Foods, Nutrients, and Risk of In-Hospital Frailty in Women: Findings from a Large Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Outcome Variables
2.4. Statistical Analysis
3. Results
3.1. Socioeconomic Characteristics and Dietary Intakes at Baseline
3.2. Associations between Dietary Intakes and In-Hospital Frailty Risk
3.3. Subgroup Analysis and Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S. Epidemiology of Frailty in Older People. Adv. Exp. Med. Biol. 2020, 1216, 21–27. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Custodero, C.; Cella, A.; Demurtas, J.; Zora, S.; Maggi, S.; Barbagallo, M.; Sabbà, C.; Ferrucci, L.; Pilotto, A. Prevalence of multidimensional frailty and pre-frailty in older people in different settings: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 72, 101498. [Google Scholar] [CrossRef] [PubMed]
- Doody, P.; Asamane, E.A.; Aunger, J.A.; Swales, B.; Lord, J.M.; Greig, C.A.; Whittaker, A.C. The prevalence of frailty and pre-frailty among geriatric hospital inpatients and its association with economic prosperity and healthcare expenditure: A systematic review and meta-analysis of 467,779 geriatric hospital inpatients. Ageing Res. Rev. 2022, 80, 101666. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef]
- The Lancet. Bringing frailty into all realms of medicine. Lancet 2019, 394, 1298. [Google Scholar] [CrossRef]
- Ensrud, K.E.; Kats, A.M.; Schousboe, J.T.; Taylor, B.C.; Cawthon, P.M.; Hillier, T.A.; Yaffe, K.; Cummings, S.R.; Cauley, J.A.; Langsetmo, L. Frailty Phenotype and Healthcare Costs and Utilization in Older Women. J. Am. Geriatr. Soc. 2018, 66, 1276–1283. [Google Scholar] [CrossRef]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef]
- Rashidi Pour Fard, N.; Amirabdollahian, F.; Haghighatdoost, F. Dietary patterns and frailty: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 498–513. [Google Scholar] [CrossRef]
- Fung, T.T.; Struijk, E.A.; Rodriguez-Artalejo, F.; Willett, W.C.; Lopez-Garcia, E. Fruit and vegetable intake and risk of frailty in women 60 years old or older. Am. J. Clin. Nutr. 2020, 112, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Kojima, G.; Iliffe, S.; Jivraj, S.; Walters, K. Fruit and Vegetable Consumption and Incident Prefrailty and Frailty in Community-Dwelling Older People: The English Longitudinal Study of Ageing. Nutrients 2020, 12, 3882. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernández-Pérez, C.; Martín-Sánchez, F.J. Effect of Milk and Other Dairy Products on the Risk of Frailty, Sarcopenia, and Cognitive Performance Decline in the Elderly: A Systematic Review. Adv. Nutr. 2019, 10, S105–S119. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1126–1133. [Google Scholar] [CrossRef]
- Cade, J.E.; Burley, V.J.; Alwan, N.A.; Hutchinson, J.; Hancock, N.; Morris, M.A.; Threapleton, D.E.; Greenwood, D.C. Cohort Profile: The UK Women’s Cohort Study (UKWCS). Int. J. Epidemiol. 2017, 46, e11. [Google Scholar] [CrossRef]
- Riboli, E.; Kaaks, R. The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S6–S14. [Google Scholar] [CrossRef]
- Cade, J.E.; Burley, V.J.; Greenwood, D.C. The UK Women’s Cohort Study: Comparison of vegetarians, fish-eaters and meat-eaters. Public. Health Nutr. 2004, 7, 871–878. [Google Scholar] [CrossRef]
- Spence, M.; Cade, J.; Burley, V.; Greenwood, D. Ability of the UK Women’s Cohort Study Food Frequency Questionnaire to rank dietary intakes: A preliminary validation study. Proc. Nutr. Soc. Lond. 2002, 61, 117A. [Google Scholar]
- Food Standards Agency (FSA). Food Portion Sizes, 3rd ed.; Mills, A., Patel, S., Crawley, H., Eds.; The Stationary Office: London, UK, 2002. [Google Scholar]
- Holland, B.; Welch, A.A.; Unwin, I.D.; Buss, D.H.; Paul, A.A.; Southgate, D. McCance and Widdowson’s the Composition of Foods, 5th ed.; London Royal Society of Chemistry and MAFF: London, UK, 1991. [Google Scholar]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2012; Volume 40. [Google Scholar]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, S.; Roberts, H.C.; et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef]
- The National Statistics Socio-Economic Classification User Manual Office for National Statistics. Available online: https://www.ons.gov.uk/ons/guide-method/classifications/archived-standard-classifications/soc-and-sec-archive/the-national-statistics-socio-economic-classification--user-manual.pdf (accessed on 28 July 2023).
- Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. IPAQ Research Committee 2005. Available online: http://www.ipaq.ki.se/scoring.pdf (accessed on 28 July 2023).
- Rodríguez-Molinero, J.; Migueláñez-Medrán, B.D.C.; Puente-Gutiérrez, C.; Delgado-Somolinos, E.; Martín Carreras-Presas, C.; Fernández-Farhall, J.; López-Sánchez, A.F. Association between Oral Cancer and Diet: An Update. Nutrients 2021, 13, 1299. [Google Scholar] [CrossRef]
- Shi, H.; Schweren, L.J.S.; Ter Horst, R.; Bloemendaal, M.; van Rooij, D.; Vasquez, A.A.; Hartman, C.A.; Buitelaar, J.K. Low-grade inflammation as mediator between diet and behavioral disinhibition: A UK Biobank study. Brain Behav. Immun. 2022, 106, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Hadi, A.; Mohammadi, H.; Asbaghi, O.; Zobeiri, M.; Marx, W.; Entezari, M.H. Dietary Inflammatory Index and the Risk of Frailty Among Older Adults: A Systematic Review and Meta-Analysis. Res. Aging 2021, 43, 323–331. [Google Scholar] [CrossRef]
- Vicente, B.M.; Lucio Dos Santos Quaresma, M.V.; Maria de Melo, C.; Lima Ribeiro, S.M. The dietary inflammatory index (DII®) and its association with cognition, frailty, and risk of disabilities in older adults: A systematic review. Clin. Nutr. ESPEN 2020, 40, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Feart, C. Nutrition and frailty: Current knowledge. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 95, 109703. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Mallench, L.; Sanchez-Morate, E.; Parejo-Pedrajas, S.; Mas-Bargues, C.; Inglés, M.; Sanz-Ros, J.; Román-Domínguez, A.; Olaso, G.; Stromsnes, K.; Gambini, J. The Relationship between Diet and Frailty in Aging. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775. [Google Scholar] [CrossRef]
- O’Connell, M.L.; Coppinger, T.; McCarthy, A.L. The role of nutrition and physical activity in frailty: A review. Clin. Nutr. ESPEN 2020, 35, 1–11. [Google Scholar] [CrossRef]
- Romain, M.; Sviri, S.; Linton, D.M.; Stav, I.; van Heerden, P.V. The role of Vitamin B12 in the critically ill—A review. Anaesth. Intensive Care 2016, 44, 447–452. [Google Scholar] [CrossRef]
- Pyrgioti, E.E.; Karakousis, N.D. B12 levels and frailty syndrome. J. Frailty Sarcopenia Falls 2022, 7, 32–37. [Google Scholar] [CrossRef]
- Buta, B.J.; Walston, J.D.; Godino, J.G.; Park, M.; Kalyani, R.R.; Xue, Q.L.; Bandeen-Roche, K.; Varadhan, R. Frailty assessment instruments: Systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 2016, 26, 53–61. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Mitnitski, A. Frailty in relation to the accumulation of deficits. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 722–727. [Google Scholar] [CrossRef] [PubMed]
hFRS = 0 (N = 7705, 30.6%) | 0 < hFRS < 2 (N = 10,562, 41.9%) | hFRS ≥ 2 (N = 6919, 27.5%) | p * | All Participants (N = 25,186) | ||
---|---|---|---|---|---|---|
Age at baseline (years) | Mean (standard deviation) | 49.4 (8.1) | 54.0 (9.4) | 56.0 (9.7) | <0.001 | 53.1 (9.4) |
Age at diagnosis (years) | Mean (standard deviation) | 58.9 (9.9) | 61.5 (10.2) | 64.1 (10.7) | <0.001 | 61.4 (10.5) |
Follow-up time (years) | Mean (standard deviation) | 14.4 (6.3) | 11.7 (6.2) | 12.3 (6.2) | <0.001 | 12.7 (6.3) |
Ethnicity (N, %) | White | 7447 (98.6%) | 10,104 (98.5%) | 6615 (98.8%) | 0.346 | 24,166 (98.6%) |
Asian | 45 (0.6%) | 72 (0.7%) | 38 (0.6%) | 155 (0.6%) | ||
Black | 13 (0.2%) | 16 (0.2%) | 11 (0.2%) | 40 (0.2%) | ||
other | 49 (0.7%) | 66 (0.6%) | 29 (0.4%) | 144 (0.6%) | ||
Educational level (N, %) | No qualifications | 854 (11.8%) | 1974 (20.8%) | 1456 (23.8%) | <0.001 | 4284 (18.8%) |
O-level or equivalent | 2404 (33.3%) | 3097 (32.6%) | 1796 (29.4%) | 7297 (31.9%) | ||
A-level or equivalent | 1825 (25.3%) | 2184 (23.0%) | 1409 (23.1%) | 5418 (23.7%) | ||
University degree | 2137 (29.6%) | 2255 (23.7%) | 1452 (23.8%) | 5844 (25.6%) | ||
Marital status (N, %) | Married or living as married | 6023 (79.1%) | 7675 (73.9%) | 4890 (71.8%) | <0.001 | 18,588 (74.9%) |
Separated or divorced | 804 (10.6%) | 1158 (11.2%) | 760 (11.2%) | 2722 (11.0%) | ||
Single or widowed | 787 (10.3%) | 1556 (15.0%) | 1162 (17.1%) | 3505 (14.1%) | ||
Socio-economic status (SES) (N, %) | Routine and manual | 599 (7.9%) | 1073 (10.4%) | 707 (10.5%) | <0.001 | 2379 (9.7%) |
Intermediate | 2086 (27.5%) | 2912 (28.2%) | 1984 (29.4%) | 6982 (28.3%) | ||
Professional and managerial | 4902 (64.6%) | 6329 (61.4%) | 4053 (60.1%) | 15,284 (62.0%) | ||
Physical activity | Low level | 791 (10.3%) | 1211 (11.5%) | 791 (11.4%) | 0.178 | 2793 (11.1%) |
(N, %) | Moderate level | 3918 (50.9%) | 5205 (49.3%) | 3379 (48.8%) | 12,502 (49.6%) | |
High level | 2996 (38.9%) | 4146 (39.3%) | 2749 (39.7%) | 9891 (39.3%) | ||
Body mass index (BMI) (kg/m2) | Mean (standard deviation) | 24.1 (3.9) | 24.8 (4.4) | 24.9 (4.5) | <0.001 | 24.6 (4.3) |
Alcohol (g/d) | Mean (standard deviation) | 9.2 (10.3) | 8.4 (10.5) | 8.2 (10.0) | <0.001 | 8.6 (10.3) |
Smoking status (N, %) | Never smoked | 4477 (59.6%) | 5707 (55.7%) | 3745 (56.1%) | <0.001 | 13,929 (57.0%) |
Ex-smoker | 2249 (30.0%) | 3318 (32.4%) | 2184 (32.7%) | 7751 (31.7%) | ||
Current smoker | 783 (10.4%) | 1218 (11.9%) | 742 (11.1%) | 2743 (11.2%) |
Food Groups | hFRS = 0 (N = 7705, 30.6%) | 0 < hFRS < 2 (N = 10,562, 41.9%) | hFRS ≥ 2 (N = 6919, 27.5%) | p * | All Participants (N = 25,186) |
---|---|---|---|---|---|
Vegetables | 316 (183) | 322 (206) | 318 (197) | 0.120 | 319 (196) |
Fruits | 306 (226) | 319 (256) | 323 (251) | 0.152 | 316 (246) |
Total fish | 27 (25) | 29 (31) | 30 (27) | <0.001 | 29 (28) |
Processed meat | 12 (14) | 13 (16) | 14 (16) | <0.001 | 13 (15) |
Red meat | 32 (38) | 35 (44) | 37 (47) | <0.001 | 34 (43) |
Poultry | 17 (20) | 17 (21) | 17 (22) | 0.141 | 17 (21) |
Total meat | 63 (61) | 67 (69) | 70 (71) | <0.001 | 67 (67) |
Hazard Ratio (95% Confidence Interval) | |||||
---|---|---|---|---|---|
<60 Years Old | ≥60 Years Old | ** p-Interaction With Age | |||
Adjusted * | p * | Adjusted * | p * | ||
Risk of Pre- and more severe frailty (hFRS > 0) | |||||
Vegetables | 1.01 (0.99, 1.02) | 0.383 | 0.99 (0.97, 1.01) | 0.196 | 0.052 |
Fruits | 1.00 (0.99, 1.01) | 0.740 | 0.99 (0.97, 1.00) | 0.083 | 0.154 |
Total fish | 1.02 (0.95, 1.09) | 0.614 | 0.99 (0.90, 1.09) | 0.882 | 0.567 |
Processed meat | 1.36 (1.18, 1.56) | <0.001 | 1.50 (1.23, 1.83) | <0.001 | 0.015 |
Red meat | 1.14 (1.09, 1.21) | <0.001 | 1.19 (1.10, 1.28) | <0.001 | 0.001 |
Poultry | 1.10 (1.00, 1.21) | 0.042 | 1.07 (0.94, 1.22) | 0.318 | 0.028 |
Total meat | 1.09 (1.06, 1.13) | <0.001 | 1.13 (1.08, 1.19) | <0.001 | <0.001 |
Risk of Frailty (hFRS ≥ 2) | |||||
Vegetables | 0.99 (0.98, 1.01) | 0.591 | 0.97 (0.95, 0.99) | 0.016 | 0.135 |
Fruits | 1.00 (0.99, 1.02) | 0.818 | 0.98 (0.96, 1.00) | 0.038 | 0.708 |
Total fish | 1.02 (0.91, 1.15) | 0.681 | 0.90 (0.78, 1.04) | 0.141 | 0.791 |
Processed meat | 1.43 (1.14, 1.80) | 0.002 | 1.54 (1.15, 2.06) | 0.004 | 0.185 |
Red meat | 1.24 (1.14, 1.35) | <0.001 | 1.20 (1.08, 1.34) | 0.001 | 0.115 |
Poultry | 1.01 (0.87, 1.19) | 0.855 | 1.06 (0.87, 1.29) | 0.586 | 0.027 |
Total meat | 1.12 (1.06, 1.19) | <0.001 | 1.14 (1.05, 1.23) | 0.001 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, W.; Wang, Y.; Dong, Y.; Greenwood, D.C.; Hardie, L.J.; Cade, J.E. Foods, Nutrients, and Risk of In-Hospital Frailty in Women: Findings from a Large Prospective Cohort Study. Nutrients 2023, 15, 4619. https://doi.org/10.3390/nu15214619
Zhang H, Li W, Wang Y, Dong Y, Greenwood DC, Hardie LJ, Cade JE. Foods, Nutrients, and Risk of In-Hospital Frailty in Women: Findings from a Large Prospective Cohort Study. Nutrients. 2023; 15(21):4619. https://doi.org/10.3390/nu15214619
Chicago/Turabian StyleZhang, Huifeng, Weimin Li, Youfa Wang, Yuanyuan Dong, Darren C. Greenwood, Laura J. Hardie, and Janet E. Cade. 2023. "Foods, Nutrients, and Risk of In-Hospital Frailty in Women: Findings from a Large Prospective Cohort Study" Nutrients 15, no. 21: 4619. https://doi.org/10.3390/nu15214619
APA StyleZhang, H., Li, W., Wang, Y., Dong, Y., Greenwood, D. C., Hardie, L. J., & Cade, J. E. (2023). Foods, Nutrients, and Risk of In-Hospital Frailty in Women: Findings from a Large Prospective Cohort Study. Nutrients, 15(21), 4619. https://doi.org/10.3390/nu15214619