Effect of Nutrition Education on Health Science University Students to Improve Cardiometabolic Profile and Inflammatory Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Description of Nutrition Education
2.3. Analytical Procedure
2.4. Anthropometric Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Hearn, M.; Lauren, B.; Wong, J.; Kim, D.; Mozzafarian, D. Trends and Disparities in Cardiometabolic Health among U.S. Adults,1999–2018. J. Am. Coll. Cardiol. 2022, 80, 138–151. [Google Scholar] [CrossRef]
- Cervera Burriel, F.; Serrano Urrea, R.; García, C.V.; Tobarra, M.M.; José, M.; Meseguer, G. Hábitos Alimentarios y Evaluación Nutricional En Una Población Universitaria. Nutr. Hosp. 2013, 28, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Hondros, G.; Scott, J.A.; Kapsokefalou, M. Eating Habits of University Students Living at, or away from Home in Greece. Appetite 2007, 49, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Chacón Cuberos, R.; Zurita Ortega, F.; Castro Sánchez, M.; Espejo Garcés, T.; Martínez Martínez, A.; Lucena Zurita, M. Análisis Descriptivo Del Consumo de Sustancias Nocivas, Adhesión a La Dieta Mediterránea y Tipo de Residencia En Estudiantes Universitarios de Granada. Rev. Complut. Educ. 2017, 28, 823–837. [Google Scholar] [CrossRef]
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.d.C.; Hernández-Martínez, A. Physical Activity and Sedentary Lifestyle in University Students: Changes during Confinement Due to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef]
- Winpenny, E.M.; van Sluijs, E.M.F.; White, M.; Klepp, K.I.; Wold, B.; Lien, N. Changes in Diet through Adolescence and Early Adulthood: Longitudinal Trajectories and Association with Key Life Transitions. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 86. [Google Scholar] [CrossRef]
- Bárbara, R.; Ferreira-Pêgo, C. Changes in Eating Habits among Displaced and Non-Displaced University Students. Int. J. Environ. Res. Public Health 2020, 17, 5369. [Google Scholar] [CrossRef] [PubMed]
- Tosevski, D.L.; Milovancevic, M.P.; Gajic, S. Personality and Psychopathology of University Students. Curr. Opin. Psychiatry 2010, 23, 48–52. [Google Scholar] [CrossRef]
- Vella-Zarb, R.A.; Elgar, F.J. The ‘Freshman 5’: A Meta-Analysis of Weight Gain in the Freshman Year of College. J. Am. Coll. Health 2009, 58, 161–166. [Google Scholar] [CrossRef]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M.; Iglesias-López, M.T. Influence of Eating Habits and Alcohol Consumption on the Academic Performance among a University Population in the Community of Madrid: A Pilot Study. Heliyon 2021, 7, e07186. [Google Scholar] [CrossRef]
- Navarro-Prado, S.; Schmidt-Riovalle, J.; Montero-Alonso, M.A.; Fernández-Aparicio, Á.; González-Jiménez, E. Unhealthy Lifestyle and Nutritional Habits Are Risk Factors for Cardiovascular Diseases Regardless of Professed Religion in University Students. Int. J. Environ. Res. Public Health 2018, 15, 2872. [Google Scholar] [CrossRef] [PubMed]
- González Sandoval, C.E.; Díaz Burke, Y.; Mendizabal-Ruiz, A.P.; Medina Díaz, E.; Morales, J.A. Prevalence of obesity and altered lipid profile in university students. Nutr. Hosp. 2014, 29, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.A.; Rose, A.M.; Bruno, R.S.; Hanks, A.S.; Kennel, J.A.; McDonald, J.D.; Labyk, A.N.; Gunther, C. Examination of the Relationship of Diet Quality with Cardiometabolic Risk Factors in Apparently Healthy College Students. J. Educ. Health Promot. 2019, 8, 148. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, H.; Kaudimba, K.K.; Guo, S.; Zhang, H.; Gao, S.; Wang, R.; Luan, X.; Lee, J.K.W.; Chen, P.; et al. Characteristics of Physical Fitness and Cardiometabolic Risk in Chinese University Students with Normal-Weight Obesity: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2020, 13, 4157–4167. [Google Scholar] [CrossRef]
- González-Monroy, C.; Gómez-Gómez, I.; Olarte-Sánchez, C.M.; Motrico, E. Eating Behaviour Changes during the COVID-19 Pandemic: A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2021, 18, 11130. [Google Scholar] [CrossRef]
- Pung, C.; Tan, S.; Tan, S.; Tan, C. Eating Behaviors among Online Learning Undergraduates during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 12820. [Google Scholar] [CrossRef]
- Maldonado de Santiago, A.; Alemán Castillo, S.E.; Bezares-Sarmiento, V.; Rodríguez-Castillejos, G.; García-Oropesa, E.; Castillo-Ruíz, O. Estilo de Vida En Estudiantes Universitarios Durante El Confinamiento Por La Pandemia de COVID-19. Rev. Med. Inst. Mex. Seguro Soc. 2023, 61, 466–473. [Google Scholar] [CrossRef]
- San Román-Mata, S.; Puertas-Molero, P.; Ubago-Jiménez, J.L.; González-Valero, G. Benefits of Physical Activity and Its Associations with Resilience, Emotional Intelligence, and Psychological Distress in University Students from Southern Spain. Int. J. Environ. Res. Public Health 2020, 17, 4474. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Fares, C.; Bade, R. Relationship between Emotional Expressions and Lifestyle Changes among University Students during COVID-19 Lockdown in Lebanon. J. Infect. Devep. Ctries. 2022, 16, 1148–1158. [Google Scholar] [CrossRef]
- Umar, M.; Sastry, K.S.; Chouchane, A.I. Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies. Int. J. Mol. Sci. 2018, 19, 1618. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Mitri, J.; Mathieu, C.; Badenhoop, K.; Tamer, G.; Orio, F.; Mezza, T.; Vieth, R.; Colao, A.; Pittas, A. Mechanisms in Endocrinology: Vitamin D as a Potential Contributor in Endocrine Health and Disease. Eur. J. Endocrinol. 2014, 171, R101–R110. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef]
- Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and Therapeutic Role of Vitamin D in COVID-19: Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2022, 107, 1484–1502. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Thangappazham, B.; Vykunta, A.; Duggina, P.; Manne, M.; Raj, H.; Aloori, S. COVID-19 and Vitamin D (Co-VIVID Study): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Expert. Rev. Anti-Infect. Ther. 2022, 20, 907–913. [Google Scholar] [CrossRef]
- Catharine, R.A.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; National Academic Press: Washington, DC, USA, 2011. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; Fuleihan, G.E.H.; Bouillon, R. Current Vitamin D Status in European and Middle East Countries and Strategies to Prevent Vitamin D Deficiency: A Position Statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef]
- González-Molero, I.; Morcillo, S.; Valdés, S.; Pérez-Valero, V.; Botas, P.; Delgado, E.; Hernández, D.; Olveira, G.; Rojo, G.; Gutierrez-Repiso, C.; et al. Vitamin D Deficiency in Spain: A Population-Based Cohort Study. Eur. J. Clin. Nutr. 2011, 65, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Peng, M.; Chen, S.; Wu, S.; Zhang, W. Vitamin D Deficiency Is Associated with Dyslipidemia: A Cross-Sectional Study in 3788 Subjects. Curr. Med. Res. Opin. 2019, 35, 1059–1063. [Google Scholar] [CrossRef]
- Wang, Y.; Si, S.; Liu, J.; Wang, Z.; Jia, H.; Feng, K.; Sun, L.; Song, J. The Associations of Serum Lipids with Vitamin D Status. PLoS ONE 2016, 11, e0165157. [Google Scholar] [CrossRef]
- Geng, S.; Chen, K.; Yuan, R.; Peng, L.; Maitra, U.; Diao, N.; Chen, C.; Zhang, Y.; Hu, Y.; Qi, C.-F.; et al. The Persistence of Low-Grade Inflammatory Monocytes Contributes to Aggravated Atherosclerosis. Nat. Commun. 2016, 7, 13436. [Google Scholar] [CrossRef]
- Murphy, A.J.; Woollard, K.J.; Hoang, A.; Mukhamedova, N.; Stirzaker, R.A.; McCormick, S.P.A.; Remaley, A.T.; Sviridov, D.; Chin-Dusting, J. High-Density Lipoprotein Reduces the Human Monocyte Inflammatory Response. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Yang, J.; Zou, H.; Li, M.; Sun, W.; Kong, X. Monocyte-to-High-Density Lipoprotein-Cholesterol Ratio (MHR) and the Risk of All-Cause and Cardiovascular Mortality: A Nationwide Cohort Study in the United States. Lipids Health Dis. 2022, 21, 30. [Google Scholar] [CrossRef]
- Kanbay, M.; Solak, Y.; Unal, H.U.; Kurt, Y.G.; Gok, M.; Cetinkaya, H.; Karaman, M.; Oguz, Y.; Eyileten, T.; Vural, A.; et al. Monocyte Count/HDL Cholesterol Ratio and Cardiovascular Events in Patients with Chronic Kidney Disease. Int. Urol. Nephrol. 2014, 46, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Vahit, D.; Akboga, M.K.; Samet, Y.; Hüseyin, E. Assessment of Monocyte to High Density Lipoprotein Cholesterol Ratio and Lymphocyte-to-Monocyte Ratio in Patients with Metabolic Syndrome. Biomark. Med. 2017, 11, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.S.; Ozcan Cetin, E.H.; Kalender, E.; Aydin, S.; Topaloglu, S.; Kisacik, H.L.; Temizhan, A. Monocyte to HDL Cholesterol Ratio Predicts Coronary Artery Disease Severity and Future Major Cardiovascular Adverse Events in Acute Coronary Syndrome. Heart Lung Circ. 2016, 25, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Selvaggio, S.; Abate, A.; Brugaletta, G.; Musso, C.; Di Guardo, M.; Di Guardo, C.; Vicari, E.S.D.; Romano, M.; Luca, S.; Signorelli, S.S. Platelet-to-lymphocyte Ratio, Neutrophil-to-lymphocyte Ratio and Monocyte-to-HDL Cholesterol Ratio as Markers of Peripheral Artery Disease in Elderly Patients. Int. J. Mol. Med. 2020, 46, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.-R.; Wang, H.-Y.; Chen, S.; Guo, X.-F.; Li, Z.; Sun, Y.-X. The Impact of Monocyte to High-Density Lipoprotein Ratio on Reduced Renal Function: Insights from a Large Population. Biomark. Med. 2019, 13, 773–783. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Schröder, L.; Kaiser, S.; Flemer, B.; Hamm, J.; Hinrichsen, F.; Bordoni, D.; Rosenstiel, P.; Sommer, F. Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients 2020, 12, 3032. [Google Scholar] [CrossRef]
- Shahril, M.R.; Wan Dali, W.P.E.; Lua, P.L. A 10-Week Multimodal Nutrition Education Intervention Improves Dietary Intake among University Students: Cluster Randomised Controlled Trial. J. Nutr. Metab. 2013, 2013, 658642. [Google Scholar] [CrossRef] [PubMed]
- Yolcuoğlu, İ.Z.; Kızıltan, G. Effect of Nutrition Education on Diet Quality, Sustainable Nutrition and Eating Behaviors among University Students. J. Am. Coll. Nutr. 2021, 41, 713–719. [Google Scholar] [CrossRef]
- Menal-Puey, S.; Marques-Lopes, I. Development of Criteria for Incorporating Occasionally Consumed Foods into a National Dietary Guideline: A Practical Approach Adapted to the Spanish Population. Nutrients 2018, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- García, E.L.; Lesmes, I.B.; Perales, A.D.; Moreno, V.; Baquedano, M.P.P.; Velasco, A.M.R.; Salvo, U.F.; Romero, L.T.; Porcel, F.B.O.; Laín, S.A.; et al. Comité Científico AESAN Informe Del Comité Cientiífico de La Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) Sobre Recomendaciones Dietéticas Sostenibles y Recomendaciones de Actividad Física Para La Población Española. Rev. Com. Científico AESAN 2022, 36, 11–70. [Google Scholar]
- Dobiásová, M. AIP—Aterogenní Index Plazmy Jako Významný Prediktor Kardiovaskulárního Rizika: Od Výzkumu Do Praxe AIP—Atherogenic Index of Plasma as a Significant Predictor of Cardiovascular Risk: From Research to Practice. Vnitr. Lek. 2006, 52, 64–71. [Google Scholar]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A Systematic Review of Waist-to-Height Ratio as a Screening Tool for the Prediction of Cardiovascular Disease and Diabetes: 0·5 Could Be a Suitable Global Boundary Value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences.; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Kołłajtis-Dołowy, A.; Żamojcin, K. The Level of Knowledge on Nutrition and Its Relation to Health among Polish Young Men. Rocz. Panstw. Zakl. Hig. 2016, 67, 155–161. [Google Scholar]
- Zhang, Y.; Tao, S.; Qu, Y.; Mou, X.; Gan, H.; Zhou, P.; Zhu, Z.; Wu, X.; Tao, F. The Correlation between Lifestyle Health Behaviors, Coping Style, and Mental Health during the COVID-19 Pandemic among College Students: Two Rounds of a Web-Based Study. Front. Public Health 2023, 10, 1031560. [Google Scholar] [CrossRef]
- Chusak, C.; Tangmongkhonsuk, M.; Sudjapokinon, J.; Adisakwattana, S. The Association between Online Learning and Food Consumption and Lifestyle Behaviors and Quality of Life in Terms of Mental Health of Undergraduate Studentsvduring COVID-19 Restrictions. Nutrients 2022, 14, 890. [Google Scholar] [CrossRef]
- López-Moreno, M.; López, M.T.I.; Miguel, M.; Garcés-Rimón, M. Physical and Psychological Effects Related to Food Habits and Lifestyle Changes Derived from COVID-19 Home Confinement in the Spanish Population. Nutrients 2020, 12, 3445. [Google Scholar] [CrossRef]
- Brown, O.; Mukigi, D.R. The Feasibility of a Text-Delivered Intervention to Improve Dietary Habits, Stress Management Behaviors and Create Awareness of Food Assistance Resources among College Students. Ann. Rev. Res. 2019, 51, S4–S5. [Google Scholar] [CrossRef]
- Pahkala, K.; Laitinen, T.T.; Niinikoski, H.; Kartiosuo, N.; Rovio, S.P.; Lagström, H.; Loo, B.-M.; Salo, P.; Jokinen, E.; Magnussen, C.G.; et al. Effects of 20-Year Infancy-Onset Dietary Counselling on Cardiometabolic Risk Factors in the Special Turku Coronary Risk Factor Intervention Project (STRIP): 6-Year Post-Intervention Follow-Up. Lancet Child. Adolesc. Health 2020, 4, 359–369. [Google Scholar] [CrossRef]
- Yahia, N.; Brown, C.A.; Rapley, M.; Chung, M. Level of Nutrition Knowledge and Its Association with Fat Consumption among College Students. BMC Public Health 2016, 16, 1047. [Google Scholar] [CrossRef] [PubMed]
- Domanski, M.J.; Tian, X.; Wu, C.O.; Reis, J.P.; Dey, A.K.; Gu, Y.; Zhao, L.; Bae, S.; Liu, K.; Hasan, A.A.; et al. Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event Risk. J. Am. Coll. Cardiol. 2020, 76, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Pinto, E. Benefits of Pulse Consumption on Metabolism and Health: A Systematic Review of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 85–96. [Google Scholar] [CrossRef]
- Ha, V.; Sievenpiper, J.L.; de Souza, R.J.; Jayalath, V.H.; Mirrahimi, A.; Agarwal, A.; Chiavaroli, L.; Mejia, S.B.; Sacks, F.M.; Di Buono, M.; et al. Effect of Dietary Pulse Intake on Established Therapeutic Lipid Targets for Cardiovascular Risk Reduction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. CMAJ 2014, 186, E252–E262. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Satija, A.; Blondin, S.A.; Janiszewski, M.; Emlen, E.; O’Connor, L.E.; Campbell, W.W.; Hu, F.B.; Willett, W.C.; Stampfer, M.J. Meta-Analysis of Randomized Controlled Trials of Red Meat Consumption in Comparison With Various Comparison Diets on Cardiovascular Risk Factors. Circulation 2019, 139, 1828–1845. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Blanco Mejia, S.; Kendall, C.W.C.; Sievenpiper, J.L. Can Pulses Play a Role in Improving Cardiometabolic Health? Evidence from Systematic Reviews and Meta-Analyses. Ann. N. Y. Acad. Sci. 2017, 1392, 43–57. [Google Scholar] [CrossRef]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, Goitrogens, Phytates and Oxalates, Friends or Foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar] [CrossRef]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive Compounds in Legumes: Implications for Sustainable Nutrition and Health in the Elderly Population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Hall, M.E.; Cohen, J.B.; Ard, J.D.; Egan, B.M.; Hall, J.E.; Lavie, C.J.; Ma, J.; Ndumele, C.E.; Schauer, P.R.; Shimbo, D.; et al. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement from the American Heart Association. Hypertension 2021, 78, e38–e50. [Google Scholar] [CrossRef] [PubMed]
- Nupponen, M.; Pahkala, K.; Juonala, M.; Magnussen, C.G.; Niinikoski, H.; Rönnemaa, T.; Viikari, J.S.A.; Saarinen, M.; Lagström, H.; Jula, A.; et al. Metabolic Syndrome From Adolescence to Early Adulthood. Circulation 2015, 131, 605–613. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Castro, A.M.; Macedo-de la Concha, L.E.; Pantoja-Meléndez, C.A. Low-Grade Inflammation and Its Relation to Obesity and Chronic Degenerative Diseases. Rev. Méd. Hosp. Gen. México 2017, 80, 101–105. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Markozannes, G.; Koutsioumpa, C.; Cividini, S.; Monori, G.; Tsilidis, K.K.; Kretsavos, N.; Theodoratou, E.; Gill, D.; Ioannidis, J.P.; Tzoulaki, I. Global Assessment of C-Reactive Protein and Health-Related Outcomes: An Umbrella Review of Evidence from Observational Studies and Mendelian Randomization Studies. Eur. J. Epidemiol. 2021, 36, 11–36. [Google Scholar] [CrossRef]
- Ganjali, S.; Gotto, A.M.; Ruscica, M.; Atkin, S.L.; Butler, A.E.; Banach, M.; Sahebkar, A. Monocyte-to-HDL-Cholesterol Ratio as a Prognostic Marker in Cardiovascular Diseases. J. Cell Physiol. 2018, 233, 9237–9246. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, L.; Martínez-Arnau, F.M.; Pérez-Ros, P.; Drehmer, E.; Pablos, A. Improved Nutritional Knowledge in the Obese Adult Population Modifies Eating Habits and Serum and Anthropometric Markers. Nutrients 2020, 12, 3355. [Google Scholar] [CrossRef] [PubMed]
- Piccand, E.; Vollenweider, P.; Guessous, I.; Marques-Vidal, P. Association between Dietary Intake and Inflammatory Markers: Results from the CoLaus Study. Public Health Nutr. 2019, 22, 498–505. [Google Scholar] [CrossRef]
- Craddock, J.C.; Neale, E.P.; Peoples, G.E.; Probst, Y.C. Vegetarian-Based Dietary Patterns and Their Relation with Inflammatory and Immune Biomarkers: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 433–451. [Google Scholar] [CrossRef]
- Escalante-Araiza, F.; Rivera-Monroy, G.; Loza-López, C.E.; Gutiérrez-Salmeán, G. The Effect of Plant-Based Diets on Meta-Inflammation and Associated Cardiometabolic Disorders: A Review. Nutr. Rev. 2022, 80, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Gonzalez, L. Is Vitamin D Deficiency a Major Global Public Health Problem? J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 138–145. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Sherelkhan, D.; Lutfor, A.; Razzaque, M. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem. Cytochem. 2020, 53, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Khan, S.R.; Basharat, A. Assessment of Knowledge, Attitudes and Practice towards Vitamin D among University Students in Pakistan. BMC Public Health 2020, 20, 355. [Google Scholar] [CrossRef]
- Zhou, M.; Zhuang, W.; Yuan, Y.; Li, Z.; Cai, Y. Investigation on Vitamin D Knowledge, Attitude and Practice of University Students in Nanjing, China. Public Health Nutr. 2016, 19, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.S.; Alhalabi, H.B.; Alharbi, K.S.; Alghamdi, O.S.; Alghamdi, A.I.; Ajarem, M.A.; Alqarni, M.A. Knowledge Attitude and Practices of University Students to Vitamin D and Vitamin D Supplements during Times of Low Sun Exposure and Post Lockdown. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7297–7305. [Google Scholar] [CrossRef]
- Goodman, S.; Morrongiello, B.; Meckling, K. A Randomized, Controlled Trial Evaluating the Efficacy of an Online Intervention Targeting Vitamin D Intake, Knowledge and Status among Young Adults. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 116. [Google Scholar] [CrossRef]
- Aloia, J.F.; Patel, M.; Dimaano, R.; Li-Ng, M.; Talwar, S.A.; Mikhail, M.; Pollack, S.; Yeh, J.K. Vitamin D Intake to Attain a Desired Serum 25-Hydroxyvitamin D Concentration. Am. J. Clin. Nutr. 2008, 87, 1952–1958. [Google Scholar] [CrossRef]
- Hajhashemy, Z.; Foshati, S.; Saneei, P. Relationship between Abdominal Obesity (Based on Waist Circumference) and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis of Epidemiologic Studies. Nutr. Rev. 2022, 80, 1105–1117. [Google Scholar] [CrossRef]
- Blum, M.; Dolnikowski, G.; Seyoum, E.; Harris, S.S.; Booth, S.L.; Peterson, J.; Saltzman, E.; Dawson-Hughes, B. Vitamin D3 in Fat Tissue. Endocrine 2008, 33, 90–94. [Google Scholar] [CrossRef]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.-S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef]
- Elkhwanky, M.S.; Kummu, O.; Piltonen, T.T.; Laru, J.; Morin-Papunen, L.; Mutikainen, M.; Tavi, P.; Hakkola, J. Obesity Represses CYP2R1, the Vitamin D 25-Hydroxylase, in the Liver and Extrahepatic Tissues. JBMR Plus 2020, 4, e10397. [Google Scholar] [CrossRef] [PubMed]
- Yarparvar, A.; Elmadfa, I.; Djazayery, A.; Abdollahi, Z.; Salehi, F. The Association of Vitamin D Status with Lipid Profile and Inflammation Biomarkers in Healthy Adolescents. Nutrients 2020, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Hsu, S.H.; Su, T.-C. Association between Vitamin D Deficiency and High Serum Levels of Small Dense LDL in Middle-Aged Adults. Biomedicines 2021, 9, 464. [Google Scholar] [CrossRef] [PubMed]
- Alquaiz, A.J.M.; Kazi, A.; Youssef, R.M.; Alshehri, N.; Alduraywish, S.A. Association between Standardized Vitamin 25(OH)D and Dyslipidemia: A Community-Based Study in Riyadh, Saudi Arabia. Environ. Health Prev. Med. 2020, 25, 4. [Google Scholar] [CrossRef]
- Elmi, C.; Fan, M.M.; Le, M.; Cheng, G.; Khalighi, K. Association of Serum 25-Hydroxy Vitamin D Level with Lipid, Lipoprotein, and Apolipoprotein Level. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 812–816. [Google Scholar] [CrossRef]
- Li, Y.; Tong, C.H.; Rowland, C.M.; Radcliff, J.; Bare, L.A.; McPhaul, M.J.; Devlin, J.J. Association of Changes in Lipid Levels with Changes in Vitamin D Levels in a Real-World Setting. Sci. Rep. 2021, 11, 21536. [Google Scholar] [CrossRef]
- Kelishadi, R.; Farajzadegan, Z.; Bahreynian, M. Association between Vitamin D Status and Lipid Profile in Children and Adolescents: A Systematic Review and Meta-Analysis. Int. J. Food Sci. Nutr. 2014, 65, 404–410. [Google Scholar] [CrossRef]
- Khayyatzadeh, S.S.; Mirmoosavi, S.J.; Fazeli, M.; Abasalti, Z.; Avan, A.; Javandoost, A.; Rahmani, F.; Tayefi, M.; Hanachi, P.; Ferns, G.A.; et al. High-Dose Vitamin D Supplementation Is Associated with an Improvement in Several Cardio-Metabolic Risk Factors in Adolescent Girls: A Nine-Week Follow-up Study. Ann. Clin. Biochem. 2018, 55, 227–235. [Google Scholar] [CrossRef]
- Chow, E.C.Y.; Magomedova, L.; Quach, H.P.; Patel, R.; Durk, M.R.; Fan, J.; Maeng, H.J.; Irondi, K.; Anakk, S.; Moore, D.D.; et al. Vitamin D Receptor Activation Down-Regulates the Small Heterodimer Partner and Increases CYP7A1 to Lower Cholesterol. Gastroenterology 2014, 146, 1048–1059.e7. [Google Scholar] [CrossRef]
- Lee, H.A.; Kim, Y.J.; Lee, H.; Gwak, H.S.; Park, E.A.; Cho, S.J.; Oh, S.Y.; Ha, E.H.; Kim, H.S.; Park, H. Association of Vitamin D Concentrations with Adiposity Indices among Preadolescent Children in Korea. J. Pediatr. Endocrinol. Metab. 2013, 26, 849–854. [Google Scholar] [CrossRef]
- Guillot, X.; Semerano, L.; Saidenberg-Kermanac’h, N.; Falgarone, G.; Boissier, M.C. Vitamin D and Inflammation. Joint Bone Spine 2010, 77, 552–557. [Google Scholar] [CrossRef]
- De Matteis, C.; Crudele, L.; Cariello, M.; Battaglia, S.; Piazzolla, G.; Suppressa, P.; Sabbà, C.; Piccinin, E.; Moschetta, A. Monocyte-to-HDL Ratio (MHR) Predicts Vitamin D Deficiency in Healthy and Metabolic Women: A Cross-Sectional Study in 1048 Subjects. Nutrients 2022, 14, 347. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.; Islam, N.; Ganji, V.; Zughaier, S.M. Serum 25-Hydroxyvitamin d Is Inversely Associated with Monocyte Percentage to Hdl Cholesterol Ratio among Young Healthy Adults in Qatar. Nutrients 2021, 13, 127. [Google Scholar] [CrossRef]
- Riek, A.E.; Oh, J.; Sprague, J.E.; Timpson, A.; de las Fuentes, L.; Bernal-Mizrachi, L.; Schechtman, K.B.; Bernal-Mizrachi, C. Vitamin D Suppression of Endoplasmic Reticulum Stress Promotes an Antiatherogenic Monocyte/Macrophage Phenotype in Type 2 Diabetic Patients. J. Biol. Chem. 2012, 287, 38482–38494. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Eapen, M.S.; Zosky, G.R. Vitamin D Both Facilitates and Attenuates the Cellular Response to Lipopolysaccharide. Sci. Rep. 2017, 7, 45172. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, U.; Çetin, E.H.; Cetin, S.; Aydin, S.; Akboga, M.K.; Yayla, C.; Turak, O.; Aras, D.; Aydogdu, S. Association of Monocyte-to-HDL Cholesterol Ratio with Slow Coronary Flow Is Linked to Systemic Inflammation. Clin. Appl. Thromb./Hemost. 2016, 22, 476–482. [Google Scholar] [CrossRef]
- Zughaier, S.M.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Tangpricha, V. The Role of Vitamin D in Regulating the Iron-Hepcidin-Ferroportin Axis in Monocytes. J. Clin. Transl. Endocrinol. 2014, 1, e19–e25. [Google Scholar] [CrossRef]
- Kim, M.R.; Jeong, S.J. Relationship between Vitamin D Level and Lipid Profile in Non-Obese Children. Metabolites 2019, 9, 125. [Google Scholar] [CrossRef]
- Murphy, A.; Chin-Dusting, J.P.; Sviridov, D.; Woollard, K. The Anti Inflammatory Effects of High Density Lipoproteins. Curr. Med. Chem. 2009, 16, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Kuvin, J.T.; Rämet, M.E.; Patel, A.R.; Pandian, N.G.; Mendelsohn, M.E.; Karas, R.H. A Novel Mechanism for the Beneficial Vascular Effects of High-Density Lipoprotein Cholesterol: Enhanced Vasorelaxation and Increased Endothelial Nitric Oxide Synthase Expression. Am. Heart J. 2002, 144, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Pocovi, G.; Schmidt-RioValle, J.; González-Jiménez, E.; Rueda-Medina, B. Assessment of Dietary Intake in Spanish University Students of Health Sciences. Endocronol. Diabetes Nutr. 2018, 65, 265–273. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M.; López, M.T.I. Adherence to Mediterranean Diet, Alcohol Consumption and Emotional Eating in Spanish University Students. Nutrients 2021, 13, 3174. [Google Scholar] [CrossRef]
Topics | Session Objectives |
---|---|
Macronutrients | Understand the importance of carbohydrates, fibre, proteins, and lipids: classification, metabolism, and physiological function. Develop the skills necessary to optimise body composition. |
Vitamins, minerals, and water | Understand the importance of micronutrients, dietary recommendations to achieve the total daily intake to prevent the risk of illness or injury. Understand the hydration–dehydration binomial and the role of minerals in the optimal functioning of the immune system. |
Bioactive compounds, Mediterranean diet | Understand the role of polyphenols and human health: the role of bioavailability. Understand the role of the Mediterranean diet as an antioxidant protector. Extra virgin olive oil: dietary and health importance. |
Energy balance model, body composition, dietary patterns and energy expenditure | Understand the energy balance model. |
Nutrition during pregnancy, breastfeeding, childhood, adolescence, menopause, and old age | Understand the nutritional requirements throughout the life-periods and develop the skills necessary to improve nutrition during these periods of life. |
Sports nutrition | Understand the importance of nutrients during exercise, the nutrition plan in the training–competition period and hydration–rehydration. |
Diet in pathologies | Understand the physiopathology of different diseases and dietary prevention to improve the health of the population. |
Obesity | Understand that obesity is a state of pathological increase in the amount of adipose tissue, which increases the risk of many diseases, such as cardiovascular disease, some cancers and type 2 diabetes. |
Nutrigenetic and nutrigenomic | Understand how nutrigenomics studies and how environmental factors, such as food intake and lifestyle, influence genome expression. |
Microbiota | Understand that the microbiota is essential for gastrointestinal function, as it is involved in the synthesis of vitamins, digestion and metabolism of carbohydrates and other dietary components, as well as in the development and function of the gastrointestinal immune system. |
All (n = 49) | Men (n = 10) | Women (n = 39) | p-Value, ES | |
---|---|---|---|---|
Age (years) | 23.2 (6.6) | 23.6 (SD 7.5) | 23.1 (SD 6.4) | ns, 0.1 |
Height (m) | 1.66 (0.08) | 1.78 (SD 0.09) | 1.64 (SD 0.06) | <0.01, 2.1 |
Weight (kg) | 63.9 (SD 10.6) | 74.4 (SD 9.9) | 61.2 (SD 9.1) | <0.01, 1.4 |
BMI (kg/m2) | 22.9 (SD 2.9) | 23.6 (SD 2.4) | 22.7 (SD 3.1) | ns, 0.2 |
Waist (cm) | 76.6 (SD 9.9) | 81.5 (SD 8.6) | 75.3 (SD 10.0) | ns, 0.6 |
Hip (cm) | 97.5 (SD 10.5) | 94.0 (SD 8.7) | 98.4 (SD 10.8) | ns, 0.4 |
W/H | 0.8 (SD 0.1) | 0.9 (SD 0.1) | 0.8 (SD 0.1) | <0.01, 1.0 |
Fat mass (%) | 23.5 (SD 8.2) | 14.3 (SD 3.6) | 25.9 (SD 7.3) | <0.05, 1.7 |
Fat free mass (kg) | 48.2 (SD 8.9) | 63.6 (SD 7.7) | 44.3 (SD 3.2) | <0.01, 5.0 |
SBP (mm Hg) | 111.5 (11.4) | 119.0 (8.8) | 109.6 (11.3) | <0.05, 0.9 |
DBP (mm Hg) | 65.4 (SD 7.9) | 71.7 (SD 10.6) | 63.7 (SD 6.2) | <0.05, 1.1 |
Recommendation | Pre-Course | Post-Course | |
---|---|---|---|
Fruits | 5 servings/day | 0.8 servings/day | 1.2 servings/day |
Vegetables | 2.6 servings/day | 3.5 servings/day * | |
Cereals | 3–6 servings/day | 4.8 serving/day | 4.6 serving/day |
Dairy | 0–3 servings/day | 2.2 serving/day | 2.1 serving/day |
Fish | ≥3 servings/week | 3.9 servings/week | 3.5 servings/week * |
Nuts | ≥3 servings/week | 2.2 servings/week | 3.9 servings/week * |
Eggs | 0–4 servings/week | 3.6 servings/week | 3.4 servings/week |
Legumes | 4–7 servings/week | 1.2 servings/week | 5.1 servings/week * |
Meat | 0–3 servings/week | 5.6 servings/week | 2.6 servings/week * |
Reference Values | Pre-Course | Post-Course | Post-Pre Changes | p-Value, ES | |
---|---|---|---|---|---|
FBG (mg/dL) | 70–110 | 84.3 (12.8) | 80 (6.8) | −3.9 (13.0) | <0.05, 0.30 |
Cholesterol (mg/dL) | 115–200 | 171.9 (32.3) | 167.4 (29.9) | 4.5 (33.6) | ns, 0.13 |
HDL-cholesterol (mg/dL) | 35–75 | 58.7 (10.9) | 64.9 (11.8) | 6.1 (11.2) | <0.01, 0.55 |
LDL-cholesterol (mg/dL) | <150 | 97.8 (28.0) | 88.5 (28.1) | −9.3 (30.3) | <0.05, 0.54 |
TG (mg/dL) | 20–200 | 77.0 (35.1) | 79.2 (31.9) | 2.2 (40.8) | ns, 0.05 |
Atherogenic index | <4.5 | 3.0 (0.8) | 2.6 (0.7) | 0.4 (0.7) | <0.01, 0.57 |
Iron (µg/dL) | 27–145 | 70.9 (18.2) | 75.2 (17.2) | 4.2 (25.3) | ns, 0.16 |
Transferrin (mg/dL) | 175–400 | 316.6 (51.1) | 316.0 (48.5) | −0.6 (44.2) | ns, 0.01 |
Ferritin (ng/mL) | 15–150 | 52.9 (39.9) | 54.5 (52.0) | 1.6 (50.9) | ns, 0.30 |
Vitamin D (ng/mL) | ≥30 | 22.6 (7.9) | 28.2 (8.0) | 5.6 (8.6) | <0.01, 0.65 |
MHR | 8.9 (3.3) | 7.9 (2.6) | 0.9 (3.3) | <0.05, 0.27 |
Inadequate Vitamin D (<30 ng/mL) (n = 28) | Adequate Vitamin D (≥30 ng/mL) (n = 21) | p-Value, ES | |
---|---|---|---|
Fat mass (kg) | 17.4 (6.4) | 11.4 (7.4) | <0.01, 0.88 |
Cholesterol (mg/dL) | 169.8 (34.5) | 164.2 (22.9) | ns, 0.19 |
HDL-c (mg/dL) | 61.6 (9.7) | 69.1 (13.1) | <0.05, 0.67 |
LDL-c (mg/dL) | 96.4 (32.6) | 78.1 (16.1) | <0.05, 0.68 |
TG (mg/dL) | 74.9 (27.2) | 85.0 (37.3) | ns, 0.32 |
Atherogenic index | 2.8 (0.8) | 2.4 (0.4) | <0.05, 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Moreno, M.; Garcés-Rimón, M.; Miguel-Castro, M.; Fernández-Martínez, E.; Iglesias López, M.T. Effect of Nutrition Education on Health Science University Students to Improve Cardiometabolic Profile and Inflammatory Status. Nutrients 2023, 15, 4685. https://doi.org/10.3390/nu15214685
López-Moreno M, Garcés-Rimón M, Miguel-Castro M, Fernández-Martínez E, Iglesias López MT. Effect of Nutrition Education on Health Science University Students to Improve Cardiometabolic Profile and Inflammatory Status. Nutrients. 2023; 15(21):4685. https://doi.org/10.3390/nu15214685
Chicago/Turabian StyleLópez-Moreno, Miguel, Marta Garcés-Rimón, Marta Miguel-Castro, Elia Fernández-Martínez, and María Teresa Iglesias López. 2023. "Effect of Nutrition Education on Health Science University Students to Improve Cardiometabolic Profile and Inflammatory Status" Nutrients 15, no. 21: 4685. https://doi.org/10.3390/nu15214685
APA StyleLópez-Moreno, M., Garcés-Rimón, M., Miguel-Castro, M., Fernández-Martínez, E., & Iglesias López, M. T. (2023). Effect of Nutrition Education on Health Science University Students to Improve Cardiometabolic Profile and Inflammatory Status. Nutrients, 15(21), 4685. https://doi.org/10.3390/nu15214685