A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin–Beck Disease, an Osteoarthropathy Endemic to China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population Recruitment and Sample Collection
2.2. Fecal Sample Preparation
2.3. Untargeted Metabolomics Analysis
2.4. Statistical Analysis of Metabolic Profiling Data
3. Results
3.1. Characteristics of the Study Subjects
3.2. The Differential Metabolites between KBD and Control
3.3. Pathway Analysis of Differential Metabolites
3.4. The Results of Comparisons between Subgroups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KBD | Kashin–Beck disease |
DM | differential metabolites |
PLS-DA | partial least squares-discriminant analysis |
OPLS-DA | orthogonal partial least squares-discriminant analysis |
BAs | bile acids |
T3 | triiodothyronine |
T4 | thyroxine |
References
- Wen, Y.; Li, P.; Hao, J.; Duan, C.; Han, J.; He, A.; Du, Y.; Liu, L.; Liang, X.; Zhang, F.; et al. Integrating genome-wide DNA methylation and mRNA expression profiles identified different molecular features between Kashin-Beck disease and primary osteoarthritis. Arthritis Res. Ther. 2018, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ma, W.J.; Zhang, F.; Ren, F.L.; Qu, C.J.; Lammi, M.J. Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. Osteoarthr. Cartil. 2014, 22, 1774–1783. [Google Scholar] [CrossRef]
- Wang, L.; Yin, J.; Yang, B.; Qu, C.; Lei, J.; Han, J.; Guo, X. Serious Selenium Deficiency in the Serum of Patients with Kashin-Beck Disease and the Effect of Nano-Selenium on Their Chondrocytes. Biol. Trace Elem. Res. 2020, 194, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yao, H.; Wu, Y.; Sun, G.; Yang, W.; Li, Z.; Shang, L. Status and risks of selenium deficiency in a traditional selenium-deficient area in Northeast China. Sci. Total Environ. 2021, 762, 144103. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, G.H.; Yu, F.F.; Zhang, R.Q.; Guo, X. Selenium and Iodine Levels in Subjects with Kashin-Beck Disease: A Meta-analysis. Biol. Trace Elem. Res. 2016, 170, 43–54. [Google Scholar] [CrossRef]
- Yu, F.F.; Zuo, J.; Sun, L.; Yu, S.Y.; Lei, X.L.; Zhu, J.H.; Zhou, G.Y.; Guo, X.; Ba, Y. Animal models of Kashin-Beck disease exposed to environmental risk factors: Methods and comparisons. Ecotoxicol. Environ. Saf. 2022, 234, 113419. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, D.; Yang, X.; Li, Q.; Zhang, R.; Xiong, Y. The Role of Selenium-Mediated Notch/Hes1 Signaling Pathway in Kashin-Beck Disease Patients and Cartilage Injury Models. Biol. Trace Elem. Res. 2023, 201, 2765–2774. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Zhang, R.; Zhang, D.; Xiong, Y.; Wang, C.; Yang, X.; Li, Q. Dysregulation of Transcription Profile of Selenoprotein in Patients with Kashin-Beck Disease and Its Effect on Se Deficiency-Induced Chondrocyte Apoptosis. Biol. Trace Elem. Res. 2022, 200, 1508–1517. [Google Scholar] [CrossRef]
- Xie, D.; Liao, Y.; Yue, J.; Zhang, C.; Wang, Y.; Deng, C.; Chen, L. Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: A systematic review and network meta-analysis. BMJ Open 2018, 8, e017883. [Google Scholar] [CrossRef]
- Wang, K.; Yu, J.; Liu, H.; Liu, Y.; Liu, N.; Cao, Y.; Zhang, X.; Sun, D. Endemic Kashin-Beck disease: A food-sourced osteoarthropathy. Semin. Arthritis Rheum. 2020, 50, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.W.; Guo, X.; Lv, A.L.; Kang, L.; Zhou, Y.L.; Zhang, Y.Z.; Wu, X.M.; Bai, Y.D. Heritability estimates and linkage analysis of 23 short tandem repeat loci on chromosomes 2, 11, and 12 in an endemic osteochondropathy in China. Scand. J. Rheumatol. 2010, 39, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.F.; Sun, L.; Zhou, G.Y.; Ping, Z.G.; Guo, X.; Ba, Y. Meta-analysis of Association Studies of Selenoprotein Gene Polymorphism and Kashin-Beck Disease: An Updated Systematic Review. Biol. Trace Elem. Res. 2022, 200, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fan, X.; Crawford, R.; Xiao, Y.; Prasadam, I. The Metabolic Landscape in Osteoarthritis. Aging Dis. 2022, 13, 1166–1182. [Google Scholar] [CrossRef]
- Wang, X.; Ning, Y.; Li, C.; Gong, Y.; Huang, R.; Hu, M.; Poulet, B.; Xu, K.; Zhao, G.; Zhou, R.; et al. Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis. 2021, 12, 1015. [Google Scholar] [CrossRef]
- Jain, A.; Li, X.H.; Chen, W.N. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci. Rep. 2019, 9, 9191. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Jin, X.; Guan, Z.; Liu, S.; Tao, K.; Luo, L. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis. Aging Cell 2023, 22, e13807. [Google Scholar] [CrossRef]
- Zhao, J.; Nishiumi, S.; Tagawa, R.; Yano, Y.; Inoue, J.; Hoshi, N.; Yoshida, M.; Kodama, Y. Adrenic acid induces oxidative stress in hepatocytes. Biochem. Biophys. Res. Commun. 2020, 532, 620–625. [Google Scholar] [CrossRef]
- Brouwers, H.; Jónasdóttir, H.S.; Kuipers, M.E.; Kwekkeboom, J.C.; Auger, J.L.; Gonzalez-Torres, M.; López-Vicario, C.; Clària, J.; Freysdottir, J.; Hardardottir, I.; et al. Anti-Inflammatory and Proresolving Effects of the Omega-6 Polyunsaturated Fatty Acid Adrenic Acid. J. Immunol. 2020, 205, 2840–2849. [Google Scholar] [CrossRef]
- Mi, Y.; Yi, N.; Xu, X.; Zeng, F.; Li, N.; Tan, X.; Gong, Z.; Yan, K.; Kuang, G.; Lu, M. Prebiotics alleviate cartilage degradation and inflammation in post-traumatic osteoarthritic mice by modulating the gut barrier and fecal metabolomics. Food Funct. 2023, 14, 4065–4077. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Tong, X.; Zhang, L.; Yu, Z.; Zhou, Z. Untargeted metabolomics revealed therapeutic mechanisms of icariin on low bone mineral density in older caged laying hens. Food Funct. 2020, 11, 3201–3212. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Chen, J.; Wang, W.; Song, D.; Li, S.; Yang, H.; Xue, S.; Chen, C. Increased levels of IL-6, IL-1β, and TNF-α in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol. Int. 2014, 34, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Guo, X.; Wang, L.X.; Geng, D.; Kang, L.L.; Wang, S.; Wang, Z.F.; Gu, Q.S. [Serum hyaluronic acid, tumor necrosis factor -alpha, vascular endothelial growth factor, NO, and Se levels in adult patients with Kashin-Beck disease]. Nan Fang Yi Ke Da Xue Xue Bao = J. South. Med. Univ. 2007, 27, 941–944. [Google Scholar]
- Wen, Y.; Guo, X.; Hao, J.; Xiao, X.; Wang, W.; Wu, C.; Wang, S.; Yang, T.; Shen, H.; Chen, X.; et al. Integrative analysis of genome-wide association studies and gene expression profiles identified candidate genes for osteoporosis in Kashin-Beck disease patients. Osteoporos. Int. 2016, 27, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Khoshniat, S.; Bourgine, A.; Julien, M.; Weiss, P.; Guicheux, J.; Beck, L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell. Mol. Life Sci. CMLS 2011, 68, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Hughes, E.A.B.; Robinson, T.E.; Bassett, D.B.; Cox, S.C.; Grover, L.M. Critical and diverse roles of phosphates in human bone formation. J. Mater. Chem. B 2019, 7, 7460–7470. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, F.; Li, C.; He, S.; Tan, W.; Lei, Y.; Zhang, Q.; Yu, H.; Zheng, J.; Guo, X. Gene expression analysis suggests bone development-related genes GDF5 and DIO2 are involved in the development of Kashin-Beck disease in children rather than adults. PLoS ONE 2014, 9, e103618. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Khalil, M.; Portincasa, P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern. Emerg. Med. 2023, 1–17. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Luo, Q. The Association of Serum Total Bile Acids with Bone Mineral Density in Chinese Adults Aged 20-59: A Retrospective Cross-Sectional Study. Front. Endocrinol. 2022, 13, 817437. [Google Scholar] [CrossRef]
- Wen, K.; Tao, L.; Tao, Z.; Meng, Y.; Zhou, S.; Chen, J.; Yang, K.; Da, W.; Zhu, Y. Fecal and Serum Metabolomic Signatures and Microbial Community Profiling of Postmenopausal Osteoporosis Mice Model. Front. Cell. Infect. Microbiol. 2020, 10, 535310. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Yang, X.; Shan, P.; Liu, H. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis. Int. J. Mol. Med. 2015, 36, 1081–1087. [Google Scholar] [CrossRef]
- Ahn, T.K.; Kim, K.T.; Joshi, H.P.; Park, K.H.; Kyung, J.W.; Choi, U.Y.; Sohn, S.; Sheen, S.H.; Shin, D.E.; Lee, S.H.; et al. Therapeutic Potential of Tauroursodeoxycholic Acid for the Treatment of Osteoporosis. Int. J. Mol. Sci. 2020, 21, 4274. [Google Scholar] [CrossRef]
- Yan, Z.W.; Dong, J.; Qin, C.H.; Zhao, C.Y.; Miao, L.Y.; He, C.Y. Therapeutic Effect of Chenodeoxycholic Acid in an Experimental Rabbit Model of Osteoarthritis. Mediat. Inflamm. 2015, 2015, 780149. [Google Scholar] [CrossRef]
- López, D.E.; Ballaz, S.J. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond Neuroinflammation: Neuronal Homeostasis in Memory and Anxiety. Mol. Neurobiol. 2020, 57, 5167–5176. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef]
- Sartini, I.; Giorgi, M. Grapiprant: A snapshot of the current knowledge. J. Vet. Pharmacol. Ther. 2021, 44, 679–688. [Google Scholar] [CrossRef]
- Wu, T.; Li, Y.; Zeng, X.; Yuan, Y.; Yang, X.; Zhuo, Q.; Pei, F. Thyroid Hormone Concentrations in Preschool Children in Kashin-Beck Disease Endemic Area. Chin. J. Evid.-Based Med. 2008, 8, 86–89. [Google Scholar]
- Yuan, Q.Q.; Li, P.J.; Shen, Z.L.; Li, R.M.; Deng, S.H. Determination of Thyroxine Levels in the Serum of Patients with Hypertrophic Osteoarthropathy. J. Chengde Med. Univ. 1984, 1, 67–69. [Google Scholar] [CrossRef]
- Jin, T.; Wang, L.; He, X.; Liu, M.; Bai, M.; Rong, H.; He, Y.; Yuan, D. Association between DIO2 polymorphism and the risk of Kashin-Beck disease in the Tibetan population. J. Gene Med. 2019, 21, e3123. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zong, Z.; Deng, J.; Huang, J.; Liu, G.; Wei, B.; Cui, L.; Li, G.; Zhong, H.; Lin, S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022, 14, 3984. [Google Scholar] [CrossRef]
- Sekar, S.; Shafie, S.R.; Prasadam, I.; Crawford, R.; Panchal, S.K.; Brown, L.; Xiao, Y. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 2017, 7, 46457. [Google Scholar] [CrossRef]
- Miao, H.; Chen, L.; Hao, L.; Zhang, X.; Chen, Y.; Ruan, Z.; Liang, H. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes. Sci. Rep. 2015, 5, 13092. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Schwartz, Z.; Swain, L.D.; Khare, A. Role of lipids in calcification of cartilage. Anat. Rec. 1989, 224, 211–219. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Anastasopoulou, L.; Tsezou, A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021, 152, 116076. [Google Scholar] [CrossRef] [PubMed]
- Lü, A.L.; Guo, X.; Aisha, M.M.; Shi, X.W.; Zhang, Y.; Zhang, Y.Y. Kashin-Beck disease and Sayiwak disease in China: Prevalence and a comparison of the clinical manifestations, familial aggregation, and heritability. Bone 2011, 48, 347–353. [Google Scholar] [CrossRef] [PubMed]
Demographic Factors | KBD | Control | p |
---|---|---|---|
Age | 58.99 ± 7.43 | 57.54 ± 8.22 | 0.443 |
Sex (Male/Female) | 23/23 | 13/16 | 0.813 |
BMI (kg/m2) | 23.68 ± 3.95 | 23.77 ± 3.62 | 0.926 |
KBD Grade (Grade I/Grade II) | 19/27 | - | - |
total | 46 | 29 | - |
Pathway Name | Pathway Source | DMs NO. | Metabolites NO. in Pathway | p Value | Q Value |
---|---|---|---|---|---|
Central carbon metabolism in cancer | KEGG | 11 | 37 | 2.06 × 10−7 | 2.76 × 10−4 |
Biomarkers for urea cycle disorders | Wikipathways | 6 | 9 | 4.21 × 10−7 | 3.76 × 10−4 |
Class A/1 (Rhodopsin-like receptors) | Reactome | 17 | 97 | 4.68 × 10−7 | 3.76 × 10−4 |
G alpha (q) signalling events | Reactome | 13 | 59 | 7.38 × 10−7 | 4.95 × 10−4 |
ABC transporters | KEGG | 20 | 138 | 1.07 × 10−6 | 6.14 × 10−4 |
γ-glutamyl cycle | HumanCyc | 9 | 29 | 1.85 × 10−6 | 8.05 × 10−4 |
leukotriene biosynthesis | HumanCyc | 9 | 29 | 1.85 × 10−6 | 8.05 × 10−4 |
GPCR downstream signalling | Reactome | 19 | 131 | 2.00 × 10−6 | 8.05 × 10−4 |
Metabolism of lipids | Reactome | 37 | 394 | 2.30 × 10−6 | 8.43 × 10−4 |
GPCR ligand binding | Reactome | 19 | 140 | 5.52 × 10−6 | 1.85 × 10−3 |
Amino Acid metabolism | Wikipathways | 16 | 105 | 7.02 × 10−6 | 2.17 × 10−3 |
Signal Transduction | Reactome | 26 | 243 | 9.22 × 10−6 | 2.65 × 10−3 |
Recycling of bile acids and salts | Reactome | 7 | 20 | 1.11 × 10−5 | 2.98 × 10−3 |
Selenium Micronutrient Network | Wikipathways | 14 | 86 | 1.24 × 10−5 | 3.11 × 10−3 |
Glucose Homeostasis | Wikipathways | 7 | 21 | 1.61 × 10−5 | 3.81 × 10−3 |
Urea cycle and metabolism of arginine_ proline_ glutamate_ aspartate and asparagine | EHMN | 17 | 125 | 1.72 × 10−5 | 3.85 × 10−3 |
Tyrosine metabolism | KEGG | 13 | 78 | 1.97 × 10−5 | 3.93 × 10−3 |
SLC-mediated transmembrane transport | Reactome | 19 | 153 | 2.05 × 10−5 | 3.93 × 10−3 |
Protein digestion and absorption | KEGG | 10 | 47 | 2.05 × 10−5 | 3.93 × 10−3 |
Free fatty acid receptors | Reactome | 7 | 22 | 2.28 × 10−5 | 3.99 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Wang, B.; Shi, P.; Chu, X.; Shi, S.; Yao, Y.; Zhang, L.; Zhang, F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin–Beck Disease, an Osteoarthropathy Endemic to China. Nutrients 2023, 15, 4651. https://doi.org/10.3390/nu15214651
Wen Y, Wang B, Shi P, Chu X, Shi S, Yao Y, Zhang L, Zhang F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin–Beck Disease, an Osteoarthropathy Endemic to China. Nutrients. 2023; 15(21):4651. https://doi.org/10.3390/nu15214651
Chicago/Turabian StyleWen, Yan, Bingyi Wang, Panxing Shi, Xiaoge Chu, Sirong Shi, Yao Yao, Lu Zhang, and Feng Zhang. 2023. "A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin–Beck Disease, an Osteoarthropathy Endemic to China" Nutrients 15, no. 21: 4651. https://doi.org/10.3390/nu15214651
APA StyleWen, Y., Wang, B., Shi, P., Chu, X., Shi, S., Yao, Y., Zhang, L., & Zhang, F. (2023). A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin–Beck Disease, an Osteoarthropathy Endemic to China. Nutrients, 15(21), 4651. https://doi.org/10.3390/nu15214651