Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ethanol Extracts from I. japonica and P. chinensis
2.2. High-Performance Liquid Chromatography Analysis of Ethanol Extracts of IJ, PC, and IP
2.3. Animals and Treatments
2.4. Collection of Lung Cells and BALF and Cytological Analysis
2.5. Cell Counting by Cytospin
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
2.8. Flow Cytometry
2.9. Immunofluorescence Staining
2.10. Histopathological Analysis of Tracheal and Lung Tissues
2.11. Statistical Analysis
3. Results
3.1. Quantification of 2,3,4,5-tetracaffeoyl-D-glucaric Acid and Apigenin 7-O-β-D-glucuronide in IJ, PC, and IP
3.2. Effects of IJ, PC, and IP on Airway Immune Cell Numbers in the PM10D-Exposed Mice
3.3. Effects of IJ, PC, and IP on Immune Cell Regulation in the Lungs of PM10D-Exposed Mice
3.4. Effects of IJ, PC, and IP on Immune Cell Regulation in BALF of PM10D-Exposed Mice
3.5. Effects of IJ, PC, and IP on Pro-Inflammatory Cytokines and Chemokines in BALF of PM10D-Exposed Mice
3.6. Effects of IJ, PC, and IP on Gene Expression of Pro-Inflammatory Mediators in the Lungs of PM10D-Exposed Mice
3.7. Effects of IJ, PC, and IP on IL-1α, F4/80, and IRAK1 in the Lungs of PM10D-Exposed Mice
3.8. Effects of IJ, PC, and IP on Lung and Tracheal Tissue Damage in the PM10D-Exposed Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Hantrakool, S.; Kumfu, S.; Chattipakorn, S.C.; Chattipakorn, N. Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention. Int. J. Environ. Res. Public Health 2022, 19, 8771. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yang, W.K.; Park, Y.R.; Park, Y.C.; Park, I.J.; Lee, G.J.; Kang, H.S.; Kim, B.K.; Kim, S.H. Opuntia ficus-indica Alleviates Particulate Matter 10 Plus Diesel Exhaust Particles (PM10D)-Induced Airway Inflammation by Suppressing the Expression of Inflammatory Cytokines and Chemokines. Plants 2022, 11, 520. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S.G.; Park, N.Y.; Park, H.H.; Jeong, K.T.; Choi, J.; Lee, I.H.; Lee, H.; Kim, K.J.; Lee, E. KOTMIN13, a Korean herbal medicine alleviates allergic inflammation in vivo and in vitro. BMC Complement. Altern. Med. 2016, 16, 169. [Google Scholar] [CrossRef]
- Park, Y.N.; Lee, Y.J.; Choi, J.H.; Jin, M.; Yang, J.H.; Li, Y.; Lee, J.; Li, X.; Kim, K.J.; Son, J.K.; et al. Alleviation of OVA-induced airway inflammation by flowers of Inula japonica in a murine model of asthma. Biosci. Biotechnol. Biochem. 2011, 75, 871–876. [Google Scholar] [CrossRef]
- Juszczak, K.; Adamowicz, J.; Zapała, L.; Kluz, T.; Adamczyk, P.; Wdowiak, A.; Bojar, I.; Misiek, M.; Grzybowska, M.E.; Stangel-Wójcikiewicz, K.; et al. Potentilla chinensis aqueous extract attenuates cyclophosphamide-induced hemorrhagic cystitis in rat model. Sci. Rep. 2022, 12, 13076. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Su, H.; Zhu, W.; Wei, Y.; Long, Y.; Shi, Y.; Wei, J. The Integrated Analysis of Transcriptomics and Metabolomics Unveils the Therapeutical Effect of Asiatic Acid on Alcoholic Hepatitis in Rats. Inflammation 2022, 45, 1780–1799. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, K.S.; Son, S.R.; Lee, S.Y.; Jang, D.S.; Lee, J.K.; Kim, H.J.; Na, C.S.; Lee, S.H.; Lee, K.T. A Botanical Mixture Consisting of Inula japonica and Potentilla chinensis Relieves Obesity via the AMPK Signaling Pathway in 3T3-L1 Adipocytes and HFD-Fed Obese Mice. Nutrients 2022, 14, 3685. [Google Scholar] [CrossRef]
- Heffler, E.; Madeira, L.N.G.; Ferrando, M.; Puggioni, F.; Racca, F.; Malvezzi, L.; Passalacqua, G.; Canonica, G.W. Inhaled Corticosteroids Safety and Adverse Effects in Patients with Asthma. J. Allergy Clin. Immunol. Pract. 2018, 6, 776–781. [Google Scholar] [CrossRef]
- Casale, T.B.; Foggs, M.B.; Balkissoon, R.C. Optimizing asthma management: Role of long-acting muscarinic antagonists. J. Allergy Clin. Immunol. 2022, 150, 557–568. [Google Scholar] [CrossRef]
- Gottschlich, A.; Endres, S.; Kobold, S. Can we use interleukin-1β blockade for lung cancer treatment? Transl. Lung Cancer Res. 2018, 7, S160–S164. [Google Scholar] [CrossRef]
- Noreen, S.; Maqbool, I.; Madni, A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 2021, 894, 173854. [Google Scholar] [CrossRef]
- Brightling, C.; Greening, N. Airway inflammation in COPD: Progress to precision medicine. Eur. Respir. J. 2019, 54, 1900651. [Google Scholar] [CrossRef]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef]
- Balázs, A.; Mall, M.A. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr. Pulmonol. 2019, 54, S5–S12. [Google Scholar] [CrossRef]
- Ritzmann, F.; Lunding, L.P.; Bals, R.; Wegmann, M.; Beisswenger, C. IL-17 Cytokines and Chronic Lung Diseases. Cells 2022, 11, 2132. [Google Scholar] [CrossRef]
- Muth, K.N.; Rech, J.; Losch, F.O.; Hoerning, A. Reversing the Inflammatory Process-25 Years of Tumor Necrosis Factor-α Inhibitors. J. Clin. Med. 2023, 12, 5039. [Google Scholar] [CrossRef]
- Rajarathnam, K.; Schnoor, M.; Richardson, R.M.; Rajagopal, S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal. 2019, 54, 69–80. [Google Scholar] [CrossRef]
- Nakazawa, H.; Chang, K.; Shinozaki, S.; Yasukawa, T.; Ishimaru, K.; Yasuhara, S.; Yu, Y.M.; Martyn, J.A.; Tompkins, R.G.; Shimokado, K.; et al. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS ONE 2017, 12, e0170391. [Google Scholar] [CrossRef]
- Jung, H.Y.; Yoo, D.Y.; Nam, S.M.; Kim, J.W.; Kim, W.; Kwon, H.J.; Lee, K.Y.; Choi, J.H.; Kim, D.W.; Yoon, Y.S.; et al. Postnatal changes in constitutive cyclooxygenase-2 expression in the mice hippocampus and its function in synaptic plasticity. Mol. Med. Rep. 2019, 19, 1996–2004. [Google Scholar] [CrossRef]
- Cho, H.Y.; Park, S.; Miller, L.; Lee, H.C.; Langenbach, R.; Kleeberger, S.R. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol. Pathol. 2021, 49, 1077–1099. [Google Scholar] [CrossRef]
- Singer, J.W.; Fleischman, A.; Al-Fayoumi, S.; Mascarenhas, J.O.; Yu, Q.; Agarwal, A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018, 9, 33416–33439. [Google Scholar] [CrossRef]
- Cassado, A.D.A. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen. Results Probl. Cell Differ. 2017, 62, 161–179. [Google Scholar] [CrossRef]
- Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front. Oncol. 2019, 9, 1087. [Google Scholar] [CrossRef]
- Kishore, N.; Kumar, P.; Shanker, K.; Verma, A.K. Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur. J. Med. Chem. 2019, 179, 272–309. [Google Scholar] [CrossRef]
- Qi, C.; Wang, E.; Jin, L.; Yan, M.; Zhang, X.; Wang, H.; Ye, W. Ent-kaurene diterpenoids and lignan from Leontopodium leontopodioides and their inhibitory activities against cyclooxygenases-1 and 2. Phytochem Lett. 2017, 21, 94–97. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Wu, L.; Shen, T.; Ji, L.; Zhao, X.; Si, C.; Jiang, Y.; Wang, G. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Funct. 2016, 7, 1002–1013. [Google Scholar] [CrossRef]
- Nakane, A.; Okamoto, M.; Asano, M.; Kohanawa, M.; Satoh, Y.; Minagawa, T. Protection by dexamethasone from a lethal infection with Listeria monocytogenes in mice. FEMS Immunol. Med. Microbiol. 1994, 9, 163–170. [Google Scholar] [CrossRef]
Gene | Sequences | |
---|---|---|
IL-1α | Forward | 5′-CAGGGTGGGTGTGCCGTCTTTC-3′ |
Reverse | 5′-TGCTTCCAAACCTTTGACCTGGGC-3′ | |
IL-17 | Forward | 5′- TCTCATCCAGCAAGAGATCC-3′ |
Reverse | 5′- AGTTTGGGACCCCTTTACAC-3′ | |
CXCL-1 | Forward | 5′-TCTCAGCACCCACCCGCTCA-3′ |
Reverse | 5′-GCCCCGTAGACCCTGCTCGA-3′ | |
CXCL-2 | Forward | 5′-TCTCAGCACCCACCCGCTCA-3′ |
Reverse | 5′-GCCCCGTAGACCCTGCTCGA-3′ | |
TNF-α | Forward | 5′-TTGACCTCAGCGCTGAGTTG-3′ |
Reverse | 5′-CCTGTAGCCCACGTCGTAGC-3′ | |
iNOS | Forward | 5′-GCAGCTGAATGGAAAGATCA-3′ |
Reverse | 5′-TCCAGGAGACGTACAACAAT-3′ | |
COX-2 | Forward | 5′-TCTCAGCACCCACCCGCTCA-3′ |
Reverse | 5′-GCCCCGTAGACCCTGCTCGA-3′ | |
MUC5AC | Forward | 5′-AGAATATCTTTCAGGACCCCTGCT-3′ |
Reverse | 5′-ACACCAGTGCTGAGCATACTTTT-3′ | |
TRPV1 | Forward | 5′-TTGGATTTTCCACAGCCGTAGT-3′ |
Reverse | 5′-CAGACAGGATCTCTCCAGTGAC-3′ | |
GAPDH | Forward | 5′-CAATGAATACGGCTACAGCAAC-3′ |
Reverse | 5′-AGGGAGATGCTCAGTGTTGG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-H.; Chung, K.-S.; Na, C.-S.; Ahn, H.-S.; Shin, Y.-K.; Lee, K.-T. Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter. Nutrients 2023, 15, 4599. https://doi.org/10.3390/nu15214599
Jung S-H, Chung K-S, Na C-S, Ahn H-S, Shin Y-K, Lee K-T. Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter. Nutrients. 2023; 15(21):4599. https://doi.org/10.3390/nu15214599
Chicago/Turabian StyleJung, Seang-Hwan, Kyung-Sook Chung, Chang-Seon Na, Hye-Shin Ahn, Yu-Kyong Shin, and Kyung-Tae Lee. 2023. "Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter" Nutrients 15, no. 21: 4599. https://doi.org/10.3390/nu15214599
APA StyleJung, S. -H., Chung, K. -S., Na, C. -S., Ahn, H. -S., Shin, Y. -K., & Lee, K. -T. (2023). Ethanol Extracts from the Aerial Parts of Inula japonica and Potentilla chinensis Alleviate Airway Inflammation in Mice That Inhaled Particulate Matter 10 and Diesel Particulate Matter. Nutrients, 15(21), 4599. https://doi.org/10.3390/nu15214599