Association of Dietary Changes with Risk Factors of Type 2 Diabetes among Older Adults in Sharpeville, South Africa, from 2004 to 2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Location
2.3. Sampling
2.4. Measurements for Both 2004 and 2014
2.5. Statistical Analysis
3. Results
3.1. Background Characteristics of Study Participants
3.2. Comparision of Dietary Diversity and Nutrients
3.3. Multivariate Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Atlas, I. IDF Diabetes Atlas Ninth, 9th ed.; International Diabetes Federation: Watermael-Boitsfort, Belgium, 2019. [Google Scholar]
- Magliano, D.; Boyko, E. IDF Diabetes Atlas, 10th ed.; Scientific Committee; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Kahn, K.; Tollman, S.; Thorogood, M.; Connor, M.; Garenne, M.; Collinson, M.; Hundt, G. Older Adults and the Health Transition in Agincourt, Rural South Africa: New Understanding, Growing Complexity; National Academic Press: Washington, DC, USA, 2006. [Google Scholar]
- Nnam, N.M. Improving maternal nutrition for better pregnancy outcomes. Proc. Nutr. Soc. 2015, 74, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, F.; Manurung, M.D.; Harbuwono, D.S.; Yunir, E.; Tsonaka, R.; Pradnjaparamita, T.; Vidiawati, D.; Anggunadi, A.; Soewondo, P.; Yazdanbakhsh, M. Urbanization and Unfavorable Changes in Metabolic Profiles: A Prospective Cohort Study of Indonesian Young Adults. Nutrients 2022, 14, 3326. [Google Scholar] [CrossRef] [PubMed]
- Dendup, T.; Feng, X.; Clingan, S.; Astell-Burt, T. Environmental risk factors for developing type 2 diabetes mellitus: A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, M.S.; Briscoe, V.J.; Clark, N.; Florez, H.; Haas, L.B.; Halter, J.B.; Huang, E.S.; Korytkowski, M.T.; Munshi, M.N.; Odegard, P.S.; et al. Diabetes in Older Adults. Diabetes Care 2012, 35, 2650–2664. [Google Scholar] [CrossRef] [PubMed]
- Peer, N.; Kengne, A.-P.; Motala, A.A.; Mbanya, J.C. Diabetes in the Africa region: An update. Diabetes Res. Clin. Pract. 2014, 103, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Manson, J.E.; Tinker, L.; Howard, B.V.; Kuller, L.H.; Nathan, L.; Rifai, N.; Liu, S. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: The Women’s Health Initiative Observational Study. Diabetes Care 2007, 30, 1747–1752. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Goedecke, J.H.; Mendham, A.E. Pathophysiology of type 2 diabetes in sub-Saharan Africans. Diabetologia 2022, 65, 1967–1980. [Google Scholar] [CrossRef]
- Mchiza, Z.J.; Steyn, N.P.; Hill, J.; Kruger, A.; Schönfeldt, H.; Nel, J.; Wentzel-Viljoen, E. A review of dietary surveys in the adult South African population from 2000 to 2015. Nutrients 2015, 7, 8227–8250. [Google Scholar] [CrossRef] [PubMed]
- Manrique-Acevedo, C.; Chinnakotla, B.; Padilla, J.; Martinez-Lemus, L.A.; Gozal, D. Obesity and cardiovascular disease in women. Int. J. Obes. 2020, 44, 1210–1226. [Google Scholar] [CrossRef] [PubMed]
- Kruger, H.S.; Puoane, T.; Senekal, M.; Van Der Merwe, M.-T. Obesity in South Africa: Challenges for government and health professionals. Public Health Nutr. 2005, 8, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Puoane, T.; Steyn, K.; Bradshaw, D.; Laubscher, R.; Fourie, J.; Lambert, V.; Mbananga, N. Obesity in South Africa: The South African demographic and health survey. Obes. Res. 2002, 10, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed]
- Mayosi, B.M.; Lawn, J.E.; van Niekerk, A.; Bradshaw, D.; Abdool Karim, S.S.; Coovadia, H.M. Health in South Africa: Changes and challenges since 2009. Lancet 2012, 380, 2029–2043. [Google Scholar] [CrossRef] [PubMed]
- Malakoane, B.; Heunis, J.; Chikobvu, P.; Kigozi, N.; Kruger, W. Public health system challenges in the Free State, South Africa: A situation appraisal to inform health system strengthening. BMC Health Serv. Res. 2020, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Sifunda, S.; Mbewu, A.D.; Mabaso, M.; Manyaapelo, T.; Sewpaul, R.; Morgan, J.W.; Harriman, N.W.; Williams, D.R.; Reddy, S.P. Prevalence and Psychosocial Correlates of Diabetes Mellitus in South Africa: Results from the South African National Health and Nutrition Examination Survey (SANHANES-1). Int. J. Environ. Res. Public Health 2023, 20, 5798. [Google Scholar] [CrossRef]
- Sidahmed, S.; Geyer, S.; Beller, J. Socioeconomic inequalities in diabetes prevalence: The case of South Africa between 2003 and 2016. BMC Public Health 2023, 23, 324. [Google Scholar] [CrossRef]
- Popkin, B.M. Nutrition Transition and the Global Diabetes Epidemic. Curr. Diab. Rep. 2015, 15, 64. [Google Scholar] [CrossRef]
- Vorster, H.H.; Kruger, A.; Wentzel-Viljoen, E.; Kruger, H.S.; Margetts, B.M. Added sugar intake in South Africa: Findings from the Adult Prospective Urban and Rural Epidemiology cohort study. Am. J. Clin. Nutr. 2014, 99, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- McIlrath, L.; Slabbert, T. Sedibeng Economic Regeneration Summit; Sedibeng Municipality: Vanderbijlpark, South Africa, 2003. [Google Scholar]
- Sekatane, M.B. An application of different methodologies for measuring poverty in Sharpeville township. Mediterr. J. Soc. Sci. 2013, 4, 67–74. Available online: https://www.richtmann.org/journal/index.php/mjss/article/view/1577 (accessed on 1 November 2023). [CrossRef]
- Oldewage-Theron, W.H.; Salami, L.; Zotor, F.B.; Venter, C.S. Health status of an elderly population in Sharpeville, South Africa. Health SA Gesondheid 2008, 13, 3–17. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Langenhoven, M.L.; Kruger, M.L.; Gouws, E.; Faber, M. Food Composition Tables; Medical Research Council: Parow, UT, USA, 1991. [Google Scholar]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr. 2003, 133, S3911–S3926. [Google Scholar] [CrossRef] [PubMed]
- Hatloy, A.; Torheim, L.E.; Oshaugh, A. Food variety a good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali. Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.; Smiciklas-Wright, H.; Guthrie, H.; Krebs-Smith, J. The effects of variety in food choices on dietary quality. J. Am. Diet. Assoc. 1987, 87, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Matla, M.T.H. The Contribution of Food Access Strategies to Dietary Diversity of Farmworker Households on Oranje Farm in the Fouriesburg District (RSA). Masters’ Dissertation, University of Pretoria, Pretoria, South Africa, 2008. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey (NHANES) Anthropometric Procedures Manual; CDC: Atlanta, GA, USA, 2007.
- Burtis, C.A.; Ashwood, E.R.; Fowler, A.M. Tietz Fundamentals of Clinical Chemistry, 6th ed.; Saunders Company: Philadelphia, PA, USA, 2008. [Google Scholar]
- Shenzhen New Industries Biomedical Engineering Co. Ltd. Insulin FA (CLIA): Manufacture, 130205002M-v1.0-EN; Shenzhen New Industries Biomedical Engineering Co. Ltd.: Shenzhen, China, 2012. [Google Scholar]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef]
- McMurray, R.G.; Soares, J.; Caspersen, C.J.; McCurdy, T. Examining variations of resting metabolic rate of adults: A public health perspective. Med. Sci. Sports Exerc. 2014, 46, 1352–1358. [Google Scholar] [CrossRef]
- Parker, E.A.; Perez, W.J.; Phipps, B.; Ryan, A.S.; Prior, S.J.; Katzel, L.; Serra, M.C.; Addison, O. Dietary Quality and Perceived Barriers to Weight Loss among Older Overweight Veterans with Dysmobility. Int. J. Environ. Res. Public Health 2022, 19, 9153. [Google Scholar] [CrossRef]
- Chau, D.; Cho, L.M.; Jani, P.; St. Jeor, S.T. Individualizing recommendations for weight management in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 27–31. [Google Scholar] [CrossRef]
- Raatz, S.K.; Conrad, Z.; Johnson, L.K.; Picklo, M.J.; Jahns, L. Relationship of the reported intakes of fat and fatty acids to body weight in US adults. Nutrients 2017, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Beulen, Y.; Martínez-González, M.A.; van de Rest, O.; Salas-Salvadó, J.; Sorlí, J.V.; Gómez-Gracia, E.; Fiol, M.; Estruch, R.; Santos-Lozano, J.M.; Schröder, H.; et al. Quality of dietary fat intake and body weight and obesity in a mediterranean population: Secondary analyses within the PREDIMED trial. Nutrients 2018, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Albar, S.A. Dietary Omega-6/Omega-3 Polyunsaturated fatty acid (PUFA) and omega-3 are associated with general and abdominal obesity in adults: UK national diet and nutritional survey. Cureus 2022, 14, e30209. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Manson, J.E.; Rautiainen, S.; Gaziano, J.M.; Buring, J.E.; Tsai, M.Y.; Sesso, H.D. A prospective study of erythrocyte polyunsaturated fatty acid, weight gain, and risk of becoming overweight or obese in middle-aged and older women. Eur. J. Nutr. 2016, 55, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Koh-Banerjee, P.; Chu, N.F.; Spiegelman, D.; Rosner, B.; Colditz, G.; Willett, W.; Rimm, E. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16 587 US men. Am. J. Clin. Nutr. 2003, 78, 719–727. [Google Scholar] [CrossRef]
- Bendsen, N.T.; Chabanova, E.; Thomsen, H.S.; Larsen, T.M.; Newman, J.W.; Stender, S.; Dyerberg, J.; Haugaard, S.B.; Astrup, A. Effect of trans fatty acid intake on abdominal and liver fat deposition and blood lipids: A randomized trial in overweight postmenopausal women. Nutr. Diabetes 2011, 1, e4. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.; Navarrete-Muñoz, E.M.; García-de-la-Hera, M.; Fernandez-Somoano, A.; Tardon, A.; Santa-Marina, L.; Pereda-Pereda, E.; Romaguera, D.; Guxens, M.; Beneito, A.; et al. Association between Trans Fatty Acid Intake and Overweight Including Obesity in 4 to 5-year-old Children from the INMA Study. Pediatr. Obes. 2019, 14, e12528. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ruan, Y.; Xu, N.; Wu, P.; Lin, N.; Yuan, K.; An, S.; Kang, P.; Li, S.; Huang, Q.; et al. The effect of dietary carbohydrate and calorie restriction on weight and metabolic health in overweight/obese individuals: A multi-center randomized controlled trial. BMC Med. 2023, 21, 192. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of low-carbohydrate and low-fat diets: A randomized trial. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Suara, S.B.; Siassi, F.; Saaka, M.; Foroshani, A.R.; Asadi, S.; Sotoudeh, G. Dietary fat quantity and quality in relation to general and abdominal obesity in women: A cross-sectional study from Ghana. Lipids Health Dis. 2020, 19, 67. [Google Scholar] [CrossRef]
- Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High dietary ω-6:ω-3 PUFA ratio is positively associated with excessive adiposity and waist circumference. Obes. Facts 2018, 11, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Oldewage-Theron, W.; Egal, A.A. Is food insecurity a problem among the elderly in Sharpeville, South Africa? Food Secur. 2021, 13, 71–81. [Google Scholar] [CrossRef] [PubMed]
- United Nations Children’ Emergency Fund. Conceptual Framework of Undernutrition; UNICEF: New York, NY, USA, 1990. [Google Scholar]
- Opperman, M.; Marais, D.W.; Spinnler Benade, A.J. Analysis of omega-3 fatty acid content of South African fish oil supplements. Cardiovasc. J. Afr. 2011, 22, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013, 36, 3821–3842. [Google Scholar] [CrossRef] [PubMed]
- Due, A.; Larsen, T.M.; Hermansen, K.; Stender, S.; Holst, J.J.; Toubro, S.; Martinussen, T.; Astrup, A. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets. Am. J. Clin. Nutr. 2008, 87, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Vasishta, S.; Ganesh, K.; Umakanth, S.; Joshi, M.B. Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: Insights from metabolomics. Metabolomics Off. J. Metabolomic Soc. 2022, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.L.; Nomura, S.O.; Steffen, B.T.; Guan, W.; Karger, A.B.; Klein, R.; Klein, B.E.K.; Cotch, M.F.; Tsai, M.Y. Associations between omega-6 polyunsaturated fatty acids, hyperinsulinemia and incident diabetes by race/ethnicity: The Multi-Ethnic Study of Atherosclerosis. Clin. Nutr. 2020, 39, 3031–3041. [Google Scholar] [CrossRef]
- Baghdasarian, S.; Lin, H.P.; Pickering, R.T.; Mott, M.M.; Singer, M.R.; Bradlee, M.L.; Moore, L.L. Dietary cholesterol intake is not associated with risk of type 2 diabetes in the Framingham offspring study. Nutrients 2018, 10, 665. [Google Scholar] [CrossRef]
- Collino, M.; Aragno, M.; Castiglia, S.; Miglio, G.; Tomasinelli, C.; Boccuzzi, G.; Thiemermann, C.; Fantozzi, R. Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br. J. Pharmacol. 2010, 160, 1892–1902. [Google Scholar] [CrossRef]
- Basciano, H.; Miller, A.E.; Naples, M.; Baker, C.; Kohen, R.; Xu, E.; Su, Q.; Allister, E.M.; Wheeler, M.B.; Adeli, K. Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E462–E473. [Google Scholar] [CrossRef]
Characteristic Mean (SD) | Healthy Range | 2004 | 2014 | 2004 | 2014 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Female | Male | Total | Female | Male | Total | p * | p ** | p * | p ** | ||
Age, years | 68.28 (5.98) | 66.56 (4.03) | 68.01 (5.74) | 78.29 (6.04) | 76.56 (4.03) | 78.02 (5.79) | 0.184 | 0.274 | 0.174 | 0.276 | |
Height (cm) | 156.61 (0.10) | 156.71 (0.09) | 156.71 (0.09) | 157.00 (0.09) | 157.20 (0.09) | 157.20 (0.09) | 0.298 | 0.238 | 0.249 | 0.238 | |
BMI (kg/m2) | 18.5 to 24.9 | 31.40 (6.02) | 26.45 (5.49) | 30.63 (6.19) | 30.29 (5.69) | 26.20 (5.22) | 29.66 (5.79) | 0.498 | 0.003 | 0.385 | 0.009 |
Waist circumference (cm) | Female >80/ Male >90 | 96.66 (10.97) | 94.20 (14.77) | 96.27 (11.60) | 93.11 (11.31) | 93.38 (14.16) | 93.16 (11.73) | 0.046 | 0.441 | 0.129 | 0.935 |
Glucose (mmol/L) | 3.9–5.6 | 6.05 (3.01) | 6.19 (1.98) | 6.07 (2.86) | 6.08 (2.52) | 4.90 (1.19) | 5.90 (2.40) | 0.531 | 0.852 | 0.081 | 0.07 |
Insulin (μIU/mL) | 4.03–23.46 | 27.76 (32.96) | 19.19 (21.06) | 26.45 (31.50) | 31.15 (31.66) | 27.29 (26.51) | 30.55 (30.83) | 0.27 | 0.335 | 0.515 | 0.648 |
HOMA-IR | <2 | 7.99 (10.45) | 4.95 (7.12) | 7.52 (10.05) | 8.04 (8.40) | 7.02 (6.34) | 7.88 (8.10) | 0.199 | 0.282 | 0.522 | 0.646 |
HOMA- | <1.9 | 96.79 (120.01) | 45.29 (37.65) | 88.99 (112.90) | 109.56 (128.80) | 120.03 (114.08) | 111.19 (126.16) | 0.021 | 0.104 | 0.99 | 0.762 |
Variable | 2004 (% of Abnormal Values) | 2014 (% of Abnormal Values) | ||||
---|---|---|---|---|---|---|
Female | Male | Total | Female | Male | Total | |
BMI | 82.8 | 68.8 | 80.6 | 79.3 | 68.8 | 77.7 |
Waist circumference | 93.1 | 75.0 | 90.3 | 83.9 | 56.2 | 79.6 |
Glucose | 48.3 | 50.0 | 48.5 | 40.2 | 68.8 | 44.7 |
Insulin | 56.3 | 25.0 | 51.5 | 62.1 | 43.8 | 59.2 |
HOMA-IR | 65.5 | 56.2 | 64.1 | 77.0 | 81.2 | 77.7 |
HOMA- | 94.3 | 93.8 | 94.2 | 98.9 | 100 | 99.0 |
Variable | Full | Women | Men | DRI/ WHO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 Mdn | 2004 IQR | 2014 Mdn | 2014 IQR | 2004 Mdn | 2004 IQR | 2014 Mdn | 2014 IQR | 2004 Mdn | 2004 IQR | 2014 Mdn | 2014 IQR | ||
Dietary Diversity Score | 7.0 | 0.0–8.0 | 8.0 | 8.0–9.0 | 7.0 | 0.0–8.0 | 8.0 | 8.0–9.0 | 7.0 | 0.0–9.0 | 9.0 | 7.0–9.0 | 0.0–9.0 |
TE (kj) | 5472.0 | 3951.0–7242.0 | 5151.0 | 3733.0–6638.0 | 5425.3 | 3871.0–7030.0 | 5159.4 | 3729.0–6643.0 | 6024.8 | 4206.0–8819.0 | 4917.8 | 4263.0–6643.0 | 9942.0 (m) 6362.0 (w) |
Carbohydrates (g) | 147.4 | 70.0–217.6 | 134.0 | 64.0–233.7 | 141.6 | 85.5–202.4 | 133.8 | 89.4–169.0 | 130.0 | 87.4–219.3 | 129.8 | 87.3–162.6 | 100 |
Protein (g) | 61.0 | 39.0–85.0 | 62.0 | 39.0–89.0 | 59.3 | 39.0–81.0 | 65.8 | 40.0–88.0 | 68.5 | 39.0–106.0 | 48.8 | 31.0–103.0 | 46.0 |
Total Fat (%) | 27.0 | 19.0–34.0 | 26.0 | 20.0–36.0 | 27.2 | 19.0–34.0 | 26.1 | 20.0–36.0 | 24.8 | 20.0–36.0 | 25.7 | 18.0–39.0 | <30.0% TE |
Saturated fatty acids (%) | 8.0 | 5.0–13.0 | 8.0 | 6.0–13.0 | 8.3 | 5.0–13.0 | 8.3 | 6.0–12.0 | 9.2 | 6.0–13.0 | 9.3 | 7.0–14.0 | <10.0% TE |
MUFAs (%) | 10.0 | 6.0–14.0 | 10.0 | 6.0–14.0 | 10.2 | 6.0–14.0 | 10.2 | 6.0–13.0 | 9.0 | 6.0–16.0 | 9.6 | 6.0–16.0 | 15.0–20.0% |
PUFAs (%) | 5.0 | 3.0–7.0 | 5.0 | 3.0–6.0 | 5.0 | 3.0–7.0 | 5.0 | 3.0–6.0 | 5.0 | 3.0–6.0 | 4.0 | 2.0–7.0 | 6.0–11.0% TE |
TFAs (%) | 0.0 | 0.0–1.0 | 0.0 | 0.0–1.0 | 0.3 | 0.0–1.0 | 0.2 | 0.0–1.0 | 0.2 | 0.0–1.0 | 0.6 | 0.0–1.0 | <1.0% TE |
Cholesterol (mg) | 108.0 | 52.0–256.0 | 159.0 | 83.0–273.0 | 111.7 | 47.0–231.0 | 167.6 | 85.0–268.0 | 83.8 | 56.0–294.0 | 114.1 | 77.0–365.0 | <300.0 |
Added Sugar (%) | 4.0 | 2.0–6.0 | 5.0 | 3.0–7.0 | 3.6 | 2.0–6.0 | 4.7 | 3.0–7.0 | 2.9 | 2.0–6.0 | 4.9 | 2.0–8.0 | <10.0% |
Fiber (g) | 3.0 | 2.0–5.0 | 3.0 | 2.0–5.0 | 3.1 | 2.0–5.0 | 3.2 | 2.0–5.0 | 3.2 | 2.0–5.0 | 3.1 | 2.0–5.0 | 30.0 (m) 21.0 (w) |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 25.437 | 5.427 | 4.687 | 0.000 | 14.731 | 36.144 | |
Gender | 4.390 | 1.097 | 0.266 | 4.001 | 0.000 | 2.226 | 6.554 |
Age | −0.099 | 0.056 | −0.127 | −1.759 | 0.080 | −0.210 | 0.012 |
Dietary diversity score | 0.078 | 0.111 | 0.049 | 0.706 | 0.481 | −0.140 | 0.296 |
Total energy (kilojoule/day) | 0.001 | 0.000 | 0.246 | 2.316 | 0.022 | 0.000 | 0.001 |
Carbohydrate percentage | −0.019 | 0.019 | −0.116 | −1.019 | 0.309 | −0.057 | 0.018 |
Dietary protein (gram/day) | −0.169 | 0.345 | −0.370 | −0.488 | 0.626 | −0.850 | 0.513 |
Fat percentage | 0.018 | 0.484 | 0.018 | 0.038 | 0.970 | −0.937 | 0.974 |
Saturated fatty acid percentage | 0.533 | 0.371 | 0.531 | 1.435 | 0.153 | −0.200 | 1.265 |
MUFA percentage | 0.289 | 0.437 | 0.133 | 0.662 | 0.509 | −0.573 | 1.151 |
PUFA percentage | 0.987 | 0.500 | 0.171 | 1.975 | 0.050 | 0.001 | 1.973 |
TFA percentage | −0.003 | 0.004 | −0.069 | −0.807 | 0.420 | −0.010 | 0.004 |
Cholesterol (mmol/L) | 0.087 | 0.031 | 0.282 | 2.803 | 0.006 | 0.026 | 0.148 |
Sugar percentage | −0.029 | 0.023 | −0.090 | −1.245 | 0.215 | −0.074 | 0.017 |
Fiber percentage | −0.167 | 0.190 | −0.067 | −0.879 | 0.380 | −0.543 | 0.208 |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 79.003 | 11.167 | 7.075 | 0.000 | 56.971 | 101.036 | |
Gender | −0.747 | 2.228 | −0.023 | −0.335 | 0.738 | −5.143 | 3.649 |
Age | −0.047 | 0.117 | −0.030 | −0.403 | 0.687 | −0.278 | 0.183 |
Dietary diversity score | 0.320 | 0.227 | 0.102 | 1.409 | 0.161 | −0.128 | 0.768 |
Total energy (kilojoule/day) | 0.001 | 0.001 | 0.218 | 1.988 | 0.048 | 0.000 | 0.002 |
Carbohydrate percentage | −0.061 | 0.039 | −0.183 | −1.557 | 0.121 | −0.137 | 0.016 |
Dietary protein (gram/day) | −0.473 | 0.703 | −0.533 | −0.672 | 0.502 | −1.860 | 0.915 |
Fat percentage | 0.617 | 0.986 | 0.319 | 0.626 | 0.532 | −1.328 | 2.562 |
Saturated fatty acid percentage | 0.704 | 0.755 | 0.361 | 0.932 | 0.353 | −0.787 | 2.194 |
MUFA percentage | 1.377 | 0.887 | 0.322 | 1.553 | 0.122 | −0.373 | 3.127 |
PUFA percentage | 2.144 | 1.019 | 0.191 | 2.104 | 0.037 | 0.133 | 4.154 |
TFA percentage | −0.015 | 0.007 | −0.186 | −2.076 | 0.039 | −0.030 | −0.001 |
Cholesterol (mmol/L) | 0.235 | 0.063 | 0.387 | 3.704 | 0.000 | 0.110 | 0.360 |
Sugar percentage | −0.055 | 0.047 | −0.088 | −1.170 | 0.244 | −0.148 | 0.038 |
Fiber percentage | −0.010 | 0.388 | −0.002 | −0.026 | 0.979 | −0.775 | 0.755 |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 16.843 | 32.038 | 0.526 | 0.600 | −46.369 | 80.054 | |
Gender | 3.598 | 6.383 | 0.041 | 0.564 | 0.574 | −8.996 | 16.191 |
Age | −0.235 | 0.326 | −0.058 | −0.720 | 0.472 | −0.878 | 0.408 |
Dietary diversity score | 0.432 | 0.655 | 0.051 | 0.661 | 0.510 | −0.859 | 1.724 |
Total energy (kilojoule/day) | −0.001 | 0.001 | −0.051 | −0.432 | 0.666 | −0.003 | 0.002 |
Carbohydrate percentage | −0.023 | 0.112 | −0.026 | −0.203 | 0.839 | −0.243 | 0.197 |
Dietary protein (gram/day) | −1.951 | 2.001 | −0.822 | −0.975 | 0.331 | −5.899 | 1.996 |
Fat percentage | 5.569 | 2.790 | 1.076 | 1.996 | 0.047 | 0.065 | 11.073 |
Saturated fatty acid percentage | −0.927 | 2.157 | −0.178 | −0.430 | 0.668 | −5.182 | 3.328 |
MUFA percentage | 5.284 | 2.511 | 0.465 | 2.104 | 0.037 | 0.330 | 10.238 |
PUFA percentage | 0.259 | 2.883 | 0.009 | 0.090 | 0.928 | −5.429 | 5.947 |
TFA percentage | −0.008 | 0.021 | −0.035 | −0.366 | 0.715 | −0.049 | 0.034 |
Cholesterol (mmol/L) | 0.319 | 0.189 | 0.197 | 1.691 | 0.093 | −0.053 | 0.692 |
Sugar percentage | −0.108 | 0.133 | −0.065 | −0.810 | 0.419 | −0.371 | 0.155 |
Fiber percentage | −0.234 | 1.136 | −0.018 | −0.206 | 0.837 | −2.476 | 2.008 |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 4.196 | 2.712 | 1.548 | 0.123 | −1.153 | 9.546 | |
Gender | 0.412 | 0.547 | 0.056 | 0.753 | 0.452 | −0.667 | 1.492 |
Age | 0.006 | 0.028 | 0.019 | 0.230 | 0.818 | −0.049 | 0.062 |
Dietary diversity score | −0.035 | 0.056 | −0.050 | −0.630 | 0.529 | −0.145 | 0.075 |
Total energy (kilojoule/day) | 0.000 | 0.000 | −0.037 | −0.309 | 0.758 | 0.000 | 0.000 |
Carbohydrate percentage | −0.002 | 0.010 | −0.025 | −0.198 | 0.843 | −0.021 | 0.017 |
Dietary protein (gram/day) | −0.011 | 0.172 | −0.056 | −0.066 | 0.948 | −0.351 | 0.329 |
Fat percentage | −0.054 | 0.242 | −0.124 | −0.225 | 0.822 | −0.531 | 0.422 |
Saturated fatty acid percentage | 0.124 | 0.185 | 0.280 | 0.671 | 0.503 | −0.241 | 0.489 |
MUFA percentage | 0.005 | 0.218 | 0.005 | 0.022 | 0.982 | −0.425 | 0.434 |
PUFA percentage | 0.109 | 0.249 | 0.043 | 0.437 | 0.663 | −0.383 | 0.601 |
TFA percentage | 0.001 | 0.002 | 0.072 | 0.743 | 0.458 | −0.002 | 0.005 |
Cholesterol (mmol/L) | 0.016 | 0.015 | 0.119 | 1.043 | 0.298 | −0.014 | 0.047 |
Sugar percentage | −0.007 | 0.012 | −0.051 | −0.622 | 0.535 | −0.030 | 0.016 |
Fiber percentage | 0.013 | 0.095 | 0.012 | 0.134 | 0.894 | −0.175 | 0.201 |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | −2.688 | 9.140 | −0.294 | 0.769 | −20.722 | 15.345 | |
Gender | 0.815 | 1.821 | 0.032 | 0.447 | 0.655 | −2.778 | 4.407 |
Age | −0.018 | 0.093 | −0.015 | −0.197 | 0.844 | −0.202 | 0.165 |
Dietary diversity score | −0.040 | 0.187 | −0.016 | −0.213 | 0.831 | −0.408 | 0.329 |
Total energy (kilojoule/day) | 0.000 | 0.000 | −0.074 | −0.644 | 0.520 | −0.001 | 0.001 |
Carbohydrate percentage | 0.011 | 0.032 | 0.043 | 0.345 | 0.730 | −0.052 | 0.074 |
Dietary protein (gram/day) | −0.669 | 0.571 | −0.966 | −1.171 | 0.243 | −1.795 | 0.458 |
Fat percentage | 1.991 | 0.796 | 1.320 | 2.501 | 0.013 | 0.421 | 3.561 |
Saturated fatty acid percentage | −0.395 | 0.615 | −0.259 | −0.641 | 0.522 | −1.609 | 0.819 |
MUFA percentage | 2.129 | 0.716 | 0.642 | 2.972 | 0.003 | 0.716 | 3.542 |
PUFA percentage | 0.565 | 0.822 | 0.065 | 0.687 | 0.493 | −1.058 | 2.187 |
TFA percentage | −0.005 | 0.006 | −0.078 | −0.829 | 0.408 | −0.017 | 0.007 |
Cholesterol (mmol/L) | 0.121 | 0.054 | 0.256 | 2.247 | 0.026 | 0.015 | 0.227 |
Sugar percentage | −0.043 | 0.038 | −0.089 | −1.136 | 0.258 | −0.118 | 0.032 |
Fiber percentage | 0.026 | 0.324 | 0.007 | 0.081 | 0.936 | −0.613 | 0.666 |
Variable | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 80.419 | 123.768 | 0.650 | 0.517 | −163.767 | 324.605 | |
Gender | 9.238 | 24.662 | 0.027 | 0.375 | 0.708 | −39.420 | 57.895 |
Age | −0.831 | 1.259 | −0.053 | −0.660 | 0.510 | −3.315 | 1.653 |
Dietary diversity score | 1.359 | 2.518 | 0.042 | 0.540 | 0.590 | −3.608 | 6.327 |
Total energy (kilojoule/day) | 0.002 | 0.006 | 0.050 | 0.431 | 0.667 | −0.008 | 0.013 |
Carbohydrate percentage | −0.389 | 0.431 | −0.114 | −0.903 | 0.368 | −1.240 | 0.461 |
Dietary protein (gram/day) | −9.873 | 7.731 | −1.076 | −1.277 | 0.203 | −25.126 | 5.380 |
Fat percentage | 22.278 | 10.776 | 1.115 | 2.067 | 0.040 | 1.018 | 43.539 |
Saturated fatty acid percentage | 0.141 | 8.337 | 0.007 | 0.017 | 0.986 | −16.307 | 16.590 |
MUFA percentage | 20.069 | 9.708 | 0.459 | 2.067 | 0.040 | 0.915 | 39.223 |
PUFA percentage | −3.368 | 11.126 | −0.029 | −0.303 | 0.762 | −25.318 | 18.583 |
TFA percentage | −0.061 | 0.081 | −0.073 | −0.757 | 0.450 | −0.220 | 0.098 |
Cholesterol (mmol/L) | 1.097 | 0.724 | 0.176 | 1.516 | 0.131 | −0.331 | 2.526 |
Sugar percentage | −0.293 | 0.515 | −0.046 | −0.568 | 0.571 | −1.309 | 0.724 |
Fiber percentage | −0.297 | 4.378 | −0.006 | −0.068 | 0.946 | −8.935 | 8.341 |
Dependent Variable: Waist Circumference | Unstandardized Coefficient | Standardized Coefficient | 95% Confidence Interval for B | ||||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | t | p | Lower Bound | Upper Bound | |
(Constant) | 74.073 | 10.272 | 7.211 | 0.000 | 53.814 | 94.333 | |
Gender | −0.304 | 2.177 | −0.009 | −0.140 | 0.889 | −4.597 | 3.989 |
Age | 0.004 | 0.110 | 0.003 | 0.038 | 0.970 | −0.212 | 0.221 |
Total energy (kilojoule/day) | 0.000 | 0.000 | 0.084 | 1.105 | 0.270 | 0.000 | 0.001 |
Carbohydrate percentage | 0.255 | 0.059 | 0.417 | 4.307 | 0.000 | 0.138 | 0.372 |
Saturated fatty acid percentage | 0.352 | 0.207 | 0.181 | 1.699 | 0.091 | −0.057 | 0.760 |
PUFA percentage | 0.973 | 0.324 | 0.230 | 2.998 | 0.003 | 0.333 | 1.613 |
TFA percentage | 1.713 | 0.924 | 0.158 | 1.855 | 0.065 | −0.108 | 3.535 |
Cholesterol (mmol/L) | −0.016 | 0.006 | −0.202 | −2.584 | 0.011 | −0.029 | −0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Moyo, G.T.; Theophilus, R.J.; Oldewage-Theron, W. Association of Dietary Changes with Risk Factors of Type 2 Diabetes among Older Adults in Sharpeville, South Africa, from 2004 to 2014. Nutrients 2023, 15, 4751. https://doi.org/10.3390/nu15224751
Lee H, Moyo GT, Theophilus RJ, Oldewage-Theron W. Association of Dietary Changes with Risk Factors of Type 2 Diabetes among Older Adults in Sharpeville, South Africa, from 2004 to 2014. Nutrients. 2023; 15(22):4751. https://doi.org/10.3390/nu15224751
Chicago/Turabian StyleLee, Hyunjung, Gugulethu T. Moyo, Rufus J. Theophilus, and Wilna Oldewage-Theron. 2023. "Association of Dietary Changes with Risk Factors of Type 2 Diabetes among Older Adults in Sharpeville, South Africa, from 2004 to 2014" Nutrients 15, no. 22: 4751. https://doi.org/10.3390/nu15224751
APA StyleLee, H., Moyo, G. T., Theophilus, R. J., & Oldewage-Theron, W. (2023). Association of Dietary Changes with Risk Factors of Type 2 Diabetes among Older Adults in Sharpeville, South Africa, from 2004 to 2014. Nutrients, 15(22), 4751. https://doi.org/10.3390/nu15224751