavourzyme hydrolyzates | --- | ACE inhibitory activity Radical (ABTS, ORAC) scavenging activity Metal chelating capacity DPP-IV inhibitory activity | Inhibition of ROS generation in oxidized-induced Caco2 cells | [86] | ||
Alcalase or flavourzyme hydrolyzates | --- | ACE inhibitory activity Antioxidant (β-Carotene-linoleic acid assay) activity Radical (DPPH) scavenging activity FRAP | --- | [87] | ||
Tartary buckwheat (F. tataricum Gaertn.) | Albumin hydrolyzate by alkaline protease | GEVPW, YMENF, and AFYRW | Radical (OH, DPPH) scavenging activity Lipid peroxidation inhibitory activity FRAP | --- | [88] | |
Enzymatic hydrolyzates of 13S globulin acidic subunit | SEAGVTEIWDHNTPEFR, CTGFVAVR, YVIQPGGLLLPSYSNAPYITFVEQGR, SFFLAGQSQQGR, LRGENDQR, and GFIVQAQDLK | --- | Maintenance of the redox state balance of HepG2 cells Protection of the activity of antioxidant cell enzymes via the PPAR-α/HO-1 pathway | [89] | ||
Alcalase hydrolyzate | --- | α-amylase, and α-glucosidase inhibitory activity | --- | [90] | ||
Chickpea (C. arietinum L.) | Papain or ficin hydrolyzates from germinated chickpea protein | SPGAGKG, GLAR, and STSA | DPP-IV, and α-glucosidase inhibitory activity | --- | [91] | |
Alcalase hydrolyzates from albumin and globulin fractions | FEI, FEL, FIE, FKN, FGKG, and MEE | Radical (ABTS, DPPH) scavenging activity DPP-IV inhibitory activity | --- | [92] | ||
Alcalase hydrolyzates | VFVRN | --- | Hypolipidemic activity in high fat diet-induced obese rats | [93] | ||
Lupin | Alcalase or flavourzyme hydrolyzates | --- | Radical (ABTS, DPPH) scavenging activity | --- | [94] | |
Alcalase, trypsin or pepsin hydrolyzates | --- | ACE inhibitory activity Radical (ABTS, DPPH) scavenging activity FRAP | Protection against oxidative stress in HepG2 cells | [95] | ||
Lupin (L. angustifolius L.) | Alcalase hydrolyzate | --- | --- | Antioxidant and anti-inflammatory effects in LPS-stimulated THP-1 cells and co-cultures of Caco-2 and THP-1 cells. Reduction of ROS, nitric oxide, and pro-inflammatory cytokines levels | [96] | |
Hydrolyzate | GPETAFLR | --- | Protective role on oxidative and inflammatory markers involved in age-related macular degeneration in RPE cells | [97] | ||
Pearl millet (P. glaucum) | Trypsin hydrolyzate | SDRDLLGPNNQYLPK | Radical (ABTS, DPPH, OH) scavenging activity Iron chelating ability FRAP | --- | [98] | |
Finger millet | Pepsin or trypsin hydrolyzates | TSSSLNMAVRGGLTR and STTVGLGISMRSASVR | Radical (ABTS, DPPH, OH) scavenging activity Iron chelating ability | --- | [99] | |
Mung bean (V. radiata L. Wilczek) | Hydrolyzates by alcalase, flavourzyme, trypsin, pancreatin, pepsin, pancreatin + alcalase, and pancreatin + flavourzyme | LLLGI, AIVIL, HADAD, and PAIDL | Calcium and iron-binding activity | --- | [100] | |
Bromelain hydrolyzates | LPRL, YADLVE, LRLESF, HLNVVHEN, and PGSGCAGTDL HC, CGN, LAN, CTN, LAF, CSGD, MMGW, QFAAD, ERF, EYW, FLQL, and QFAW | ACE and renin inhibitory activity Radical (DPPH) scavenging activity Iron chelating ability FRAP | Antihypertensive activity in SHR | [101,102] | ||
Alcalase, neutral protease, or papain hydrolyzates | --- | Iron chelating ability | --- | [103] | ||
Green tender sorghum | Alcalase hydrolyzate | VPPSKLSP, VAITLTMK, GLLGKNFTSK, LDSCKDYVME, HQTSEFK, VSKSVLVK, and TSVEIITSSK | Radical (DPPH, ABTS) scavenging activity Iron chelating ability FRAP | --- | [104] | |
White sorghum (S. bicolor L.) | Alcalase hydrolyzate from kafirin fraction | Fractions lower than 3 and 1 kDa | --- | Antioxidant, anti-inflammatory, and anti-aging protection in ultraviolet B irradiated-human organotypic skin cultures | [105] | |
Sweet sorghum (S. bicolor L.) | Alcalase hydrolyzate | TLS | ACE inhibitory activity | --- | [106] | |
White sorghum (S. bicolor L.) | Papain hydrolyzate from kafirin fraction | LRQQ, QLQGV, WQPN, GLQDL, LRQQ, QLQGV, WQPN, AMCGVV, YLRQ, TPCATS, QGVAAA, AQVAQ, and QQLQ | Radical (DPPH, ABTS, ORAC) scavenging activity Iron chelating ability FRAP | Chemopreventive effects in HepG2 cells | [107] | |
Gastrointestinal digestion of proteins | Amaranth (A. caudatus) | Simulated gastrointestinal digests | YESGSQ, GGEDE, NRPET, FLISCLL, TALEPT, HVIKPPS, SVFDEELS, DFIILE, and ASANEPDEN | ACE inhibitory activity Radical (ORAC) scavenging activity DPP-IV and α-amylase inhibitory activity | Colon cancer cell viability inhibitory activity | [108] |
Simulated gastrointestinal digests | --- | Radical (DPPH) scavenging activity | Anti-cancer activity against breast cancer MDA-MB-231 cells | [109] | ||
Simulated gastrointestinal digests of Alcalase hydrolyzate | --- | ACE inhibitory activity | --- | [110] | ||
Amaranth (A. hypochondriacus) | Simulated gastrointestinal digests of trypsin hydrolyzate | STHASGFFFFHPT, GLTEVWDSNEQEF, STNYFLISCLLFVLFNGCMGEG, and TIEPHGLLLPSFTSAPELIYIEQGNGITGMMIPGCPETYESGSQQFQGGEDE | DPP-IV inhibitory activity | --- | [111] | |
Simulated gastrointestinal digests | --- | ACE inhibitory activity DPP-IV inhibitory activity | --- | [112] | ||
Simulated gastrointestinal digests of sprouts protein | --- | ACE inhibitory activity Radical (ABTS, ORAC) scavenging activity | --- | [113] | ||
Simulated gastrointestinal digests of germinated amaranth | Multiple sequences | Radical (ORAC) scavenging activity | Anti-inflammatory activity in RAW264.7 cells | [114] | ||
Amaranth (A. mantegazzianus) | Simulated gastrointestinal digests | --- | --- | Antiproliferative activity in human colon cancer cells | [115] | |
Quinoa (C. quinoa Willd.) | Simulated gastrointestinal digests | IQAEGGLT, DKDYPK, and GEHGSDGNV | DPP-IV, α-amylase, and α-glucosidase inhibitory activity | --- | [116] | |
Simulated gastrointestinal digests | FHPFPR, NWFPLPR, and NIFRPF | ACE inhibitory activity | Antihypertensive activity in SHR | [117] | ||
Chia (S. hispanica) | Simulated gastrointestinal digests of albumin and globulin fractions | --- | ACE inhibitory activity Radical (ABTS, DPPH) scavenging activity Ferrous chelating activity | --- | [118] | |
Buckwheat (F. esculentum) | Simulated gastrointestinal digests and trypsin and alcalase hydrolysis of albumin and glutelin fractions | --- | DPP-IV inhibitory activity | --- | [119] | |
Simulated gastrointestinal digests and trypsin and alcalase hydrolyzates | --- | Inhibition of platelet aggregation | --- | [120] | ||
Chickpea (C. arietinum L.) | Simulated gastrointestinal digests and bromelain hydrolyzates | PHPATSGGGL and YVDGSGTPLT | DPP-IV, α-amylase, and α-glucosidase inhibitory activity | --- | [121] | |
Cocoa (T. cacao L.) | Simulated gastrointestinal digests of cocoa seeds proteins | LSPGGAAV, TSVSGAGGPGAGR, and TLGNPAAAGPF | ACE inhibitory activity | Antihypertensive activity in a high-fat diet rat model | [122] | |
Foxtail millet (S. italica) | Simulated gastrointestinal digests of germinated and heated foxtail millet proteins | SEDDPFD, REEGVLIF, EAGNKGTLSF, MGPIPSTL, EDDQMDPMAK, QNWDFCEAWEPCF, and MSHRGACGCEK | --- | Antioxidant and anti-inflammatory effects in Caco-2 cells | [123] | |
Mung bean (V. radiata L. Wilczek) | Simulated gastrointestinal digests and thermolysin hydrolyzates | Multiple potential sequences of di- and tri-peptides | Radical (ABTS, ORAC) scavenging activity Iron chelating ability | --- | [124] | |
Other strategies | Amaranth | Fermentation with L. casei Shirota and S. thermophilus 54,102 in mono and combined culture | --- | ACE inhibitory activity Radical (ABTS, DPPH) scavenging activity and FRAP Antithrombotic (thrombin inhibition) activity | --- | [125] |
Amaranth (A. mantegazzianus) | Protein isolate | --- | --- | Reduction of plasma and liver cholesterol levels in rats Increment in FRAP values, diminution of TBA value in plasma and liver, and SOD activity in plasma Decrease of blood pressure | [126] | |
Tartary buckwheat (F. tataricum Gaertn.) | Peptide obtained by gene cloning and expression | GSSEKPQQELEECQNVCRMKRWSTEM-VHRCEKKCEEKFERQQR | Inhibition of trypsin activity Antifungal activity against T. koningii, Rhizopus sp., and F. oxysporum | --- | [127] | |
Buckwheat (F. esculentum) | Purification of 11 kDa protein from buckwheat seed extract | N-terminal sequence AQXGAQGGGAT | Antifungal activity against B. cinerea | --- | [128] |
4.1.2. Chia Hydrolyzates
4.1.3. Buckwheat and Chickpea Hydrolyzates
4.1.4. Lupin and Millet Hydrolyzates
4.1.5. Mungbean and Sorghum Hydrolyzates
4.2. Gastrointestinal Digestion
4.3. Alternative Strategies
5. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vermeir, I.; Weijters, B.; De Houwer, J.; Geuens, M.; Slabbinck, H.; Spruyt, A.; Van Kerckhove, A.; Van Lippevelde, W.; De Steur, H.; Verbeke, W. Environmentally Sustainable Food Consumption: A Review and Research Agenda from a Goal-Directed Perspective. Front. Psychol. 2020, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food and Agriculture; The Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Sonawane, S.K.; Arya, A.S. Plant Seed Proteins: Chemistry, Technology and Applications. Curr. Res. Nutr. Food Sci. 2018, 6, 461–469. [Google Scholar] [CrossRef]
- Hackler, L.R. Cereal proteins in human nutrition. In Amino Acid Composition and Biological Value of Cereal Proteins; Lásztity, R., Hidvégi, M., Eds.; Springer: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Bouchard, J.; Malalgoda, M.; Storsley, J.; Malunga, L.; Netticadan, T.; Thandapilly, S.J. Health Benefits of Cereal Grain- and Pulse-Derived Proteins. Molecules 2022, 27, 3746. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, C.S.; Tian, L. Thinking Outside of the Cereal Box: Breeding Underutilized (pseudo) Cereals for Improved Human Nutrition. Front. Gen. 2019, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Chibarabada, T.P.; Modi, A.T. Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa. Front. Plant Sci. 2017, 8, 2143. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Immune Boosting Functional Foods and their Mechanisms: A Critical Evaluation of Probiotics and Prebiotics. Biomed. Pharmacother. 2020, 130, 110625. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Lawal, O.M.; van Stuijvenberg, L.; Boon, N.; Awolu, O.; Fogliano, V.; Linnemann, A.R. Technological and Nutritional Properties of Amaranth-Fortified Yellow Cassava Pasta. J. Food Sci. 2021, 86, 5213–5225. [Google Scholar] [CrossRef]
- Ontiveros, N.; López-Teros, V.; Vergara-Jiménez, M.J.; Islas-Rubio, A.R.; Cárdenas-Torres, F.I.; Cuevas-Rodríguez, E.O.; Reyes-Moreno, C.; Granda-Restrepo, D.M.; Lopera-Cardona, S.; Ramírez-Torres, G.I.; et al. Amaranth-Hydrolyzate Enriched Cookies Reduce the Systolic Blood Pressure in Spontaneously Hypertensive Rats. J. Funct. Foods 2020, 64, 103613. [Google Scholar] [CrossRef]
- Uriarte-Frías, G.; Hernández-Ortega, M.M.; Gutiérrez-Salmeán, G.; Santiago-Ortiz, M.M.; Morris-Quevedo, H.J.; Meneses-Mayo, M. Pre-Hispanic Foods Oyster Mushroom (Pleurotus ostreatus), Nopal (Opuntia ficus-indica) and Amaranth (Amaranthus sp.) as new Alternative Ingredients for Developing Functional Cookies. J. Fungi 2021, 7, 911. [Google Scholar] [CrossRef]
- Valdez-Meza, E.E.; Raymundo, A.; Figueroa-Salcido, O.G.; Ramírez-Torres, G.I.; Fradinho, P.; Oliveira, S.; de Sousa, I.; Suárez-Jiménez, M.; Cárdenas-Torres, F.I.; Islas-Rubio, A.R.; et al. Pasta Enrichment with an Amaranth Hydrolysate Affects the Overall Acceptability while Maintaining Antihypertensive Properties. Foods 2019, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natabirwa, H.; Nakimbugwe, D.; Lung’aho, M.; Tumwesigye, K.S.; Muyonga, J.H. Bean-Based Nutrient-Enriched Puffed Snacks: Formulation Design, Functional Evaluation, and Optimization. Food Sci. Nutr. 2020, 8, 4763–4772. [Google Scholar] [CrossRef]
- Bhatt, S.; Kumari, N.; Abhishek, V.; Gupta, M. Elucidating the Role of Amaranth Flour in Formulation of Gluten Free Black Rice Muffins and its Premix: Nutritional, Physico-chemical and Textural Characteristics. J. Food Meas. Charact. 2021, 15, 675–685. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Oluwajuyitan, T.D.; Oyeleye, S.I. Multigrain Bread: Dough Rheology, Quality Characteristics, in Vitro Antioxidant and Antidiabetic Properties. J. Food Meas. Charact. 2021, 15, 1851–1864. [Google Scholar] [CrossRef]
- Cárdenas-Hernández, A.; Beta, T.; Loarca-Piña, G.; Castaño-Tostado, E.; Nieto-Barrera, J.O.; Mendoza, S. Improved Functional Properties of Pasta: Enrichment with Amaranth Seed Flour and Dried Amaranth Leaves. J. Cereal Sci. 2016, 72, 84–90. [Google Scholar] [CrossRef]
- Malgor, M.; Sabbione, A.C.; Scilingo, A. Amaranth Lemon Sorbet, Elaboration of a Potential Functional Food. Plants Food Hum. Nutr. 2020, 75, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Manassero, C.A.; Añón, M.C.; Speroni, F. Development of a High Protein Beverage Based on Amaranth. Plants Food Hum. Nutr. 2020, 75, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Ramos, K.; Millán-Linares, M.C.; Haros, C.M. Effect of Chia as Breadmaking Ingredient on Nutritional Quality, Mineral Availability, and Glycemic Index of Bread. Foods 2020, 9, 663. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Chioma Anyiam, C.; Obianuju Ojokoh, L.; Uchenna Chima, J.; Modupe Olagunju, T.; Osita Okpara, K.; Chigozie Asadu, K. Optimized Spaghetti Pasta from Amaranth, Partially Deoiled Sesame and Modified Sorghum Starch Composite: Bioactive, Nutritional and Physico-Functional Characterization. Nutr. Food Sci. 2020, 51, 974–988. [Google Scholar] [CrossRef]
- Temnikova, O.E.; Rudenko, E.Y.; Senchenko, O.V.; Ruzyanova, A.A. Technology of Functional Bread using Buckwheat Flour. IOP Conf. Series Earth Environ. Sci. 2021, 640, 022002. [Google Scholar] [CrossRef]
- Zieliński, H.; Honke, J.; Topolska, J.; Baczek, N.; Piskuła, M.K.; Wiczkowski, W.; Wronkowska, M. ACE Inhibitory Properties and Phenolics Profile of Fermented Flours of Baked and Digested Biscuits from Buckwheat. Foods 2020, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Szawara-Nowak, D.; Wronkowska, M. Bioaccessibility of Anti-AGEs Activity, Antioxidant Capacity and Phenolics from Water Biscuits Prepared from Fermented Buckwheat Flours. LWT Food Sci. Technol. 2020, 123, 109051. [Google Scholar] [CrossRef]
- Bahmanyar, F.; Hosseini, S.M.; Mirmoghtadaie, L.; Shojaee-Aliabadi, S. Effects of Replacing Soy Protein and Bread Crumb with Quinoa and Buckwheat Flour in Functional Beef Burger Formulation. Meat Sci. 2021, 172, 108305. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Guo, X.D.; Liu, H.; Xu, B.N.; Wang, M. Cooking, Textural, Sensorial, and Antioxidant Properties of Common and Tartary Buckwheat Noodles. Food Sci. Biotechnol. 2013, 22, 153–159. [Google Scholar] [CrossRef]
- Matseychik, I.V.; Korpacheva, S.M.; Lomovsky, I.O.; Serasutdinova, K.R. Influence of Buckwheat By-Products on the Antioxidant Activity of Functional Desserts. IOP Conf. Series Earth Environ. Sci. 2021, 640, 022038. [Google Scholar] [CrossRef]
- Costantini, L.; Lukšic, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of Gluten-Free Bread Using Tartary Buckwheat and Chia Flour Rich in Flavonoids and Omega-3 Fatty Acids as Ingredients. Food Chem. 2014, 165, 232–240. [Google Scholar] [CrossRef]
- Alcântara Brandão, N.; Borges de Lima, D.M.; Andrade Gaspardi, A.L.; Segura Campos, M.R. Chia (Salvia hispanica L.) Cookies: Physicochemical/Microbiological Attributes, Nutrimental Value and Sensory Analysis. J. Food Meas. Charact. 2019, 13, 1100–1110. [Google Scholar] [CrossRef]
- Antonini, E.; Torri, L.; Piochi, M.; Cabrino, G.; Meli, M.A.; De Bellisa, R. Nutritional, Antioxidant and Sensory Properties of Functional Beef Burgers Formulated with Chia Seeds and Goji Puree, Before and After In Vitro Digestion. Meat Sci. 2020, 161, 108021. [Google Scholar] [CrossRef]
- Giaretta, D.; Lima, V.A.; Carpes, S.T. Improvement of Fatty Acid Profile in Breads Supplemented with Kinako Flour and Chia Seed. Innov. Food Sci. Emerg. Technol. 2018, 49, 211–214. [Google Scholar] [CrossRef]
- Kowaleski, J.; Quast, L.B.; Steffens, J.; Lovato, F.; Rodrigues dos Santos, L.; Zambiazi da Silva, S.; Maschio de Souza, D.; Alceu Felicetti, M. Functional Yogurt with Strawberries and Chia Seeds. Food Biosci. 2020, 37, 100726. [Google Scholar] [CrossRef]
- Kwon, H.C.; Bae, H.; Seo, H.G.; Han, S.G. Short Communication: Chia Seed Extract Enhances Physiochemical and Antioxidant Properties of Yogurt. J. Dairy Sci. 2019, 102, 4870–4876. [Google Scholar] [CrossRef] [PubMed]
- Mas, A.L.; Brigante, F.I.; Salvuccia, E.; Pigni, N.B.; Martinez, M.L.; Ribotta, P.; Wunderlin, D.A.; Baroni, M.V. Defatted Chia Flour as Functional Ingredient in Sweet Cookies. How do Processing, Simulated Gastrointestinal Digestion and Colonic Fermentation Affect its Antioxidant Properties? Food Chem. 2020, 316, 126279. [Google Scholar] [CrossRef]
- Nduko, J.M.; Maina, R.W.; Muchina, R.K.; Kibitok, S.K. Application of Chia (Salvia hispanica) Seeds as a Functional Component in the Fortification of Pineapple Jam. Food Sci. Nutr. 2018, 6, 2344–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna Pizarro, P.; Lopes Almeida, E.; Sammána, N.C.; Chang, Y.K. Evaluation of Whole Chia (Salvia hispanica L.) Flour and Hydrogenated Vegetable Fat in Pound Cake. LWT Food Sci. Technol. 2013, 54, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Verdú, S.; Vásquez, F.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Physicochemical Effects of Chia (Salvia hispanica) Seed Flour on Each Wheat Bread-Making Process Phase and Product Storage. J. Cereal Sci. 2015, 65, 67–73. [Google Scholar] [CrossRef]
- Syeda Shaista, F.; Kabra, S. Effect of Incorporating Different Amounts of Chia to Develop a Nutritious Kulfi. Int. J. Sci. Res. 2015, 6, 1411–1413. [Google Scholar]
- Rendón-Villalobos, R.; Ortíz-Sánchez, A.; Solorza-Feria, J.; Trujillo-Hernández, C.A. Formulation, Physicochemical, Nutritional and Sensorial Evaluation of Corn Tortillas Supplemented with Chia Seed (Salvia hispanica L.). Czech J. Food Sci. 2012, 30, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Levent, H. Effect of Partial Substitution of Gluten-Free Flour Mixtures with Chia (Salvia hispanica L.) Flour on Quality of Gluten-Free Noodles. J. Food Sci. Technol. 2017, 54, 1971–1978. [Google Scholar] [CrossRef]
- Beshir, E.O.; Khallaf, M.F.; Abd El-daim, Y.A.; Awad, R.A.; Abdel-Azem, K.M. Sweet Lupin and Whey Protein Concentrate as Supplementants for Utilizing in Semi–Hard Biscuit and its Chemical Properties. Egypt. J. Chem. 2021, 64, 7517–7527. [Google Scholar] [CrossRef]
- Mota, J.; Lima, A.; Ferreira, R.B.; Raymundo, A. Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours. Foods 2020, 9, 1064. [Google Scholar] [CrossRef]
- Leonard, W.; Hutchings, S.C.; Warner, R.D.; Fang, Z. Effects of Incorporating Roasted Lupin (Lupinus angustifolius) Flour on the Physicochemical and Sensory Attributes of Beef Sausage. Int. J. Food Sci. Technol. 2019, 54, 1849–1857. [Google Scholar] [CrossRef]
- Eliseeva, L.G.; Kokorina, D.S.; Zhirkova, E.V.; Nevskaya, E.V.; Goncharenko, O.A.; Othman, A.J. Using Functional Quinoa Ingredients for Enhancing the Nutritional Value of Bakery Products. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022072. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Shehata, M.G.; Abduvali Djapparovec, T.; Mehany, T.; Zeitoun, M.; Zeitoun, A.M. Development and Characterization of Functional Pan Bread Supplemented with Quinoa Flour. J. Food Process Preserv. 2021, 45, e15180. [Google Scholar] [CrossRef]
- Peter, K.; Gandhi, P. Rediscovering the Therapeutic Potential of Amaranthus Species: A Review. Egypt. J. Basic Appl. Sci. 2017, 4, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ramos, K.C.; Haros, C.M. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020, 9, 1859. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Park, W.; Kim, J.H.; Ju, M.G.; Yeon, S.J.; Hong, G.E.; Lee, C.H. Physicochemical and Textural Properties of Pork Patties as Affected by Buckwheat and Fermented Buckwheat. J. Food Sci. Technol. 2016, 53, 658–666. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Guo, X.; Song, G.; Pang, S.; Fang, W.; Peng, Z. Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrient 2022, 14, 2760. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.S.; Salas-Mellado, M.D.L.M. Chemical Characterization of Chia (Salvia hispanica L.) for Use in Food Products. J. Food Nutr. Res. 2014, 2, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Villaluenga, C.; Zieliński, H.; Frias, J.; Piskuła, M.K.; Kozłowska, H.; Vidal-Valverde, C. Antioxidant Capacity and Polyphenolic Content of High-Protein Lupin Products. Food Chem. 2009, 112, 84–88. [Google Scholar] [CrossRef]
- Hall, R.S.; Johnson, S.K. Sensory Acceptability of Foods Containing Australian Sweet Lupin (Lupinus angustifolius) Flour. J. Food Sci. 2004, 69, snq92–snq97. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C.; Gomez, R. Raffinose Family of Oligosaccharides from Lupin Seeds as Prebiotics: Application in Dairy Products. J. Food Prot. 2005, 68, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Torres, A.; Frias, J.; Vidal-Valverde, C. Semolina Supplementation with Processed Lupin and Pigeon Pea Flours Improve Protein Quality of Pasta. LWT Food Sci. Technol. 2010, 43, 617–622. [Google Scholar] [CrossRef]
- Drakos, A.; Doxastakis, G.; Kiosseoglou, V. Functional Effects of Lupin Proteins in Comminuted Meat and Emulsion Gels. Food Chem. 2007, 100, 650–655. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Quinoa Starch: Structure, Properties, and Applications. Carbohydr. Polym. 2018, 181, 851–861. [Google Scholar] [CrossRef]
- Lorusso, A.; Verni, M.; Montemurro, M.; Coda, R.; Gobbetti, M.; Rizzello, C.G. Use of Fermented Quinoa Flour for Pasta Making and Evaluation of the Technological and Nutritional Features. LWT Food Sci. Technol. 2017, 78, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Nasar-Abbas, S.M.; Jayasena, V. Effect of Lupin Flour Incorporation on the Physical and Sensory Properties of Muffins. Qual. Assur. Saf. Crops Foods 2012, 4, 41–49. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel Technologies for the Production of Bioactive Peptides. Trends Food Sci. Tech. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Arámburu-Gálvez, J.G.; Arvizu-Flores, A.A.; Cárdenas-Torres, F.I.; Cabrera-Chávez, F.; Ramírez-Torres, G.I.; Flores-Mendoza, L.K.; Gastelum-Acosta, P.E.; Figueroa-Salcido, O.G.; Ontiveros, N. Prediction of ACE-I Inhibitory Peptides Derived from Chickpea (Cicer arietinum L.): In Silico Assessments Using Simulated Enzymatic Hydrolysis, Molecular Docking and ADMET Evaluation. Foods 2022, 11, 1576. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Antioxidative Peptides Derived from Plants for Human Nutrition: Their Production, Mechanisms and Applications. Eur. Food Res. Technol. 2020, 246, 853–865. [Google Scholar] [CrossRef]
- Silva-Sánchez, C.; Barba de la Rosa, A.P.; León Galván, M.F.; de Lumen, B.O.; de León-Rodríguez, A.; González de Mejia, E. Bioactive Peptides in Amaranth (Amaranthus hypochondriacus) Seed. J. Agric. Food Chem. 2008, 56, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Pérez, E.G.; Guerrero-Legarreta, I.; Farrés-González, A.; Soriano-Santos, J. Angiotensin I-Converting Enzyme-Inhibitory Peptide Fractions from Albumin 1 and Globulin as Obtained of Amaranth Grain. Food Chem. 2009, 116, 437–444. [Google Scholar] [CrossRef]
- Barba de la Rosa, A.P.; Barba Montoya, A.; Martínez-Cuevas, P.; Hernández-Ledesma, B.; León-Galván, M.F.; De León-Rodríguez, A.; González, C. Tryptic Amaranth Glutelin Digests Induce Endothelial Nitric Oxide Production Through Inhibition of ACE: Antihypertensive Role of Amaranth Peptides. Nitric Oxide 2010, 23, 106–111. [Google Scholar] [CrossRef]
- Fritz, M.; Vecchi, B.; Rinaldi, G.; Añón, M.C. Amaranth Seed Protein Hydrolysates Have in Vivo and in Vitro Antihypertensive Activity. Food Chem. 2011, 126, 878–884. [Google Scholar] [CrossRef]
- Soriano-Santos, J.; Reyes-Bautista, R.; Guerrero-Legarreta, I.; Ponce-Alquicira, E.; Escalona-Buendía, H.B.; Almanza-Pérez, J.C.; Díaz-Godínez, G.; Román-Ramos, R. Dipeptidyl Peptidase IV Inhibitory Activity of Protein Hydrolyzates from Amaranthus hypochondriacus L. Grain and their Influence on Postprandial Glycemia in Streptozotocin-Induced Diabetic Mice. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Moronta, J.; Smaldini, P.L.; Docena, G.H.; Añón, M.C. Peptides of Amaranth were Targeted as Containing Sequences with Potential Anti-Inflammatory Properties. J. Funct. Foods 2016, 21, 463–473. [Google Scholar] [CrossRef]
- Quiroga, A.V.; Aphalo, P.; Nardo, A.E.; Añón, M.C. In Vitro Modulation of Renin−Angiotensin System Enzymes by Amaranth (Amaranthus hypochondriacus) Protein-Derived Peptides: Alternative Mechanisms Different from ACE Inhibition. J. Agric. Food Chem. 2017, 65, 7415–7423. [Google Scholar] [CrossRef]
- Ramírez-Torres, G.; Ontiveros, N.; Lopez-Teros, V.; Ibarra-Diarte, J.A.; Reyes-Moreno, C.; Cuevas-Rodríguez, E.O.; Cabrera-Chávez, F. Amaranth Protein Hydrolysates Efficiently Reduce Systolic Blood Pressure in Spontaneously Hypertensive Rats. Molecules 2017, 22, 1905. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, P.; Omar, L.S.; Kamal, H.; Kilari, B.P.; Maqsood, S. Multi-Functional Bioactive Properties of Intact and Enzymatically Hydrolysed Quinoa and Amaranth Proteins. LWT Food Sci. Technol. 2019, 110, 207–213. [Google Scholar] [CrossRef]
- Cabrera-Chávez, F.; Lopez-Teros, V.; Gutiérrez-Arzapalo, P.Y.; Cárdenas-Torres, F.I.; Rios-Burgueño, E.R.; Astiazaran-Garcia, H.; Hernández Murúa, J.A.; González-Ochoa, G.; Ramírez-Torres, G.I.; Ontiveros, N. Antihypertensive Effect of Amaranth Hydrolysate is Comparable to the Effect of Low-Intensity Physical Activity. Appl. Sci. 2020, 10, 5706. [Google Scholar] [CrossRef]
- Moronta, J.; Smaldini, P.L.; Fossati, C.A.; Añon, M.C.; Docena, G.H. The Anti-Inflammatory SSEDIKE Peptide from Amaranth Seeds Modulates IgE-Mediated Food Allergy. J. Funct. Foods 2016, 25, 579–587. [Google Scholar] [CrossRef]
- Aluko, R.E.; Monu, E. Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. J. Food Sci. 2003, 68, 1254–1258. [Google Scholar] [CrossRef]
- Mahdavi Yekta, M.; Nouri, L.; Azizi, M.H.; Dehkordi, M.K.; Mohammadi, M.; Jabbari, M.; Rezaei, M.; Khaneghah, A.M. Peptide Extracted from Quinoa by Pepsin and Alcalase Enzymes Hydrolysis: Evaluation of the Antioxidant Activity. J. Food Process. Preserv. 2020, 44, e14773. [Google Scholar] [CrossRef]
- Olivera-Montenegro, L.; Best, I.; Gil-Saldarriaga, A. Effect of Pretreatment by Supercritical Fluids on Antioxidant Activity of Protein Hydrolyzate from Quinoa (Chenopodium quinoa Willd.). Food Sci. Nutr. 2021, 9, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Daliri, H.; Ahmadi, R.; Pezeshki, A.; Hamishehkar, H.; Mohammadi, M.; Beyrami, H.; Heshmati, M.K.; Ghorbani, M. Quinoa Bioactive Protein Hydrolysate Produced by Pancreatin Enzyme- Functional and Antioxidant Properties. LWT Food Sci. Technol. 2021, 150, 111853. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Salazar-Vega, I.M.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Biological Potential of Chia (Salvia hispanica L.) Protein Hydrolysates and Their Incorporation into Functional Foods. LWT Food Sci. Technol. 2013, 50, 723–731. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Deering, A.J.; Liceaga, A.M. New Insights into the Antimicrobial Properties of Hydrolysates and Peptide Fractions Derived from Chia Seed (Salvia hispanica L.). Probiotics Antimicrob. Proteins 2020, 12, 1571–1581. [Google Scholar] [CrossRef]
- Chim-Chi, Y.; Gallegos-Tintoré, S.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Chel-Guerrero, L. Antioxidant Capacity of Mexican Chia (Salvia hispanica L.) Protein Hydrolyzates. Food Meas. 2018, 12, 323–331. [Google Scholar] [CrossRef]
- Cotabarren, J.; Rosso, A.M.; Tellechea, M.; García-Pardo, J.; Lorenzo Rivera, J.; Obregón, W.D.; Parisi, M.G. Adding Value to the Chia (Salvia hispanica L.) Expeller: Production of Bioactive Peptides with Antioxidant Properties by Enzymatic Hydrolysis with Papain. Food Chem. 2019, 274, 848–856. [Google Scholar] [CrossRef]
- Martínez Leo, E.E.; Segura Campos, M.R. Neuroprotective Effect of Peptide Fractions from Chia (Salvia hispanica) on H2O2-Induced Oxidative Stress-Mediated Neuronal Damage on N1E-115 Cell Line. Neurochem. Res. 2020, 45, 2278–2285. [Google Scholar] [CrossRef]
- San Pablo-Osorio, B.; Mojica, L.; Urías-Silvas, J.E. Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site. J. Food Sci. 2019, 84, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Silveira Coelho, M.; Manólio Soares-Freitas, R.A.; Gomes Arêas, J.A.; Avila Gandra, E.; Salas-Mellado, M.M. Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods Hum. Nutr. 2018, 73, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sosa Crespo, I.; Laviada Molina, H.; Chel-Guerrero, L.; Ortiz-Andrade, R.; Betancur-Ancona, D. Inhibitory Effect of Peptide Fractions Derivatives from Chia (Salvia hispanica) Hydrolysis Against α-amylase and α-glucosidase Enzymes. Nutr. Hosp. 2018, 35, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Urbizo-Reyes, U.; San Martin-González, M.F.; Garcia-Bravo, J.; López Malo Vigil, A.; Liceaga, A.M. Physicochemical Characteristics of Chia Seed (Salvia hispanica) Protein Hydrolysates Produced Using Ultrasonication Followed by Microwave Assisted Hydrolysis. Food Hydrocoll. 2019, 97, 105187. [Google Scholar] [CrossRef]
- Villanueva-Lazo, A.; Montserrat-de la Paz, S.; Rodriguez-Martin, N.M.; Millan, F.; Carrera, C.; Pedroche, J.J.; Millan-Linares, M.C. Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods 2021, 10, 2297. [Google Scholar] [CrossRef]
- Luo, X.; Fei, Y.; Xu, Q.; Lei, T.; Mo, X.; Wang, Z.; Zhang, L.; Mou, X.; Li, H. Isolation and Identification of Antioxidant Peptides from Tartary Buckwheat Albumin (Fagopyrum tataricum Gaertn.) and Their Antioxidant Activities. J. Food Sci. 2020, 85, 611–617. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Y.; Shi, R.; Chen, Z.; Li, Z.; Wei, Y.; Zhou, X. Structural and antioxidant analysis of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin. J. Sci. Food Agric. 2020, 100, 1220–1229. [Google Scholar] [CrossRef]
- Tao, T.; Pan, D.; Zheng, Y.Y.; Ma, T.J. Optimization of Hydrolyzed Crude Extract from Tartary Buckwheat Protein and Analysis of its Hypoglycemic Activity in Vitro. IOP Conf. Series Earth Environ. Sci. 2019, 295, 032065. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Gonzalez de Mejia, E. Optimization, Identification, and Comparison of Peptides from Germinated Chickpea (Cicer arietinum) Protein Hydrolysates Using Either Papain or Ficin and Their Relationship with Markers of Type 2 Diabetes. Food Chem. 2022, 374, 131717. [Google Scholar] [CrossRef]
- Quintero-Soto, M.F.; Chávez-Ontiveros, J.; Garzón-Tiznado, J.A.; Salazar-Salas, N.Y.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; López-Valenzuela, J.A. Characterization of Peptides with Antioxidant Activity and Antidiabetic Potential Obtained from Chickpea (Cicer arietinum L.) Protein Hydrolyzates. J. Food Sci. 2021, 86, 2962–2977. [Google Scholar] [CrossRef]
- Shi, W.; Hou, T.; Guo, D.; He, H. Evaluation of Hypolipidemic Peptide (Val-Phe-Val-Arg-Asn) Virtual Screened from Chickpea Peptides by Pharmacophore Model in High-Fat Diet-Induced Obese Rat. J. Funct. Foods 2019, 54, 136–145. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Gill, H.; Farahnaky, A.; Truong, T. Investigating the Impact of Ultrasound Pretreatment on the Physicochemical, Structural, and Antioxidant Properties of Lupin Protein Hydrolysates. Food Bioproc. Technol. 2021, 14, 2004–2019. [Google Scholar] [CrossRef]
- Guo, X.; Shang, W.; Strappe, P.; Zhou, Z.; Blanchard, C. Peptides Derived from Lupin Proteins Confer Potent Protection Against Oxidative Stress. J. Sci. Food Agric. 2018, 98, 5225–5234. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva, A.; Pedroche, J.; Millan, F.; Martin, M.E.; Millan-Linares, M.C. Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules 2021, 11, 1458. [Google Scholar] [CrossRef] [PubMed]
- Millan-Linares, M.C.; Toscano, R.; Lemus-Conejo, A.; Martin, M.E.; Pedroche, J.; Millan, F.; Montserrat-de la Paz, S. GPETAFLR, a Biopeptide from Lupinus angustifolius L., Protects Against Oxidative and Inflammatory Damage in Retinal Pigment Epithelium cells. Food Biochem. 2019, 43, e12995. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, H.; Joshi, R.; Gupta, M. Isolation, Purification and Characterization of Antioxidative Peptide of Pearl Millet (Pennisetum glaucum) Protein Hydrolysate. Food Chem. 2016, 204, 365–372. [Google Scholar] [CrossRef]
- Agrawal, H.; Joshi, R.; Gupta, M. Purification, Identification and Characterization of Two Novel Antioxidant Peptides from Finger Millet (Eleusine coracana) Protein Hydrolysate. Food Res. Int. 2019, 120, 697–707. [Google Scholar] [CrossRef]
- Budseekoad, S.; Yupanqui, C.T.; Sirinupong, N.; Alashi, A.M.; Aluko, R.E.; Youravong, W. Structural and Functional Characterization of Calcium and Iron-Binding Peptides from Mung Bean Protein Hydrolysate. J. Funct. Foods 2018, 49, 333–341. [Google Scholar] [CrossRef]
- Sonklin, C.; Alashi, A.M.; Laohakunjit, N.; Aluko, R.E. Functional Characterization of Mung Bean Meal Protein-Derived Antioxidant Peptides. Molecules 2021, 26, 1515. [Google Scholar] [CrossRef]
- Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of Antihypertensive Peptides from Mung Bean Protein Hydrolysate and Their Effects in Spontaneously Hypertensive Rats. J. Funct. Foods 2020, 64, 103635. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, X.; Li, M. Preparation, Characterization and in Vitro Stability of Iron-Chelating Peptides from Mung Beans. Food Chem. 2021, 349, 129101. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, H.; Joshi, R.; Gupta, M. Isolation and Characterisation of Enzymatic Hydrolysed Peptides with Antioxidant Activities from Green Tender Sorghum. LWT Food Sci. Technol. 2017, 84, 608–616. [Google Scholar] [CrossRef]
- Castro-Jácome, T.P.; Alcántara-Quintana, L.E.; Montalvo-González, E.; Chacón-López, A.; Kalixto-Sánchez, M.A.; Rivera, M.P.; López-García, U.M.; Tovar-Pérez, E.G. Skin-Protective Properties of Peptide Extracts Produced from White Sorghum Grain Kafirins. Ind. Crops Prod. 2021, 167, 113551. [Google Scholar] [CrossRef]
- Wu, Q.; Du, J.; Jia, J.; Kuang, C. Production of ACE Inhibitory Peptides from Sweet Sorghum Grain Protein Using Alcalase: Hydrolysis Kinetic, Purification and Molecular Docking Study. Food Chem. 2016, 199, 140–149. [Google Scholar] [CrossRef]
- Xu, S.; Shen, Y.; Xu, J.; Qi, G.; Chen, G.; Wang, W.; Sun, X.; Li, Y. Antioxidant and Anticancer Effects in Human Hepatocarcinoma (HepG2) Cells of Papain-Hydrolyzed Sorghum Kafirin Hydrolysates. J. Funct. Foods 2019, 58, 374–382. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Miralles, B.; Hernández-Ledesma, B. Release of Multifunctional Peptides from Kiwicha (Amaranthus caudatus) Protein Under in Vitro Gastrointestinal Digestion. J. Sci. Food Agric. 2019, 99, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Taniya, M.S.; Reshma, M.V.; Shanimol, P.S.; Krishnan, G.; Priya, S. Bioactive Peptides from Amaranth Seed Protein Hydrolysates Induced Apoptosis and Antimigratory Effects in Breast Cancer Cells. Food Biosci. 2020, 35, 100588. [Google Scholar] [CrossRef]
- Tiengo, A.; Faria, M.; Netto, F.M. Characterization and ACE-Inhibitory Activity of Amaranth Proteins. J. Food Sci. 2009, 74, H121–H126. [Google Scholar] [CrossRef]
- Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A.; González de Mejia, E.; Barba de la Rosa, A.P. In Vitro Inhibition of Dipeptidyl Peptidase IV by Peptides Derived from the Hydrolysis of Amaranth (Amaranthus hypochondriacus L.) Proteins. Food Chem. 2013, 136, 758–764. [Google Scholar] [CrossRef]
- Bojórquez-Velázquez, E.; Velarde-Salcedo, A.J.; De León-Rodríguez, A.; Jimenez-Islas, H.; Pérez-Torres, J.L.; Herrera-Estrella, A.; Espitia-Rangel, E.; Barba de la Rosa, A.P. Morphological, Proximal Composition, and Bioactive Compounds Characterization of Wild and Cultivated Amaranth (Amaranthus spp.) Species. J. Cereal Sci. 2018, 83, 222–228. [Google Scholar] [CrossRef]
- Aphalo, P.; Nora Martínez, E.; Añón, M.C. Amaranth Sprouts: A Potential Health Promoting and Nutritive Natural Food. Int. J. Food Propert. 2015, 18, 2688–2698. [Google Scholar] [CrossRef]
- Sandoval-Sicairos, E.S.; Milán-Noris, A.K.; Luna-Vital, D.A.; Millán-Carrillo, J.; Montoya-Rodríguez, A. Anti-Inflammatory and Antioxidant Effects of Peptides Released from Germinated Amaranth During in vitro Simulated Gastrointestinal Digestion. Food Chem. 2021, 343, 128394. [Google Scholar] [CrossRef] [PubMed]
- Sabbione, A.C.; Onyango Ogutu, F.; Scilingo, A.; Zhang, M.; Añón, M.C.; Mu, T.-H. Antiproliferative Effect of Amaranth Proteins and Peptides on HT-29 Human Colon Tumor Cell Line. Plant Foods Hum. Nutr. 2019, 74, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of Dipeptidyl Peptidase IV, α-amylase and α-glucosidase Inhibitory Peptides from Quinoa (Chenopodium quinoa Willd.) During in Vitro Simulated Gastrointestinal Digestion. J. Funct. Foods 2017, 35, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Hao, Y.; Richel, A.; Everaert, N.; Chen, Y.; Liu, M.; Yanga, X.; Rena, G. Antihypertensive Effect of Quinoa Protein Under Simulated Gastrointestinal Digestion and Peptide Characterization. J. Sci. Food Agric. 2020, 100, 5569–5576. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Valverde, M.E.; Nieto-Rendón, B.; Paredes-López, O. Inhibitory Activity of Chia (Salvia hispanica L.) Protein Fractions Against Angiotensin I-Converting Enzyme and Antioxidant Capacity. LWT Food Sci. Technol. 2015, 64, 236–242. [Google Scholar] [CrossRef]
- Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins. J. Agric. Food Chem. 2015, 63, 9543–9549. [Google Scholar] [CrossRef]
- Yu, G.; Wang, F.; Zhang, B.; Fan, J. In Vitro Inhibition of Platelet Aggregation by Peptides Derived from Oat (Avena sativa L.), Highland Barley (Hordeum vulgare Linn. var. nudum Hook. f.), and Buckwheat (Fagopyrum esculentum Moench) Proteins. Food Chem. 2016, 194, 577–586. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Luna-Vital, D.; Gonzalez de Mejia, E. Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and their Relationship with Markers of Type 2 Diabetes and Bitterness. Nutrients 2020, 12, 3843. [Google Scholar] [CrossRef]
- Coronado-Cáceres, L.J.; Hernández-Ledesma, B.; Mojica, L.; Quevedo-Corona, L.; Rabadán-Chávez, G.; Castillo-Herrera, G.A.; Lugo Cervantes, E. Cocoa (Theobroma cacao L.) Seed-Derived Peptides Reduce Blood Pressure by Interacting with the Catalytic Site of the Angiotensin-Converting Enzyme. Foods 2021, 10, 2340. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, J.; Gao, J.; Wu, Y.; Meng, X.; Tong, P.; Chen, H. Antioxidant and Anti-Inflammatory Potential of Peptides Derived from In Vitro Gastrointestinal Digestion of Germinated and Heat-Treated Foxtail Millet (Setaria italica) Proteins. J. Agric. Food Chem. 2020, 68, 9415–9426. [Google Scholar] [CrossRef]
- Kusumah, J.; Real Hernandez, L.M.; Gonzalez de Mejia, E. Antioxidant Potential of Mung Bean (Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods. Foods 2020, 9, 1241. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Niño, A.; Rodríguez-Serrano, G.M.; Jiménez-Alvarado, R.; Bautista-Avila, M.; Sánchez-Franco, J.A.; González-Olivares, L.G.; Cepeda-Saez, A. Bioactivity of Peptides Released During Lactic Fermentation of Amaranth Proteins with Potential Cardiovascular Protective Effect: An in Vitro Study. J. Med. Food 2019, 22, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Lado, M.B.; Burini, J.; Rinaldi, G.; Añón, M.C.; Tironi, V.A. Effects of the Dietary Addition of Amaranth (Amaranthus mantegazzianus) Protein Isolate on Antioxidant Status, Lipid Profiles and Blood Pressure of Rats. Plant Foods Hum. Nutr. 2015, 70, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Du, J.; Li, J.; Wang, Z. Inhibitory Site of α-hairpinin Peptide from Tartary Buckwheat has no Effect on its Antimicrobial Activities. Acta Biochim. Biophys. Sin. 2018, 50, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Yuan, S.; Zhang, S.; Ng, T.; Ye, X. Buckwheat Antifungal Protein with Biocontrol Potential to Inhibit Fungal (Botrytis cinerea) Infection of Cherry Tomato. J. Agric. Food Chem. 2019, 67, 6748–6756. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Tomé, S.; Hernández-Ledesma, B. Gastrointestinal Digestion of Food Proteins Under the Effects of Released Bioactive Peptides on Digestive Health. Mol. Nutr. Food Res. 2020, 64, 2000401. [Google Scholar] [CrossRef]
- Amigo-Benavent, M.; Khalesi, M.; Thapa, G.; FitzGerald, R.J. Methodologies for Bioactivity Assay: Biochemical Study. In Biologically Active Peptides; Elsevier: Amsterdam, The Netherlands, 2021; pp. 103–153. [Google Scholar]
Grain Species | Type of Food | Nutritional Composition | Biological Activity | Physicochemical and Techno-Functional Properties | Reference |
---|---|---|---|---|---|
Amaranth | Fortified pasta | Enhancement of fiber and protein contents Increase of β-carotene, iron, and zinc contents compared with white cassava-amaranth pasta | Improvement of the antioxidant (DPPH) capacity | Reduction of cooking time and gruel solid loss in amaranth-fortified pasta | [10] |
Enriched cookies | --- | ACE inhibition by serum from mice fed enriched cookies Reduction of blood pressure in hypertensive rats | --- | [11] | |
Functional cookies | Increase of total protein, ash and flavonoids contents compared with control cookies | Increase of antioxidant (ABTS) capacity compared with control cookies | --- | [12] | |
Enriched pasta | --- | Antihypertensive properties in hypertensive rats | Decrease of optimum cooking time and cooking loss | [13] | |
Puffed snacks | High protein, iron, zinc, and dietary fiber content | --- | --- | [14] | |
A. caudatus | Muffin | Increase of nutritional (fiber, fat, protein) quality | Increase of total phenolics and flavonoid content, and antioxidant (ABTS and DPPH) activities | Improvements of color, texture characteristics | [15] |
Multigrain bread | Increase of ash, fiber, and protein contents and reduction of carbohydrate content | Exhibition of significant hydroxyl radical scavenging ability, Fe2+ chelation and inhibition of Fe2+-induced lipid peroxidation Increase of α-amylase and α-glucosidase inhibitory abilities, and decrease of glycemic indices compared to white flour bread (control) | --- | [16] | |
A. hypochondriacus | Elbow-type pasta | Increase of protein, crude fiber and ash content in flour and dry leaves pastas Increase of iron, zinc, magnesium, and potassium in dry leaves pasta | Loss of antioxidant (FRAP and ORAC) capacity after cooking (low decrease in dry leaves pasta) | Decrease of cooking time, increase of cooking loss percentage, and decrease of luminosity values compared with semolina control pasta | [17] |
Lemon sorbet | --- | Release of antithrombotic peptides during simulated gastrointestinal digestion | Increase of foaming properties | [18] | |
Amaranth-based beverage | Good nutritional quality (high value proteins, lipids, and carbohydrates, and high content of soluble fiber) | --- | --- | [19] | |
A. caudatus, quinoa (C. quinoa Willd.), and black chia (S. hispanica L.) | Bread | Significant increase in protein amount, ash, lipids, and crumb firmness compared to wheat bread Similar calorie value between control and fortified formula | --- | Decrease of loaf-specific volume in comparison to control bread | [20] |
A. viridis, sorghum (S. bicolor), and wholesome sesame (S. indicum) | Spaghetti pasta | Significant increase of protein, ash, fat, fiber, calcium, magnesium, and zinc contents compared to control (100% wheat flour pasta) | Increase of alkaloids, total phenolic, flavonoids, DPPH, and FRAP relative to control (100% wheat flour pasta) | --- | [21] |
Buckwheat | Bread | Increase of iron content | --- | Decrease of the porosity and specific loaf volume of the bread | [22] |
Biscuits | Identification of total phenolic compounds (p-coumaric, sinapic, syringic, vanillic, protocatechuic acids, kaempherol, quercetin, apigenin, and orientin) | Decrease of ACE inhibitory activity that was reverted by simulated gastrointestinal digestion Partial correlation of ACE inhibitory activity with the content of total phenolic compounds | --- | [23] | |
Biscuits | --- | Increase of bio-accessible anti- antioxidant/reducing capacity, AGEs activity, and total phenolics content after simulated digestion of biscuits Contribution of the bio-accessible phenolic antioxidants to the AGEs formation-inhibitory activity of biscuits | --- | [24] | |
Buckwheat (F. esculentum Moench) | Beef burger | Increase of magnesium, phosphorus, iron, and zinc contents in comparison with control burgers | --- | Reduction of oil absorption and water holding capacity in comparison with soy protein and bread crumb (control) burgers Increase of shelf-life stability | [25] |
Noodle | Low concentration of total phenolics and flavonoids | Low antioxidant (FRAP, ABTS, and DPPH) capacity | High tensility and low adhesiveness | [26] | |
Buckwheat (F. sagittatum Gilib) | Functional desserts | Increase of dietary fibers content | Increase of antioxidant capacity | --- | [27] |
Tartary buckwheat (F. tartaricum) | Noodle | High concentration of total phenolics and flavonoids | Increase of (FRAP, ABTS, and DPPH) antioxidant capacity | Low tensility and increase of adhesiveness | [26] |
Tartary buckwheat (F. tataricum Gaertn.) and chia (S. hipanica L.) | Bread | Increase of protein, insoluble dietary fibers, ash, and alpha-linolenic acid Reduction of energy and carbohydrate contents compared to the control (wheat) bread | Improvement of the total antioxidant (FRAP, ORAC) capacity of the buckwheat bread | --- | [28] |
Chia (S. hipanica L.) | Cookies | Increase of protein and dietary fiber content | --- | --- | [29] |
Beef burger | Increase of PUFAs and polyphenols contents | Increase of (ORAC, ABTS, DPPH) antioxidant capacities, and reduction of MDA values Increase of polyphenol bio-accessibility, antioxidant capacity, and MDA after simulated gastrointestinal digestion | --- | [30] | |
Bread | Increase of PUFAs (mainly linolenic acid) content and reduction of SFA and MUFA content Reduction of n-6/n-3 ratio in special breads prepared with kinako flour and chia | --- | --- | [31] | |
Functional yogurt | Increase of crude protein, lipids, dietary fiber, PUFAs (mainly n-3), and mineral content | --- | During storage, the yogurt had adequate amounts of lactic acid bacteria, and Bifidobacteria (probiotic characteristics) | [32] | |
Functional yogurt | --- | Increase of radical (DPPH and ABTS) scavenging activity Inhibition of LPS-induced production of H2O2 in human colon cells | Acceleration of the fermentation rate and growth of lactic acid bacteria Improvement of syneresis, and water-holding capacity | [33] | |
Sweet cookies | --- | Increase of the polyphenol content and the antioxidant (FRAP and ABTS) capacity Few polyphenols released from the food matrix during gastrointestinal digestion, and absorbed by passive diffusion in the small intestine Greater release of polyphenols and increase of antioxidant capacity during colonic fermentation Prebiotic effects of chia polyphenols | --- | [34] | |
Bread | Increase of protein, lipids, and minerals content Increase of linoleic acid | Reduction of glycemic index compared to control (wheat flour) bread | --- | [20] | |
Pineapple jam | Increase of protein and crud fiber in comparison with control jam | --- | Significant differences in texture, but not in spreading properties, compared with control jam | [35] | |
Cake | Increase of protein, lipid, and ash content in comparison with control cake | --- | Decrease of the specific volume and color parameters of the cakes | [36] | |
Bread | Reduction of water activity, and equal amount of moisture compared with the control | --- | Improvement of gas retention in dough and cut the time required to reach maximum dough development Delay in hardness and water loss during storage of breads | [37] | |
Kulfi dessert | Increase of protein and fiber content | --- | --- | [38] | |
Corn tortillas | Increase of protein, lipids, and total dietary fiber content compared with control tortilla | Reduction of enzymatic starch hydrolysis rate and predicted glycemic index | --- | [39] | |
Gluten-free noodle | Increase of protein and fat, phytic acid and phytate phosphorus contents Increase in the amounts of Ca, P, K, Mg, Fe and Zn | Increase in antioxidant activity (DPPH) and total phenolic content | Significant rise in volume increase and weight increase values | [40] | |
Lupin (L. albus L.) | Biscuits | Increase of protein, lipid, fiber and ash content, and reduction of carbohydrate content compared with control (wheat flour) biscuits Rise of all amino acids content | --- | Improvement of quality scores | [41] |
Sweet cookies | Low values of water activity and moisture content | --- | Higher firmness but reduced impact on the shape parameters, namely in area and thickness Decrease of the lightness | [42] | |
Lupin (L. angustifolius) | Beef sausage | Increase of dietary fiber and reduction of fat content | --- | Increase of the meat emulsion stability and decrease of cooking loss Greater adhesiveness | [43] |
Quinoa (C. quinoa Willd.) | Beef burger | Increase of Mg, P, Fe, and Zn contents in comparison with control burgers | --- | Reduction of oil absorption and water holding capacity in comparison with soy protein and bread crumb (control) burgers Increase of shelf-life stability | [25] |
Bread | Increase in protein, dietary fiber, thiamine, Mg, Fe, and P | --- | --- | [44] | |
Bread | Increase of protein, fiber, vitamins, mineral, and essential amino acids content, and reduction of starch content | --- | Decrease of the lightness and redness, and increase of yellowness | [45] |
Food Group | Grain Specie | Type of Addition | Sensorial Analysis | Reference |
---|---|---|---|---|
Bread | Amaranth (A. caudatus), quinoa (C. quinoa Willd.), and black chia (S. hispanica L.) | Flours | Higher nutritional and functional indexes and similar overall acceptability in fortified bread | [20] |
Buckwheat | Buckwheat flour | Good scores for quality indicators of bread (taste, color, aroma, texture, and bread surface) | [22] | |
Quinoa (C. quinoa Willd.) | Quinoa flour | Higher sensory acceptability of quinoa-based pan bread in comparison to the control | [45] | |
Pasta | Amaranth | Amaranth protein hydrolyzate by alcalase | Negative impact on overall acceptability and taste of enriched pasta | [13] |
Amaranth (A. hypochondriacus) | Amaranth flour/dry leaf/semolina | Decrease of luminosity values of elbow-type pasta compared with semolina control pasta | [17] | |
Amaranth (A. viridis), sorghum (S. bicolor), and wholesome sesame (S. indicum) | Flours | Superiority in aroma, taste, and acceptability of spaghetti product indexes relative to the control | [21] | |
Common buckwheat (F. esculentum Moench) | Buckwheat flour | Good sensory attributes of noodles | [26] | |
Tartary buckwheat (F. tartaricum) | Buckwheat flour | Bitter taste of noodles | [26] | |
Chia (S. hipanica L.) | Chia flour | Improvement of taste and odor scores of gluten-free noodles | [40] | |
No differences in sensory attributes compared with control corn tortilla | [39] | |||
Confection | Amaranth | Amaranth protein hydrolyzate by alcalase | Intensification of yellow-brown color in enriched cookies | [11] |
Amaranth flour + roba1 beans + maize grain + fresh, orange-fleshed sweet potato | Moderate sensory acceptance of puffed snacks by consumers | [14] | ||
Amaranth (A. caudatus) | Amaranth flour + black rice flour | Improvement of sensory attributes of supplemented muffin | [15] | |
Buckwheat (F. sagittatum Gilib) | Buckwheat hull and derived melanin | Good sensory acceptance of functional desserts | [27] | |
Chia (S. hipanica L.) | Chia seeds and flour | Greater acceptance for cookies descriptors of good texture, good color, good odor, sweet taste, good taste, and pleasant taste | [29] | |
Defatted chia flour | Higher sensory acceptance in comparison with control cookies | [34] | ||
Chia flour and hydrogenated vegetable fat | Decrease of color parameters in comparison with control cake | [36] | ||
Chia flour | Good sensory acceptance of kulfi dessert | [38] | ||
Chia seed | Differences in general acceptability and sensory evaluation (flavor, color, and texture) compared with control jam, with negative impact at higher levels of addition | [35] | ||
Lupin (L. albus L.) | Lupin flour | Improvement of score of color, crust appearance, texture, aroma, taste, and overall acceptability of biscuits | [41] | |
Lupin flour + oat + buckwheat | Higher firmness and improved sensory attributes of sweet cookies | [42] | ||
Beverages and yogurt | Amaranth (A. hypochondriacus) | Amaranth protein isolate | Good acceptability assay in terms of airy, creamy, and healthy attributes of lemon sorbet | [18] |
Chia (S. hipanica L.) | Chia seeds + strawberries | Sensory acceptance inversely proportional to the addition of chia but increased with the addition of strawberry | [32] | |
Meat | Buckwheat (F. esculentum Moench) | Buckwheat flour | Increase of overall acceptability, taste attributes, and shelf-life stability of beef burger | [25] |
Chia (S. hipanica L.) | Chia seeds | Good sensorial acceptance of beef burger in hedonistic tests | [30] | |
Lupin (L. angustifolius) | Lupin flour | No significant difference in appearance, aroma, flavor and overall acceptability between control and lupin-enriched beef sausage | [43] | |
Quinoa (C. quinoa Willd.) | Quinoa flour | Increase of overall acceptability, taste attributes, and shelf-life stability of beef burger | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Tomé, S.; Ashaolu, T.J.; Hernández-Ledesma, B. Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients 2023, 15, 351. https://doi.org/10.3390/nu15020351
Fernández-Tomé S, Ashaolu TJ, Hernández-Ledesma B. Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients. 2023; 15(2):351. https://doi.org/10.3390/nu15020351
Chicago/Turabian StyleFernández-Tomé, Samuel, Tolulope Joshua Ashaolu, and Blanca Hernández-Ledesma. 2023. "Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides" Nutrients 15, no. 2: 351. https://doi.org/10.3390/nu15020351
APA StyleFernández-Tomé, S., Ashaolu, T. J., & Hernández-Ledesma, B. (2023). Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients, 15(2), 351. https://doi.org/10.3390/nu15020351