Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Siraitia grosvenorii Extract
2.2. Cell Culture and Treatment
2.3. Cell Viability Assay
2.4. RNA Extraction and Quantitative Analysis of mRNA Expression Levels
2.5. Immunoblot
2.6. Animal Model of COPD
2.7. Collection of Bronchoalveolar Lavage Fluid (BALF) and Lung Cells
2.8. Measurement of Cytokine
2.9. Flow Cytometric Analysis (FACS)
2.10. Histological Analysis
2.11. Immunohistofluorescent (IHF) Staining
2.12. Phenol Red Secretion
2.13. Statistical Analysis
3. Results
3.1. Effects of SGE on the Cytotoxicity of LPS-Stimulated BEAS-2B Cells
3.2. Effects of SGE on the Secretion and Expression of Pro-Inflammatory Cytokines in LPS-Stimulated BEAS-2B Cells
3.3. Effects of SGE on the Inflammatory Response through the MAPK-NF-κB Signaling Pathway
3.4. Effects of SGE on Airway Inflammation in COPD-Induced Murine Model
3.5. Effects of SGE on the Number of Airway Immune Cell Subtypes in BALF, Lung Tissues, and Mesenteric Lymph Node (MLN) of COPD-Induced Mice
3.6. Effects of SGE on Cytokines in BALF and Expression Levels in Lung Tissue of COPD-Induced Mice
3.7. Effects of SGE on the Histopathology of Lung Injury in COPD-Induced Mice
3.8. Effects of SGE on the Expression of TNF-α, CXCL-1, IRAK1 in COPD-Induced Mice
3.9. Effects of SGE on Expectoration through Phenol Red Secretion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, P.J. New concepts in chronic obstructive pulmonary disease. Annu. Rev. Med. 2003, 54, 113. [Google Scholar] [CrossRef]
- Cowburn, A.S.; Condliffe, A.M.; Farahi, N.; Summers, C.; Chilvers, E.R. Advances in neutrophil biology: Clinical implications. Chest 2008, 134, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusselle, G.G.; Joos, G.F.; Bracke, K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011, 378, 1015–1026. [Google Scholar] [CrossRef]
- Deng, F.; Zhong, S.; Yu, C.; Zhao, H.; Huang, H.; Meng, X.; Lin, C.; Cai, S. Abnormal neutrophil polarization in chronic obstructive pulmonary disease and how cigarette smoke extracts attract neutrophils. Ann. Transl. Med. 2022, 10, 472. [Google Scholar] [CrossRef]
- Kim, V.; Rogers, T.J.; Criner, G.J. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2008, 5, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Demkow, U.; Van Overveld, F.J. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: Implications for treatment. Eur. J. Med. Res. 2010, 15, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.K.; Simonian, P.L.; Falta, M.T.; Mitchell, J.D.; Cosgrove, G.P.; Brown, K.K.; Kotzin, B.L.; Voelkel, N.F.; Fontenot, A.P. Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am. J. Respir. Crit. Care Med. 2005, 172, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Rovina, N.; Koutsoukou, A.; Koulouris, N.G. Inflammation and immune response in COPD: Where do we stand? Mediat. Inflamm. 2013, 2013, 413735. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.L.; Cosio, M.; Churg, A. Animal models of chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L1–L15. [Google Scholar] [CrossRef]
- Wright, J.L.; Sun, J.P. Effect of smoking cessation on pulmonary and cardiovascular function and structure: Analysis of guinea pig model. J. Appl. Physiol. 1994, 76, 2163–2168. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.H.; Cho, S.S.; Bae, C.S.; Kim, G.Y.; Park, D.H. Establishment of a chronic obstructive pulmonary disease mouse model based on the elapsed time after LPS intranasal instillation. Lab. Anim. Res. 2018, 34, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, L.; Single, A.B. Animal Models Reflecting Chronic Obstructive Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data into Clinical Relevance. J. Innate Immun. 2020, 12, 203–225. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Li, H.; Tang, H.; Jin, Y.; Li, W.; Sun, X.; Xia, Z. Hydrogen inhalation ameliorates lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharm. 2011, 11, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Martich, G.D.; Danner, R.L.; Ceska, M.; Suffredini, A.F. Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: The effect of antiinflammatory agents. J. Exp. Med. 1991, 173, 1021–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera-Benítez, N.E.; Pérez-Roth, E.; Ramos-Nuez, Á.; Sologuren, I.; Padrón, J.M.; Slutsky, A.S.; Villar, J. Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. Lab. Investig. 2016, 96, 632–640. [Google Scholar] [CrossRef]
- Si, Z.; Zhang, B. Amygdalin attenuates airway epithelium apoptosis, inflammation, and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway on LPS-treated BEAS-2B bronchial epithelial cells. Int. Arch. Allergy Immunol. 2021, 182, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Verspohl, E.J.; Podlogar, J. LPS-induced proliferation and chemokine secretion from BEAS-2B cells. Pharmacol. Pharm. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Kinghora, A.D.; Soejarto, D.D.; Inglett, G.E. Sweetening agents of plant origin. Crit. Rev. Plant Sci. 1986, 4, 79–120. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Huang, Z.; Enomoto, T.; Huang, L.; Li, L. Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chem. 2020, 303, 125400. [Google Scholar] [CrossRef]
- Chen, G.; Liu, C.; Meng, G.; Zhang, C.; Chen, F.; Tang, S.; Hong, H.; Zhang, C. Neuroprotective effect of mogrol against Aβ1–42-induced memory impairment neuroinflammation and apoptosis in mice. J. Pharm. Pharmacol. 2019, 71, 869–877. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Qi, X.; Zou, J.; Sun, Z. Antiglycation and antioxidant activities of mogroside extract from Siraitia grosvenorii (Swingle) fruits. J. Food Sci. Technol. 2018, 55, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.S.; Krynitsky, A.J.; Rader, J.I. Sweeteners from plants—With emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal. Bioanal. Chem. 2013, 405, 4397–4407. [Google Scholar] [CrossRef] [PubMed]
- Song, J.L.; Qian, B.; Pan, C.; Lv, F.; Wang, H.; Gao, Y.; Zhou, Y. Protective activity of mogroside V against ovalbumin-induced experimental allergic asthma in Kunming mice. J. Food Biochem. 2019, 43, e12973. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.Y.; Kim, S.H.; Yuk, H.J.; Yang, W.K.; Lee, Y.M.; Son, E.; Kim, D.S. Siraitia grosvenorii residual extract attenuates ovalbumin-induced lung inflammation by down-regulating IL-4, IL-5, IL-13, IL-17, and MUC5AC expression in mice. Phytomedicine 2019, 61, 152835. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.Y.; Yuk, H.J.; Yang, W.K.; Kim, S.H.; Kim, D.S. Siraitia grosvenorii Residual Extract Attenuates Atopic Dermatitis by Regulating Immune Dysfunction and Skin Barrier Abnormality. Nutrients 2020, 12, 3638. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, N.; Fuchikami, J.I.; Takahashi, M.; Nabe, T.; Yoshino, S.; Kohno, S. Pulmonary emphysema induced by cigarette smoke solution and lipopolysaccharide in guinea pigs. Biol. Pharm. Bull. 2009, 32, 1559–1564. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.K.; Kim, S.H.; Jung, I.C.; Park, Y.C. Effects of scutellaria baicalensis extract on cigarette smoke-induced airway inflammation in a murine model of chronic obstructive pulmonary disease. J. Med. Food 2019, 22, 87–96. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Kim, S.H.; Kim, D.S.; Lee, J.E.; Kim, H.K. Illicium verum extract and trans-anethole attenuate ovalbumin-induced airway inflammation via enhancement of Foxp3+ regulatory T cells and inhibition of Th2 cytokines in mice. Mediat. Inflamm. 2017, 2017, 7506808. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Liu, J.; Su, D. In vivo evaluation of the anti-asthmatic, antitussive and expectorant activities of extract and fractions from Elaeagnus pungens leaf. J. Ethnopharmacol. 2009, 126, 538–542. [Google Scholar] [CrossRef]
- Catena, E.; Daffonchio, L. Efficacy and tolerability of levodropropizine in adult patients with non-productive cough. Comparison with dextromethorphan. Pulm. Pharmacol. Ther. 1997, 10, 89–96. [Google Scholar] [CrossRef]
- Gong, X.; Chen, N.; Ren, K.; Jia, J.; Wei, K.; Zhang, L.; Lv, Y.; Wang, J.; Li, M. The fruits of Siraitia grosvenorii: A review of a Chinese food-medicine. Front. Pharmacol. 2019, 10, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossen, M.A.; Sun, L.Q. Effects of Siraitia grosvenorii on nasal and scratching behaviors in ICR mice. Int. J. Tradit. Chin. Med. 2006, 5, 294. [Google Scholar]
- Qi, X.Y.; Chen, W.J.; Song, Y.F.; Xie, B.J. Hypoglycemic effect of Siraitia grosvenorii extract on diabetic mice. Chin. J. Public Health 2003, 19, 1226–1227. [Google Scholar]
- Matsumoto, S.; Jin, M.; Dewa, Y.; Nishimura, J.; Moto, M.; Murata, Y.; Shibutani, M.; Mitsumori, K. Suppressive effect of Siraitia grosvenorii extract on dicyclanil-promoted hepatocellular proliferative lesions in male mice. J. Toxicol. Sci. 2009, 34, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Qin, H.H.; Wang, W.; Qiu, S. The pharmacological research progress of Siraitia grosvenorii. J Guangxi Tradit. Chin. Med. Univ. 2010, 13, 75–76. [Google Scholar]
- Mattiuzzi, C.; Lippi, G. Worldwide disease epidemiology in the older persons. Eur. Geriatr. Med. 2020, 11, 147–153. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.; Yang, W.; Xu, Y.; Xu, Y.; Huang, X.; Liu, J.; Feng, Y.; Xu, Y.; Liu, B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int. Immunopharm. 2015, 28, 1050–1058. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, Z.Y.; Sun, B.; Fu, J.; Li, T.Z. Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-κB signaling pathway in rats. Inflammation 2016, 39, 148–157. [Google Scholar] [CrossRef]
- Li, Q.; Gu, Y.; Tu, Q.; Wang, K.; Gu, X.; Ren, T. Blockade of interleukin-17 restrains the development of acute lung injury. Scand. J. Immunol. 2016, 83, 203–211. [Google Scholar] [CrossRef]
- Onishi, R.M.; Gaffen, S.L. Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology 2010, 129, 311–321. [Google Scholar] [CrossRef]
- Inui, T.; Watanabe, M.; Nakamoto, K.; Sada, M.; Hirata, A.; Nakamura, M.; Honda, K.; Ogawa, Y.; Takata, S.; Yokoyama, T.; et al. Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: A potential role in the pathogenesis of COPD. Exp. Lung Res. 2018, 44, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Celli, B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009, 33, 1165–1185. [Google Scholar] [CrossRef] [Green Version]
- Cosio, M.G.; Saetta, M.; Agusti, A. Immunologic aspects of chronic obstructive pulmonary disease. N. Engl. J. Med. 2009, 360, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Saetta, M.; Di Stefano, A.; Turato, G.; Facchini, F.M.; Corbino, L.; Mapp, C.E.; Maestrelli, P.; Ciaccia, A.; Fabbri, L.M. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 15, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.; Coxson, H.O.; et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef]
- Stănescu, D.; Sanna, A.; Veriter, C.; Kostianev, S.; Calcagni, P.G.; Fabbri, L.M.; Maestrelli, P. Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 1996, 51, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Gompertz, S.; O’Brien, C.; Bayley, D.L.; Hill, S.L.; Stockley, R.A. Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur. Respir. J. 2001, 17, 1112–1119. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K.; Asai, K.; Kubo, H.; Sugitani, A.; Kyomoto, Y.; Okamoto, A.; Yamada, K.; Ijiri, N.; Watanabe, T.; Hirata, K.; et al. Isoflavone aglycones attenuate cigarette smoke-induced emphysema via suppression of neutrophilic inflammation in a COPD murine model. Nutrients 2019, 11, 2023. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.X.; Nadel, J.A. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J. Immunol. 2005, 175, 4009–4016. [Google Scholar] [CrossRef] [Green Version]
- Kanezaki, M.; Ebihara, S.; Gui, P.; Ebihara, T.; Kohzuki, M. Effect of cigarette smoking on cough reflex induced by TRPV1 and TRPA1 stimulations. Respir. Med. 2012, 106, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Polosukhin, V.V.; Richmond, B.W.; Du, R.H.; Cates, J.M.; Wu, P.; Nian, H.; Massonion, P.P.; Ware, L.B.; Lee, J.W.; Kononov, A.V.; et al. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2017, 195, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Polosukhin, V.V.; Cates, J.M.; Lawson, W.E.; Zaynagetdinov, R.; Milstone, A.P.; Massion, P.P.; Ocak, S.; Ware, L.B.; Lee, J.W.; Bowler, R.P.; et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011, 184, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.K.; Kim, S.W.; Youn, S.H.; Hyun, S.H.; Han, C.K.; Park, Y.C.; Lee, Y.C.; Kim, S.H. Respiratory protective effects of Korean red ginseng in a mouse model of particulate matter 4-induced airway inflammation. J. Ginseng Res. 2022, in press. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, S.; Kang, J.; Lin, J.; Lai, K.; Sun, Y.; Xiao, W.; Yang, L.; Yao, W.; Cai, S.; et al. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition) The pharmacological research progress of Siraitia grosvenorii. Int. J. Chron. Obs. Pulmon. Dis. 2018, 13, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørheim, I.C.; Johannessen, A.; Gulsvik, A.; Bakke, P.S.; Silverman, E.K.; DeMeo, D.L. Gender differences in COPD: Are women more susceptible to smoking effects than men? Thorax 2010, 65, 480–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, S.; Diaz-Guzman, E.; Mannino, D.M. COPD and gender differences: An update. Transl. Res. 2013, 162, 208–218. [Google Scholar] [CrossRef]
Cell Phenotypes in BALF | COPD-Induced Inflammation Murine Model (Absolute No.) | ||||||
---|---|---|---|---|---|---|---|
Balb/c Normal | COPD_CTL | COPD_Dexa 3 mg/kg | COPD_ SGE 25 mg/kg | COPD_ SGE 50 mg/kg | COPD_ SGE 100 mg/kg | ||
Lymphocyte (×104 cells) | BAL | 2.23 ± 0.54 | 8.99 ± 2.58 ## | 4.07 ± 1.37 | 12.31 ± 2.18 | 11.86 ± 2.23 | 21.97 ± 14.46 |
Neutrophils (×104 cells) | 8.94 ± 1.16 | 156.49 ± 13.30 ### | 58.11 ± 12.02 *** | 151.16 ± 5.72 | 124.37 ± 11.39 | 110.11 ± 29.31 * | |
Eosinophils (×104 cells) | 0.46 ± 0.15 | 3.42 ± 0.33 ### | 1.30 ± 0.65 ** | 4.82 ± 1.36 | 3.05 ± 0.32 | 2.52 ± 0.89 | |
CD4+ (×104 cells) | 0.29 ± 0.15 | 41.29 ± 5.05 ### | 9.21 ± 1.95 *** | 28.48 ± 2.21 * | 17.10 ± 3.60 ** | 16.62 ± 5.98 ** | |
CD8+ (×104 cells) | 0.09 ± 0.04 | 57.14 ± 7.85 ### | 10.59 ± 5.39 *** | 26.40 ± 1.55 ** | 17.33 ± 1.83 *** | 20.66 ± 6.47 ** | |
CD4+CD69+ (×104 cells) | 2.23 ± 0.54 | 8.99 ± 2.58 ## | 4.07 ± 1.37 | 12.31 ± 2.18 | 9.84 ± 0.38 | 6.71 ± 0.83 | |
CD8+CD69+ (×104 cells) | 0.04 ± 0.02 | 9.06 ± 0.99 ### | 1.08 ± 0.59 *** | 5.05 ± 0.83 ** | 3.04 ± 0.39 *** | 2.68 ± 0.46 *** | |
Gr-1+SiglecF− (×104 cells) | 0.72 ± 0.25 | 141.73 ± 15.48 ### | 23.73 ± 21.89 *** | 124.61 ± 5.48 | 58.64 ± 28.49 ** | 62.37 ± 11.94 *** |
Cell Phenotypes in Lung | COPD-Induced Inflammation Murine Model (Absolute No.) | ||||||
---|---|---|---|---|---|---|---|
Balb/c Normal | COPD_CTL | COPD_Dexa 3 mg/kg | COPD_ SGE 25 mg/kg | COPD_ SGE 50 mg/kg | COPD_ SGE 100 mg/kg | ||
Lymphocyte (×104 cells) | Lung | 40.21 ± 16.30 | 37.76 ± 12.20 | 31.07 ± 11.57 | 33.75 ± 6.67 | 38.03 ± 7.60 | 42.86 ± 6.19 |
Neutrophils (×104 cells) | 30.22 ± 11.00 | 264.38 ± 72.27 ## | 96.16 ± 13.07 * | 195.59 ± 45.95 | 176.57 ± 45.40 | 147.33 ± 28.13 * | |
Eosinophils (×104 cells) | 2.80 ± 0.87 | 18.40 ± 3.10 ### | 6.45 ± 0.26 ** | 12.84 ± 2.37 | 12.27 ± 4.67 | 12.46 ± 6.54 | |
CD4+ (×104 cells) | 32.52 ± 12.11 | 88.80 ± 24.11 # | 39.80 ± 8.10 | 77.73 ± 21.51 | 82.84 ± 22.23 | 81.19 ± 14.85 | |
CD8+ (×104 cells) | 13.17 ± 5.00 | 50.46 ± 14.64 # | 25.06 ± 5.20 | 28.81 ± 6.26 | 32.50 ± 9.46 | 30.37 ± 4.19 | |
CD4+CD69+ (×104 cells) | 0.38 ± 0.13 | 21.50 ± 4.78 ### | 2.85 ± 0.39 ** | 11.60 ± 2.96 | 9.05 ± 2.46 * | 7.30 ± 2.29 ** | |
CD8+CD69+ (×104 cells) | 0.70 ± 0.21 | 6.41 ± 1.77 ## | 1.63 ± 0.34 ** | 3.65 ± 0.52 | 3.70 ± 1.52 | 2.82 ± 0.75 * | |
CD62L−CD44high+ (×104 cells) | 6.61 ± 2.15 | 130.71 ± 30.63 ### | 26.05 ± 2.06 ** | 86.05 ± 18.87 | 77.27 ± 21.16 | 67.04 ± 14.47 | |
CD21+B220+ (×104 cells) | 0.43 ± 0.21 | 5.36 ± 1.73 ## | 0.95 ± 0.14 ** | 1.70 ± 0.37 * | 1.26 ± 0.52 * | 1.34 ± 0.35 * | |
Gr-1+SiglecF− (×104 cells) | 6.41 ± 2.84 | 196.26 ± 57.67 ## | 45.90 ± 5.76 ** | 139.72 ± 37.24 | 116.79 ± 37.24 | 57.13 ± 18.69 * | |
Cell phenotypes in MLN | COPD-induced inflammation murine model (Absolute No.) | ||||||
Balb/c Normal | COPD_CTL | COPD_Dexa 3 mg/kg | COPD_ SGE 25 mg/kg | COPD_ SGE 50 mg/kg | COPD_ SGE 100 mg/kg | ||
CD4+ (×104 cells) | MLN | 14.77 ± 5.38 | 70.76 ± 8.96 ### | 9.82 ± 4.15 | 58.00 ± 12.36 | 35.56 ± 13.31 * | 49.98 ± 10.71 |
CD8+ (×104 cells) | 6.08 ± 1.35 | 37.53 ± 5.27 ### | 7.06 ± 3.89 *** | 26.11 ± 0.34 * | 18.72 ± 7.86 * | 25.75 ± 4.08 | |
CD4+CD69+ (×104 cells) | 2.93 ± 1.22 | 8.38 ± 1.46 ## | 0.90 ± 0.16 *** | 6.16 ± 2.41 | 5.71 ± 1.56 | 2.51 ± 0.68 ** | |
CD62L−CD44high+ (×104 cells) | 4.55 ± 2.44 | 17.18 ± 2.51 ## | 6.54 ± 1.15 ** | 11.12 ± 1.33 * | 5.77 ± 1.67 ** | 8.81 ± 3.08 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Kim, D.-S.; Yuk, H.J.; Kim, S.-H.; Yang, W.-K.; Park, G.D.; Kim, K.S.; Ham, W.J.; Sung, Y.-Y. Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients 2023, 15, 468. https://doi.org/10.3390/nu15020468
Kim M-S, Kim D-S, Yuk HJ, Kim S-H, Yang W-K, Park GD, Kim KS, Ham WJ, Sung Y-Y. Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients. 2023; 15(2):468. https://doi.org/10.3390/nu15020468
Chicago/Turabian StyleKim, Mi-Sun, Dong-Seon Kim, Heung Joo Yuk, Seung-Hyung Kim, Won-Kyung Yang, Geum Duck Park, Kyung Seok Kim, Woo Jung Ham, and Yoon-Young Sung. 2023. "Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide" Nutrients 15, no. 2: 468. https://doi.org/10.3390/nu15020468
APA StyleKim, M. -S., Kim, D. -S., Yuk, H. J., Kim, S. -H., Yang, W. -K., Park, G. D., Kim, K. S., Ham, W. J., & Sung, Y. -Y. (2023). Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients, 15(2), 468. https://doi.org/10.3390/nu15020468