Metabolic Syndrome and Adipokines Profile in Bipolar Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
- -
- Heterogeneous population concerning the treatment used;
- -
- A small group of men and women subgroup;
- -
- Only three adipokines measured twice, in an exacerbation and after six weeks of treatment;
- -
- BMI, waist circumference, HDL, LDL, TG, and insulin level were measured only in an exacerbation state;
- -
- Information on previous treatment was not recorded.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pendal-Irlik, A. Powiązania pomiędzy zespołem metabolicznym a stanem zapalnym. Przegląd Lek. 2018, 75, 308–312. [Google Scholar]
- Kalinowski, P.; Mianowana, M. Metabolic Syndrome part II: Epidemiology of metabolic syndrome in Poland and in the World. J. Educ. Health Sport 2016, 6, 466–480. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Shi, J.; Fan, J.G.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 2019, 10, 703. [Google Scholar] [CrossRef]
- Kojta, I.; Chacinska, M.; Blachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Fruhbeck, G.; Catalan, V.; Rodriguez, A.; Gomez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 496, 35–44. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metab. Clin. Exp. 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Dakroub, A.; Nasser, S.A.; Younis, N.; Bhagani, H.; Al-Dhaheri, Y.; Pintus, G.; Eid, A.A.; El-Yazbi, A.F.; Eid, A.H. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020, 9, 2444. [Google Scholar] [CrossRef]
- Tylutka, A.; Morawin, B.; Walas, L.; Michalek, M.; Gwara, A.; Zembron-Lacny, A. Assessment of metabolic syndrome predictors in relation to inflammation and visceral fat tissue in older adults. Sci. Rep. 2023, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Bertheloot, D.; Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell Mol. Immunol. 2017, 14, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Oris, C.; Kahouadji, S.; Durif, J.; Bouvier, D.; Sapin, V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 6602. [Google Scholar] [CrossRef]
- Carney, B.C.; Oliver, M.A.; Kurup, S.; Collins, M.; Keyloun, J.W.; Moffatt, L.T.; Shupp, J.W.; Travis, T.E. Laser-assisted drug delivery of synthetic alpha melanocyte stimulating hormone and L-tyrosine leads to increased pigmentation area and expression of melanogenesis genes in a porcine hypertrophic scar model. Laser Surg. Med. 2023, 55, 490–502. [Google Scholar] [CrossRef]
- Zeng, X.; Ye, M.C.; Resch, J.M.; Jedrychowski, M.P.; Hu, B.; Lowell, B.B.; Ginty, D.D.; Spiegelman, B.M. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature 2019, 569, 229–235, Erratum in Nature 2019, 570, E32. [Google Scholar] [CrossRef]
- Li, P.; Song, R.J.; Du, Y.Q.; Liu, H.J.; Li, X.D. Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b. Cell Mol. Life Sci. 2022, 79, 407. [Google Scholar] [CrossRef]
- Riuzzi, F.; Chiappalupi, S.; Arcuri, C.; Giambanco, I.; Sorci, G.; Donato, R. S100 proteins in obesity: Liaisons dangereuses. Cell Mol. Life Sci. 2020, 77, 129–147. [Google Scholar] [CrossRef]
- Fujiya, A.; Nagasaki, H.; Seino, Y.; Okawa, T.; Kato, J.; Fukami, A.; Himeno, T.; Uenishi, E.; Tsunekawa, S.; Kamiya, H.; et al. The Role of S100B in the Interaction Between Adipocytes and Macrophages. Obesity 2014, 22, 371–379. [Google Scholar] [CrossRef]
- Kheirouri, S.; Ebrahimi, E.; Alizadeh, M. Association of S100B Serum Levels with Metabolic Syndrome and its Components. Acta Medica Port. 2018, 31, 201–206. [Google Scholar] [CrossRef]
- Penninx, B.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Mazereel, V.; Detraux, J.; Vancampfort, D.; van Winkel, R.; De Hert, M. Impact of Psychotropic Medication Effects on Obesity and the Metabolic Syndrome in People With Serious Mental Illness. Front. Endocrinol. 2020, 11, 573479. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.B.; Zagler, A.; Engl, K.; Rihs, L.; Musil, R. Prevalence of obesity, metabolic syndrome, diabetes and risk of cardiovascular disease in a psychiatric inpatient sample: Results of the Metabolism in Psychiatry (MiP) Study. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.S.; Barton, B.; Zagler, A.; Engl, K.; Rihs, L.; Glocker, C.; Musil, R. Lifestyle behaviors, metabolic disturbances, and weight gain in psychiatric inpatients treated with weight gain-associated medication. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 839–851. [Google Scholar] [CrossRef] [PubMed]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; Text Revision; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- APA. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Galecki, P.; Blizniewska-Kowalska, K. Treatment-resistant depression—Recommendations of the National Consultant in the field of psychiatry. Psychiatr. Pol. 2021, 55, 7–21. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- WHO. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation. Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2008.
- WHO. Obesity: Preventing and managing the global epidemic. In WHO Technical Report Series; WHO: Geneva, Switzerland, 2000; p. 894. [Google Scholar]
- Zimmet, P.; KG, M.M.A.; Serrano Rios, M. A new international diabetes federation worldwide definition of the metabolic syndrome: The rationale and the results. Rev. Esp. Cardiol. 2005, 58, 1371–1376. [Google Scholar] [CrossRef]
- Elwertowski, M.; Malek, G. Standards of the Polish Ultrasound Society—Update. Examination of extracranial carotid and vertebral arteries. J. Ultrason. 2014, 14, 179–191. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication ethics of human studies in the light of the Declaration of Helsinki—A mini-review. J. Med. Sci. 2022, 91, e700. [Google Scholar] [CrossRef]
- Bech, P. Rating scales in depression: Limitations and pitfalls. Dialogues Clin. Neurosci. 2006, 8, 207–215. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; Lopez-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar disorders. Lancet 2020, 396, 1841–1856. [Google Scholar] [CrossRef]
- Jelen, L.A.; Young, A.H. The Treatment of Bipolar Depression: Current Status and Future Perspectives. Curr. Behav. Neurosci. Rep. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Levenberg, K.; Cordner, Z.A. Bipolar depression: A review of treatment options. Gen. Psychiatry 2022, 35, e100760. [Google Scholar] [CrossRef] [PubMed]
- Glodek, M.; Skibinska, M.; Suwalska, A. Diet and physical activity and metabolic disorders in patients with schizophrenia and bipolar affective disorder in the Polish population. PeerJ 2023, 11, e15617. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, J.S.; Jo, M.J.; Cho, E.; Ahn, S.Y.; Kwon, Y.J.; Ko, G.J. The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome. Molecules 2022, 27, 334. [Google Scholar] [CrossRef]
- Koch, A.; Weiskirchen, R.; Zimmermann, H.W.; Sanson, E.; Trautwein, C.; Tacke, F. Relevance of serum leptin and leptin-receptor concentrations in critically ill patients. Mediat. Inflamm. 2010, 2010, 473540. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, Z.; Liao, Y.; Yang, Z.; Liang, X.; Guan, N.; Gan, Z. Are serum levels of inflammatory markers associated with the severity of symptoms of bipolar disorder? Front. Psychiatry 2022, 13, 1063479. [Google Scholar] [CrossRef]
- Misiak, B.; Stramecki, F.; Kasznia, J.; Lis, M.; Stanczykiewicz, B. Adiponectin levels in patients with bipolar disorder: A systematic review and meta-analysis. Psychoneuroendocrinology 2019, 104, 74–79. [Google Scholar] [CrossRef]
- Platzer, M.; Fellendorf, F.T.; Bengesser, S.A.; Birner, A.; Dalkner, N.; Hamm, C.; Hartleb, R.; Queissner, R.; Pilz, R.; Rieger, A.; et al. Adiponectin is decreased in bipolar depression. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2019, 20, 813–820. [Google Scholar] [CrossRef]
- Fruhbeck, G.; Catalan, V.; Rodriguez, A.; Ramirez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gomez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Kim, S.R.; Yoo, S.J.; Hong, O.K.; Son, H.S.; Chang, S.A. The relationship between adipokines, metabolic parameters and insulin resistance in patients with metabolic syndrome and type 2 diabetes. J. Int. Med. Res. 2009, 37, 1803–1812. [Google Scholar] [CrossRef]
- Ragino, Y.I.; Stakhneva, E.M.; Polonskaya, Y.V.; Kashtanova, E.V. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules 2020, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011, 27, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Ugur, K.; Erman, F.; Turkoglu, S.; Aydin, Y.; Aksoy, A.; Lale, A.; Karagoz, Z.K.; Ugur, I.; Akkoc, R.F.; Yalniz, M. Asprosin, visfatin and subfatin as new biomarkers of obesity and metabolic syndrome. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2124–2133. [Google Scholar] [CrossRef]
- Buckman, L.B.; Anderson-Baucum, E.K.; Hasty, A.H.; Ellacott, K.L.J. Regulation of S100B in white adipose tissue by obesity in mice. Adipocyte 2014, 3, 215–220. [Google Scholar] [CrossRef]
- Steiner, J.; Schiltz, K.; Walter, M.; Wunderlich, M.T.; Keilhoff, G.; Brisch, R.; Bielau, H.; Bernstein, H.G.; Bogerts, B.; Schroeter, M.L.; et al. S100B serum levels are closely correlated with body mass index: An important caveat in neuropsychiatric research. Psychoneuroendocrinology 2010, 35, 321–324. [Google Scholar] [CrossRef]
- Schroeter, M.L.; Sacher, J.; Steiner, J.; Schoenknecht, P.; Mueller, K. Serum S100B represents a new biomarker for mood disorders. Curr. Drug Targets 2013, 14, 1237–1248. [Google Scholar] [CrossRef]
- Schroeter, M.L.; Steiner, J.; Schonknecht, P.; Mueller, K. Further evidence for a role of S100B in mood disorders: A human gene expression mega-analysis. J. Psychiatr. Res. 2014, 53, 84–86. [Google Scholar] [CrossRef]
- Bilginer, C.; Yaman, H.; Karadeniz, S.; Hizarci Bulut, S.; Yaman, S.O.; Aydogdu, S. Oxidative Stress and Serum S100B Levels in Adolescents with First-Episode Drug-Naive Unipolar Depression. Psychiatr. Danub. 2021, 33, 158–164. [Google Scholar] [CrossRef]
Anthropometric and Biochemical Parameters | Women Mean ± SD | Men Mean ± SD |
---|---|---|
Age (years) | 45.0 ± 14.29 | 50.9 ± 15.73 |
Duration of disease (years) | 15.5 ± 8.88 | 15.9 ± 11.78 |
HDL (mg/dL) | 51.0 ± 15.08 | 40.1 ± 10.43 |
LDL (mg/dL) | 125.7 ± 39.04 | 125.3 ± 51.10 |
TG (mg/dL) | 171.6 ± 82.44 | 196.6 ± 95.25 |
Insulin (mU/mL) | 12.3 ± 10.90 | 13.3 ± 3.89 |
BMI (kg/m2) | 27.7 ± 6.02 | 28.8 ± 5.80 |
Waist circumference (cm) | 94.9 ± 16.88 | 103.9 ± 10.35 |
Comorbidities | Women N (%) | Men N (%) |
Metabolic syndrome (MS) | 34 (68) | 13 (65) |
MS metformin treatment | 16 (32) | 5 (25) |
Hypothyroidism | 28 (56) | 5 (25) |
Hypertension | 9 (18) | 5 (25) |
Hypercholesterolemia | 4 (8) | 1 (5) |
Psychiatric drugs | Women N (%) | Men N (%) |
Antidepressants | 31 (62) | 9 (45) |
Mood stabilizers | 32 (64) | 16 (80) |
Antipsychotics | 39 (78) | 12 (60) |
Adipokine Name | ELISA Kit Name and Manufacturer | Assay Range | Sensitivity | Intra-Assay Variability Coefficient (%) | Inter-Assay Variability Coefficient (%) |
---|---|---|---|---|---|
Visfatin | E0638h, EIAab, Wucan, China | 1.56–100 ng/mL | <0.78 ng/mL | <4.9 | <6.4 |
Adiponectin | DEE009 for the In Vitro Diagnostic (IVD) Demeditec Diagnostics GmbH, Kiel, Germany | 0.27–31000 μg/mL | <0.27 μg/mL | <3.7 | <8.2 |
S100B | Human S100B, EZHS100B-33K, EMD Millipore Corporation, Darmstadt, Germany | 2.7–2000 pg/mL | 2.7 pg/mL | <3.3 | <5.4 |
Interleukin-6 | Quantikine ELISA Human Leptin il-6, S6050, R&D Systems Minneapolis, Minneapolis, MN, USA | 3.13–100 pg/mL | <0.70 pg/mL | <4.2 | <6.4 |
Leptin | Quantikine ELISA Human Leptin, SLP00, R&D Systems Minneapolis, Minneapolis, MN, USA | 15.6–1000 pg/mL | <7.8 pg/mL | <3.3 | <5.4 |
Leptin receptor | Quantikine ELISA Human Leptin sR, DOBR00, R&D Systems Minneapolis, Minneapolis, MN, USA | 0.313–20 ng/mL | 0.020–0.128 ng/mL | <6.1 | <8.6 |
Resistin | DRSN00 for research use only (RUO) R&D Systems Minneapolis, Minneapolis, MN, USA | 0.156–10 ng/mL | 0.010–0.055 ng/mL | <5.3 | <9.2 |
Group | Women | Men | ||
---|---|---|---|---|
Parameters | Mean ± SD Median (Min–Max) | p-Value (t/Z) | Mean ± SD Median (Min–Max) | p-Value (t/Z) |
HAMD E | 16.3 ± 1.84 17 (12–20) | <0.0001 (23.34) | 16. 1± 2.19 17 (12–19) | <0.0001 (16.22) |
HAMD 6 | 7.8 ± 2.78 7 (3–15) | 8.8 ± 2.48 9 (5–13) | ||
VIS (ng/mL) E | 16.5 ± 7.65 15.9 (2.6–33.4) | <0.0001 (4.10) | 16.2 ± 7.95 18.9 (3.7–24.9) | 0.0109 (2.58) |
VIS (ng/mL) 6 | 6.4 ± 4.31 5.6 (2.0–18.0) | 8.1 ± 5.08 7.4 (1.8–18.8) | ||
ADIPO (ng/mL) E | 7913.3 ± 4840.5 7833.7 (1621.3–24,415.6) | ns | 4381.0 ± 2184.65 3899.8 (1912.7–8435.1) | 0.0284 (2.19) |
ADIPO (ng/mL) 6 | 9533.5 ± 6994.5 7498.9 (2142.1–27,335.8) | 5518.3 ±2900.62 4625.2 (2709.4–10,577.2) | ||
S100B (ng/mL) E | 31.0 ± 18.71 28.25 (4.8–82.6) | ns | 29.3 ± 14.52 27.7 (9.1–55.2) | 0.038 (2.07) |
S100B (ng/mL) 6 | 27.1 ± 18.94 29.83 (4.7–77.5) | 40.2 ± 14.38 40.6 (16.3–66.6) |
Group Parameters | Obesity | Metabolic Syndrome | Metformin Treatment | Metformin Treatment | ||
---|---|---|---|---|---|---|
Post-Hock Analysis | ||||||
p-Value (Z-Value) | p-Value (Z-Value) | p-Value (H-Value) | W vs. MSMT p-Value (Z-Value) | W vs. MSnT p-Value (Z-Value) | MSMT vs. MSnT p-Value (Z-Value) | |
VIS (ng/mL) E | ns | 0.0209 (2.31) | 0.0360 (6.65) | 0.0187 (−2.35) | ns | ns |
VIS (ng/mL) 6 | ns | ns | ns | ns | ns | ns |
ADIPO (ng/mL) E | ns | 0.0173 (−2.38) | 0.0028 (11.77) | 0.0011 (3.26) | ns | 0.0143 (−2.45) |
ADIPO (ng/mL) 6 | ns | ns | ns | 0.0428 (2.02) | ns | ns |
S100B (ng/mL) E | 0.0012 (−3.23) | 0.0022 (3.07) | 0.0078 (9.71) | 0.0122 (−2.51) | 0.0055 (−2.78) | ns |
S100B (ng/mL) 6 | ns | ns | ns | ns | ns | ns |
IL 6 (pg/mL) | ns | ns | ns | ns | ns | ns |
LEP (pg/mL) | <0.0001 (−4.01) | 0.0005 (3.48) | 0.0015 (12.97) | 0.0006 (−3.41) | 0.0083 (−2.64) | ns |
LEP_R (ng/mL) | 0.0057 (2.76) | 0.0254 (−2.24) | ns | ns | ns | ns |
RES (ng/mL) | ns | ns | ns | ns | ns | ns |
Group | Without MS | With MS | ||
---|---|---|---|---|
Parameters | Mean ± SD Median (Min–Max) | Mean ± SD Median (Min–Max) | R Spearman | p-Value |
Age (years) | 42.6 ± 15.90 39.5 (21.0–71.0) | 46.2 ± 13.57 48.5 (18.0–68.0) | 0.1174 | ns |
Duration of disease (years) | 10.9 ± 9.51 10.0 (1.0–35.0) | 13.5 ± 8.58 12.0 (1.0–39.0) | 0.1661 | ns |
Hypothyroidism * | 6 | 22 | 0.3281 | 0.0362 |
Hypertension * | 2 | 7 | 0.083 | ns |
Hypercholesterolemia * | 0 | 4 | 0.2254 | ns |
HDL (mg/dL) | 61.2 ± 14.82 60.0 (40.0–81.0) | 47.2 ± 13.56 45.0 (24.0–80.0) | −0.4049 | 0.0129 |
LDL (mg/Dl) | 120.6 ± 32.64 110.0 (92.0–189.0) | 141.9 ± 40.62 144.0 (85.0–230.0) | 0.2317 | ns |
TG (mg/dL) | 114.2 ± 56.62 106.0 (60.0–250.0) | 195.0 ± 80.47 196.0 (59.0–344.0) | 0.4657 | 0.0032 |
Insulin (mU/mL) | 5.45 ± 2.20 5.85 (2.7–7.5) | 16.4 ± 12.05 12.6 (3.2–44.6) | 0.6161 | 0.0110 |
BMI (kg/m2) | 23.2 ± 3.35 22.5 (19.8–31.2) | 29.5 ± 5.96 28.65 (21.2–44.0) | 0.5391 | 0.0003 |
Waist circumference (cm) | 83.5 ± 12.47 79.0 (68.0–108.0) | 100.3 ± 16.11 98.0 (72.0–140.0) | 0.4882 | 0.0009 |
Metformin treatment * | 0 | 16 | 0.8575 | <0.0001 |
IMC L | 0.64 ± 0.26 0.57 (0.43–1.48) | 0.65 ± 0.12 0.63 (0.42–0.99) | 0.2093 | ns |
IMC R | 0.80 ± 0.88 0.57 (0.35–3.83) | 0.65 ± 0.16 0.67 (0.29–1.11) | 0.1260 | ns |
V L | 79.9 ± 22.86 77.0 (39.5–116.6) | 75.6 ± 14.52 74.1 (52.3–110.5) | −0.0712 | ns |
V R | 84.2 ± 25.71 93.3 (40.7–119.0) | 76.1 ± 21.97 78.3 (35.7–127.5) | −0.2185 | ns |
HAMD E | 16.7 ± 1.57 17.0 (14.0–19.0) | 16.1 ± 1.95 17.0 (12.0–20.0) | −0.1529 | ns |
HAMD 6 | 7.9 ± 2.33 7.0 (5.0–13.0) | 7.8 ± 3.00 8.0 (3.0–15.0) | −0.0187 | ns |
VIS (ng/mL) E | 11.9 ± 8.44 11.07 (1.4–31.6) | 17.0 ± 6.79 17.3 (2.6–33.4) | 0.3350 | 0.0186 |
VIS (ng/mL) 6 | 5.4 ± 4.08 4.5 (2.3–14.3) | 6.7 ± 4.34 5.7 (2.0–18.0) | 0.2387 | ns |
ADIPO (ng/mL) E | 11657.6 ± 6066.77 9641.0 (3227.1–24,415.6) | 7709.9 ± 4782.67 6699.1 (1621.3–23,098.1) | −0.3417 | 0.0152 |
ADIPO (ng/mL) 6 | 12,209.6 ± 7556.85 11,491.7 (5549.0–27,335.8) | 8596.9 ± 6734.39 6990.5 (2142.1–25,196.8) | −0.2930 | ns |
S100B (ng/mL) E | 19.9 ± 9.62 17.1 (4.8–36.3) | 33.0 ± 15.75 29.67 (13.3–82.8) | 0.4398 | 0.0014 |
S100B (ng/mL) 6 | 26.7 ± 13.69 28.2 (4.6–39.5) | 30.9 ± 20.67 26.8 (8.9–77.5) | −0.0108 | ns |
IL 6 (pg/mL) | 1.3 ± 0.97 1.2 (0.3–4.2) | 2.4 ± 4.55 1.36 (0.1–26.8) | 0.1278 | ns |
LEP (pg/mL) | 18,259.1 ± 12,764.8 13,315.5 (3764.0–41,789.0) | 41,818.6 ± 24,072.05 37,733.0 (5389.0–93,517.0) | 0.4991 | 0.0002 |
ADIPO/LEP | 1.1 ± 0.95 0.78 (0.09–3.17) | 0.4 ± 0.76 0.20 (0.03–4.29) | −0.5586 | <0.0001 |
LEP_R (ng/mL) | 33.4 ± 10.04 30.8 (20.7–62.4) | 27.3 ± 7.89 26.4 (13.7–47.8) | −0.3209 | 0.0231 |
RES (ng/mL) | 26.5 ± 10.80 23.0 (11.4–50.7) | 28.1 ± 10.65 25.9 (9.6–60.3) | 0.0891 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilska, K.; Dmitrzak-Węglarz, M.; Osip, P.; Pawlak, J.; Paszyńska, E.; Permoda-Pachuta, A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023, 15, 4532. https://doi.org/10.3390/nu15214532
Bilska K, Dmitrzak-Węglarz M, Osip P, Pawlak J, Paszyńska E, Permoda-Pachuta A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients. 2023; 15(21):4532. https://doi.org/10.3390/nu15214532
Chicago/Turabian StyleBilska, Karolina, Monika Dmitrzak-Węglarz, Przemysław Osip, Joanna Pawlak, Elżbieta Paszyńska, and Agnieszka Permoda-Pachuta. 2023. "Metabolic Syndrome and Adipokines Profile in Bipolar Depression" Nutrients 15, no. 21: 4532. https://doi.org/10.3390/nu15214532
APA StyleBilska, K., Dmitrzak-Węglarz, M., Osip, P., Pawlak, J., Paszyńska, E., & Permoda-Pachuta, A. (2023). Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients, 15(21), 4532. https://doi.org/10.3390/nu15214532