Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Selection Process
2.4. Data Extraction
2.5. Risk of Bias Assessment
3. Results
3.1. Search Results
3.2. Population Characteristics
3.3. Study Characteristics
3.4. Methodological Quality
3.5. Studies’ Main Results
3.5.1. Isometric and Isokinetic Strength
3.5.2. Power Performance
3.5.3. Intermittent Performance
3.5.4. Endurance Performance
3.5.5. Balance, Perceived Exertion, and Cognitive Function
4. Discussion
4.1. Effects of Beetroot Intake on Isometric and Isokinetic Strength
4.2. Effects of Beetroot Intake on Power Exercise
4.3. Effects of Beetroot Intake on Intermittent Exercise
4.4. Effects of Beetroot Intake on Endurance Exercise
4.5. Effects of Beetroot Intake on Core Balance, RPE and Cognitive Performance
4.6. Physiological Basis behind Beetroot Effects
4.7. Studies’ Limitations and Perspectives
4.8. Review Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Registration
References
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.; Coimbra, C.C. Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: A systematic review and meta-analysis. Br. J. Nutr. 2018, 119, 636–657. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Montoya-Rodríguez, J.; Azofeifa-Mora, C.; Sanchez-Urena, B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated-sprints: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3395–3406. [Google Scholar] [CrossRef]
- Slater, G.J.; Sygo, J.; Jorgensen, M. SPRINTING. Dietary Approaches to Optimize Training Adaptation and Performance. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Van De Walle, G.P.; Vukovich, M. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2018, 32, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Koncic, M.Z.; Tomczyk, M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets 2013, 14, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic. Biol. Med. 2010, 48, 342–347. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary Nitrate and Physical Performance. Annu. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Duncan, C.; Dougall, H.; Johnston, P.R.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.H.N.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the entero salivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef]
- Jones, A.M. Influence of dietary nitrate on the physiological determinants of exercise performance: A critical review. Appl. Physiol. Nutr. Metab. 2014, 39, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.; Sim, A.; Burns, S.F. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3674. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Chaouch, M.; Boissière, J.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: A systematic review and a meta-analysis. Nitric Oxide 2016, 53, 65–76. [Google Scholar] [CrossRef] [PubMed]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.D.; Martin, M.P.; Mintz, J.A.; Rogers, R.R.; Ballmann, C.G. Effect of Acute Beetroot Juice Supplementation on Bench Press Power, Velocity, and Repetition Volume. J. Strength Cond. Res. 2020, 34, 924–928. [Google Scholar] [CrossRef]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Close, G.; Hamilton, D.; Philp, A.; Burke, L.; Morton, J. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2020, 52, 2250–2261. [Google Scholar] [CrossRef]
- Campos, F.A.D.; Bertuzzi, R.; Dourado, A.C.; Santos, V.G.F.; Franchini, E. Energy demands in taekwondo athletes during combat simulation. Eur. J. Appl. Physiol. 2012, 112, 1221–1228. [Google Scholar] [CrossRef]
- Ana, J.S.; Franchini, E.; Sakugawa, R.L.; Diefenthaeler, F. Estimation equation of maximum oxygen uptake in taekwondo specific test. Sport Sci. Health 2018, 14, 699–703. [Google Scholar] [CrossRef]
- Barley, O.R.; Chapman, D.W.; Guppy, S.; Abbiss, C. Considerations When Assessing Endurance in Combat Sport Athletes. Front. Physiol. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kons, R.L.; Orssatto, L.B.; Detanico, D. Acute performance responses during repeated matches in combat sports: A systematic review. J. Sci. Med. Sport 2020, 23, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Mardyła, M.; Obmiński, Z.; Więcek, M.; Maciejczyk, M.; Czarny, W.; Jaszczur-Nowicki, J.; Ambroży, T. Acid-Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology 2022, 11, 65. [Google Scholar] [CrossRef]
- Vicente-Salar, N.; Fuster-Muñoz, E.; Martínez-Rodríguez, A. Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2588. [Google Scholar] [CrossRef] [PubMed]
- Antonietto, N.R.; dos Santos, D.A.; Costa, K.F.; Fernandes, J.R.; Queiroz, A.C.C.; Perez, D.I.V.; Munoz, E.A.A.; Miarka, B.; Brito, C.J. Beetroot extract improves specific performance and oxygen uptake in taekwondo athletes: A double-blind crossover study. Ido Mov. Cult. J. Martial Arts Anthropol. 2021, 21, 12–19. [Google Scholar] [CrossRef]
- Miraftabi, H.; Avazpoor, Z.; Berjisian, E.; Sarshin, A.; Rezaei, S.; Domínguez, R.; Reale, R.; Franchini, E.; Samanipour, M.H.; Koozehchian, M.S.; et al. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 10202. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human skeletal muscle nitrate store: Influence of dietary nitrate supplementation and exercise. J. Physiol. 2019, 597, 5565–5576. [Google Scholar] [CrossRef] [Green Version]
- Shannon, O.M.; McGawley, K.; Nybäck, L.; Duckworth, L.; Barlow, M.J.; Woods, D.; Siervo, M.; O’Hara, J.P. “Beet-ing” the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med. 2017, 47, 2155–2169. [Google Scholar] [CrossRef] [Green Version]
- Wickham, K.A.; Spriet, L.L. No longer beating around the bush: A review of potential sex differences with dietary nitrate supplementation. Appl. Physiol. Nutr. Metab. 2019, 44, 915–924. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Ardern, C.L.; Büttner, F.; Andrade, R.; Weir, A.; Ashe, M.C.; Holden, S.; Impellizzeri, F.M.; Delahunt, E.; Dijkstra, H.P.; Mathieson, S.; et al. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: The PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br. J. Sports Med. 2022, 56, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Horsley, T.; Dingwall, O.; Sampson, M. Checking reference lists to find additional studies for systematic reviews. Cochrane Database Syst. Rev. 2011, 2011, MR000026. [Google Scholar] [CrossRef] [PubMed]
- Rico-González, M.; Pino-Ortega, J.; Clemente, F.; Arcos, A.L. Guidelines for performing systematic reviews in sports science. Biol. Sport 2022, 39, 463–471. [Google Scholar] [CrossRef]
- Buscemi, N.; Hartling, L.; Vandermeer, B.; Tjosvold, L.; Klassen, T.P. Single data extraction generated more errors than double data extraction in systematic reviews. J. Clin. Epidemiol. 2006, 59, 697–703. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatlici, A. The effects of acute beetroot juice supplementation on lower and upper body isokinetic strength of the wrestlers. J. Men’sHealth 2021, 17, 249–254. [Google Scholar] [CrossRef]
- Tatlici, A.; Lima, Y.; Yilmaz, S.; Ekin, A.; Okut, S.; Ceviz, E. The Effects of Beetroot Juice Supplementation on Balance Performance of Wrestlers. Pak. J. Med. Health Sci. 2021, 15, 2234–2240. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; Nascimento, L.A.D.D.; Volino-Souza, M.; Mesquita, J.D.S.; Alvares, T.S. Beetroot-based gel supplementation improves hand grip strength and forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes. Appl. Physiol. Nutr. Metab. 2018, 43, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, B.B.; Schoenfeld, B.J.; Alves, R.C.; Urbinati, K.S.; McAnulty, S.R.; Junior, T.P.S. Acute Supplementation with Beetroot Juice Does Not Enhance Exercise Performance among Well-trained Athletes: A Randomized Crossover Study. J. Exerc. Physiol. Online 2018, 21, 1–12. [Google Scholar]
- Khosravi, S.; Ahmadizad, S.; Yekaninejad, M.; Karami, M.; Djafarian, K. The effect of beetroot juice supplementation on muscle performance during isokinetic knee extensions in male Taekwondo athletes. Sci. Sports 2021, 36, 483.e1–483.e7. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; Nascimento, L.A.D.D.; Souza, M.; Vellozo, O.D.C.; Alvares, T.S. A single oral dose of beetroot-based gel does not improve muscle oxygenation parameters, but speeds up hand grip isometric strength recovery in recreational combat sports athletes. Biol. Sport 2020, 37, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Tatlici, A.; Cakmakci, O. The effects of acute dietary nitrate supplementation on anaerobic power of elite boxers. Med. Dello Sport 2019, 72, 225–233. [Google Scholar] [CrossRef]
- Jones, L.; Bailey, S.J.; Rowland, S.N.; Alsharif, N.; Shannon, O.M.; Clifford, T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J. Diet. Suppl. 2021, 19, 749–771. [Google Scholar] [CrossRef] [PubMed]
- Jonvik, K.L.; Hoogervorst, D.; Peelen, H.B.; de Niet, M.; Verdijk, L.B.; van Loon, L.J.C.; van Dijk, J.-W. The impact of beetroot juice supplementation on muscular endurance, maximal strength and counter movement jump performance. Eur. J. Sport Sci. 2021, 21, 871–878. [Google Scholar] [CrossRef]
- Lee, S.; Abel, M.G.; Thomas, T.; Symons, T.B.; Yates, J.W. Acute beetroot juice supplementation does not attenuate knee extensor exercise muscle fatigue in a healthy young population. J. Exerc. Nutr. Biochem. 2019, 23, 55–62. [Google Scholar] [CrossRef]
- Calvo, J.L.; Alorda-Capo, F.; Pareja-Galeano, H.; Jiménez, S.L. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients 2020, 12, 1796. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, J.; Shen, J.; Tang, G.; Huang, F. Cationicpillar [6] arene/ATP host-guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Bermejo, L.; Pérez-Gómez, J.; Manzano, F.; Collado-Mateo, D.; Villafaina, S.; Adsuar, J.C. Reliability of isokinetic knee strength measurements in children: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0226274. [Google Scholar] [CrossRef]
- Lago-Rodríguez, A.; Domínguez, R.; Ramos-Álvarez, J.J.; Tobal, F.M.; Jodra, P.; Tan, R.; Bailey, S.J. The Effect of Dietary Nitrate Supplementation on Isokinetic Torque in Adults: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3022. [Google Scholar] [CrossRef]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef]
- Silva, K.V.C.; Costa, B.D.; Gomes, A.C.; Saunders, B.; Mota, J.F. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv. Nutr. Int. Rev. J. 2022, 13, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Dietary Nitrate Supplementation and Exercise Performance. Sports Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, J.L. Inorganic Nitrate Supplementation for Cardiovascular Health. Methodist DeBakey Cardiovasc. J. 2019, 15, 200–206. [Google Scholar] [CrossRef]
- Arazi, H.; Eghbali, E. Possible Effects of Beetroot Supplementation on Physical Performance through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front. Nutr. 2021, 8, 660150. [Google Scholar] [CrossRef]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO2kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef]
- Bishop, D.J. Fatigue during intermittent-sprint exercise. Clin. Exp. Pharmacol. Physiol. 2012, 39, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Wylie, L.; Bailey, S.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of beetroot juice supplementation on intermittent exercise performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Lucia, A.; Sánchez, O.; Carvajal, A.; Chicharro, J.L. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br. J. Sports Med. 1999, 33, 178–185. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Da Silva Santos, J.F.; Artioli, G.G.; LoTurco, I.; Abbiss, C.; Franchini, E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef]
- Coggan, A.R.; Peterson, L. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc. Sport Sci. Rev. 2018, 46, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.S.; Meissner, G.; Batra, A.; Vohra, R.S.; Chrzanowski, S.M.; Hammers, D.W.; Lott, D.J.; Vandenborne, K.; Walter, G.A.; Forbes, S.C.; et al. Physiology of Nitric Oxide in Skeletal Muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Nyakayiru, J.; van Loon, L.J.; Verdijk, L.B. Could intramuscular storage of dietary nitrate contribute to its ergogenic effect? A mini-review. Free Radic. Biol. Med. 2020, 152, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Güler, M.; Gülmez, İ.; Yilmaz, S.; Ramazanoğlu, N. The Evaluation of balance performance for elite male karate athletes after fatigue. Int. J. Sport Exerc. Train. Sci. 2017, 3, 161–168. [Google Scholar] [CrossRef]
- Jodra, P.; Domínguez, R.; Sanchez-Oliver, A.J.; Veiga-Herreros, P.; Bailey, S.J. Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance during a 30-Second Wingate Test. Int. J. Sports Physiol. Perform. 2020, 15, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooks, C.R.; Thom, N.J.; McCully, K.K.; Dishman, R.K. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Prog. Neurobiol. 2010, 92, 134–150. [Google Scholar] [CrossRef]
- Husmann, F.; Bruhn, S.; Mittlmeier, T.; Zschorlich, V.; Behrens, M. Dietary Nitrate Supplementation Improves Exercise Tolerance by Reducing Muscle Fatigue and Perceptual Responses. Front. Physiol. 2019, 10, 404. [Google Scholar] [CrossRef]
- Aamand, R.; Dalsgaard, T.; Ho, Y.-C.L.; Møller, A.; Roepstorff, A.; Lund, T.E. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation. Neuroimage 2013, 83, 397–407. [Google Scholar] [CrossRef]
- Haskell, C.; Thompson, K.; Jones, A.; Blackwell, J.; Winyard, P.; Forster, J.; Kennedy, D. Nitrate-rich beetroot juice modulates cerebral blood flow and cognitive performance in humans. Appetite 2011, 57, 560. [Google Scholar] [CrossRef]
- Macuh, M.; Knap, B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients 2021, 13, 3183. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Clerc, P.; Rigoulet, M.; Leverve, X.; Fontaine, E. Nitric oxide increases oxidative phosphorylation efficiency. J. Bioenerg. Biomembr. 2007, 39, 158–166. [Google Scholar] [CrossRef]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptakekinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. 2015, 118, 1396–1405. [Google Scholar] [CrossRef]
- Martí, J.G.; Morales, A.M.; Bosch, M.P.; Cid, A.V.; Ferrari, M.R. El efecto del zumo de remolacha sobre la presión arterial y el ejercicio físico: Revisión sistemática. Nutr. Comun. 2015, 21, 20–29. [Google Scholar] [CrossRef]
- Gao, C.; Gupta, S.; Adli, T.; Hou, W.; Coolsaet, R.; Hayes, A.; Kim, K.; Pandey, A.; Gordon, J.; Chahil, G.; et al. The effects of dietary nitrate supplementation on endurance exercise performance and cardiorespiratory measures in healthy adults: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2021, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Rowley, N.; Spence, A.; Carter, H.; Whyte, G.; George, K.; Naylor, L.H.; Cable, N.T.; Dawson, E.A.; Thijssen, D.H. WhyIsn’t Flow-Mediated Dilation Enhanced in Athletes? Med. Sci. Sports Exerc. 2013, 45, 75–82. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- American Dietetic Association (ADA); Dietitians of Canada (DC); American College of Sports Medicine (ACSM); Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef]
- Tan, R.; Cano, L.; Lago-Rodríguez, A.; Domínguez, R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 762. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Von Hippel, P.T. The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Med. Res. Methodol. 2015, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Furuya-Kanamori, L.; Xu, C.; Lin, L.; Doan, T.; Chu, H.; Thalib, L.; Doi, S.A. P value-driven methods were underpowered to detect publication bias: Analysis of Cochrane review meta-analyses. J. Clin. Epidemiol. 2020, 118, 86–92. [Google Scholar] [CrossRef] [PubMed]
Database | Terms Combination |
---|---|
Pubmed | ((“Nitrates”[MeSH] OR “nitrate*”[All Fields]) OR (“Nitrites”[MeSH] OR “nitrite*”[All Fields]) OR “beet*”[All Fields]) AND (“combat sports” [All Fields] OR “Martial Arts”[Mesh] OR “judo*” [All Fields] OR “taekwondo*” [All Fields] OR “Wrestling”[Mesh] OR “wrestl*” [All Fields] OR jiu-jitsu [All Fields]) |
Web of Science | (Nitrates OR nitrate OR Nitrites OR nitrite OR beetroot OR beet OR beets OR “beta vulgaris” OR chard OR chards) AND (“martial arts” OR “combat sports” OR judo OR judoka OR judokas OR judoist OR judoists OR taekwondo OR taekwondoist OR taekwondoists OR wrestling OR wrestler OR wrestlers OR jiu-jitsu) |
Scopus | (nitrate* OR nitrite* OR beet*) AND (“martial arts” OR “combat sports” OR judo* OR taekwondo* OR wrestl* OR jiu-jitsu) |
Cochrane Library | (nitrate* OR nitrite* OR beet*) AND (“martial arts” OR “combat sports” OR judo* OR taekwondo* OR wrestl* OR jiu-jitsu) |
Scielo | (Nitrates OR nitrate OR Nitrites OR nitrite OR beetroot OR beet OR beets OR “beta vulgaris” OR chard OR chards) AND (“martial arts” OR “combat sports” OR judo OR judoka OR judokas OR judoist OR judoists OR taekwondo OR taekwondoist OR taekwondoists OR wrestling OR wrestler OR wrestlers OR jiu-jitsu) |
SportDiscuss | (nitrate* OR nitrite* OR beet*) AND (“combat sports” OR “martial arts” OR judo* OR taekwondo* OR wrestl* OR jiu-jitsu) |
Study | Sex | Body Mass (kg) | Age (years) | Experience (years) | Training Regime | Country |
---|---|---|---|---|---|---|
Tatlici [36] | M | 76.75 (5.4) | 21.87 (2.3) | NR | 3 days per week | Turkey |
Antonietto et al. [25] | M | 77.8 (11.7) | 26.8 (8.8) | NR | ≥3 days per week | Brazil |
Tatlici et al. [37] | M | 76.75 (5.4) | 21.87 (2.3) | NR | 3 days per week | Turkey |
de Oliveira et al. [38] | M | 81.3 (10.1) | 29 (9) | NR | ≥15 h per week (3 to 5 times) | Brazil |
Miraftabi et al. [26] | M | 64.8 (4.0) | 20 (4.0) | >5 | 5 times per week | Iran |
Bernardi et al. [39] | NR | 79.29 (10.07) | 24.9 (4.6) | 2.9 (1.6) | 5 days per week | Brazil |
Khosravi et al. [40] | M | 66.4 (9.2) | 19.2 (1.6) | 9.5 (2.8) | NR | Iran |
de Oliveira et al. [41] | M | 79.72 (10.09) | 29.92 (8.5) | >5 | 15 h per week | Brazil |
Tatlici and Cakmakci [42] | M | 76.66 (19.37) | 23 (2.28) | 10.5 (0.5) | NR | Turkey |
Study | Design | Sample Size | Timing | Doses | Form | Duration | Measures | Results |
---|---|---|---|---|---|---|---|---|
Tatlici [36] | DBRCD | Eight Greco-Roman wrestlers | 150 min | 140 mL (NR as mmol of NO3−) | Juice | Acute | knee extensions and flexion at 60° Shoulder internal and external rotator isokinetic strength test at 60° | ↑ In peak torque of shoulder internal (p = 0.048) and external (p = 0.024) rotator values. ↔ In the knee strength (p > 0.05). |
Antonietto et al. [25] | DBRCD | 12 Taekwondo athletes | NR | 1 g Beetroot extract (NR as mmol of NO3−) | Capsule | Acute | PSTT [bLa-], VO2max | ↑ Absolute VO2Peak (p = 0.048), absolute VO2max atventilatory threshold (p = 0.044) and complete stages (p = 0.009) ↔ In [bLa-] (p = 0.46) |
Tatlici et al. [37] | DBRCD | Eight Greco-Roman wrestlers | 150 min | 140 mL (NR as mmol of NO3−) | Juice | Acute | Dynamic and Static Balance testing before and after fatiguing exercise | At rest: ↑ in static MLSI (p < 0.001), dynamic OSI (p = 0.03) and APSI (p = 0.01). At fatigue: ↑ in static OSI (p < 0.001), APSI (p = 0.01), dynamic OSI (p = 0.01), APSI (p = 0.02), and MLSI (p = 0.02). |
de Oliveira et al. [38] | DBRSD | 12 Brazilian jiu-jitsu athletes | 120 min | 100 g (12.2 (0.2) mmol of NO3−) | Gel | Chronic (eight days) | Handgrip isometric and isotonic exercises Blood volume Muscle oxygenation | ↓ In ∆MVC decline after Handgrip isometric exercise (p < 0.05) ↑ Forearm SmO2 during exercise recovery (p < 0.05) |
Miraftabi et al. [26] | DBRCSD | Eight Taekwondo athletes | 150 min | 60 mL 120 mL (400 and 800 mg of NO3−) | Juice | Acute | FSKT-mult, CMJ, and the PSTT RPE; [bLa-]; HR Stroop test | ↔ For PSTT, CMJ, and FSKT performances (p > 0.05) ↔ For [bLa-], RPE, and HR (p > 0.05) After the PSTT, cognitive function was ↑ in BJ-400 compared to other treatments (p < 0.05) |
Bernardi et al. [39] | DBRCSD | 10 MMA athletes | 120 min | 400 mL (9.3 mmol NO3−) | Juice | Acute | 20 all-out 6-s sprints interspersed with 24 s of recovery (20 × 6 s) | ↔ For relative PP (p > 0.05) ↔ For relative MP (p > 0.05) |
Khosravi et al. [40] | DBRCSD | 12 Taekwondo athletes | 120–150 min | 140 mL (∼12.8 mmol NO3−) | Juice | Chronic (six days) | Isokinetic knee extensions RPE Blood pressure HR | ↑Knee extensor peak torque and at angular velocities of 180 in the dominant leg (p = 0.004) and at 360°/s in the non-dominant (p = 0.036) ↑ In peak torque during 50 maximal knee extensions at 180°/s (p = 0.046) ↔In HR and blood pressure (p > 0.05) |
de Oliveira et al. [41] | DBRCSD | 14 Brazilian combat sports athletes | 120 min | 100 g (12.2 (0.2) mmol NO3−) | Gel | Acute | Handgrip isotonic exercise Muscle O2 saturation Blood volume Before and after a fatiguing exercise | ↓ The decline of handgrip strength after a fatiguing exercise (p = 0.036) ↔ In muscle O2 saturation parameters, blood volume and exercise time until fatigue (p > 0.05) |
Tatlici and Cakmakci [42] | SBRCSD | Eight Boxers | 150 min | 2 mL/kg of body body mass(NR as mmol of NO3−) | Juice | Acute | 30-s all-out Wingate test HR; [bLa-] | ↔ In [bLa-] and HR (both p > 0.05) ↓ In PP (p = 0.02), relative PP (p = 0.01), MP and relative MP (both p = 0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delleli, S.; Ouergui, I.; Messaoudi, H.; Trabelsi, K.; Glenn, J.M.; Ammar, A.; Chtourou, H. Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials. Nutrients 2023, 15, 398. https://doi.org/10.3390/nu15020398
Delleli S, Ouergui I, Messaoudi H, Trabelsi K, Glenn JM, Ammar A, Chtourou H. Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials. Nutrients. 2023; 15(2):398. https://doi.org/10.3390/nu15020398
Chicago/Turabian StyleDelleli, Slaheddine, Ibrahim Ouergui, Hamdi Messaoudi, Khaled Trabelsi, Jordan M. Glenn, Achraf Ammar, and Hamdi Chtourou. 2023. "Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials" Nutrients 15, no. 2: 398. https://doi.org/10.3390/nu15020398
APA StyleDelleli, S., Ouergui, I., Messaoudi, H., Trabelsi, K., Glenn, J. M., Ammar, A., & Chtourou, H. (2023). Does Beetroot Supplementation Improve Performance in Combat Sports Athletes? A Systematic Review of Randomized Controlled Trials. Nutrients, 15(2), 398. https://doi.org/10.3390/nu15020398