Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Reliability
2.4. Quality Assessment and Level of Evidence
3. Results
4. Discussion
4.1. Combination of BJ in Aerobic Exercises
4.2. Combination of BJ in Strength Exercises
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, N.R.; Di Marco, N.M.; Langley, S. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Hamilton, D.L.; Philp, A.; Burke, L.M.; Morton, J.P. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G. Performance Enhancement at the Fifth World Congress on Sport Sciences; University of Otago: Dunedin, New Zealand, 1999; Volume 3. [Google Scholar]
- Australian Institute of Sport. ABCD Classification System. Available online: https://www.ais.gov.au/__data/assets/pdf_file/0006/1082517/AIS-Supplement-Framework-ABCD-System_v4.pdf (accessed on 17 December 2022).
- Murphy, M.; Eliot, K.; Heuertz, R.; Weiss, E. Whole beetroot consumption acutely improves running performance. J. Acad. Nutr. Diet 2012, 112, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef]
- Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [Google Scholar] [CrossRef]
- Benjamin, N.; O’Driscoll, F.; Dougall, H.; Duncan, C.; Smith, L.; Golden, M.; McKenzie, H. Stomach NO synthesis. Nature 1994, 368, 502. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports. Med. 2014, 44, S35–S45. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; Nascimento, L.A.; Volino-Souza, M.; Mesquita, J.S.; Alvares, T.S. Beetroot-based gel supplementation improves handgrip strength and forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes. Appl. Physiol. Nutr. Metab. 2018, 43, 920–927. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; do Nascimento, L.A.; Volino-Souza, M.; do Couto Vellozo, O.; Alvares, T.S. A single oral dose of beetroot-based gel does not improve muscle oxygenation parameters, but speeds up handgrip isometric strength recovery in recreational combat sports athletes. Biol. Sport 2020, 37, 93–99. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef]
- Clifford, T.; Allerton, D.M.; Brown, M.A.; Harper, L.; Horsburgh, S.; Keane, K.M.; Stevenson, E.J.; Howatson, G. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl. Physiol. Nutr. Metab. 2017, 42, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; van Loon, L.J.; Verdijk, L.B. Can elite athletes benefit from dietary nitrate supplementation? J. Appl. Physiol. (1985) 2015, 119, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Taleghani, A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Biological effects of red beetroot and betalains: A review. Phytother Res. 2020, 34, 1847–1867. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. Beetroot juice is more beneficial than sodium nitrate for attenuating muscle pain after strenuous eccentric-bias exercise. Appl. Physiol. Nutr. Metab. 2017, 42, 1185–1191. [Google Scholar] [CrossRef]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- Kozłowska, L.; Mizera, O.; Gromadzińska, J.; Janasik, B.; Mikołajewska, K.; Mróz, A.; Wąsowicz, W. Changes in Oxidative Stress, Inflammation, and Muscle Damage Markers Following Diet and Beetroot Juice Supplementation in Elite Fencers. Antioxidants 2020, 9, 571. [Google Scholar] [CrossRef]
- Montenegro, C.F.; Kwong, D.A.; Minow, Z.A.; Davis, B.A.; Lozada, C.F.; Casazza, G.A. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl. Physiol. Nutr. Metab. 2017, 42, 166–172. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Tanabe, Y.; Fujii, N.; Suzuki, K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Cano, L.; Lago-Rodríguez, Á.; Domínguez, R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 762. [Google Scholar] [CrossRef] [PubMed]
- Esen, O.; Domínguez, R.; Karayigit, R. Acute Beetroot Juice Supplementation Enhances Intermittent Running Performance but Does Not Reduce Oxygen Cost of Exercise among Recreational Adults. Nutrients 2022, 14, 2839. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, J.A.; Bishop, D.J. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med. 2020, 50, 25–53. [Google Scholar] [CrossRef]
- Kiani, A.K.; Bonetti, G.; Medori, M.C.; Caruso, P.; Manganotti, P.; Fioretti, F.; Nodari, S.; Connelly, S.T.; Bertelli, M. Dietary supplements for improving nitric-oxide synthesis. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E239–E245. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef]
- Barker, T.H.; Stone, J.C.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef]
- Tufanaru, C.; Munn, Z.; Aromataris, E.; Campbell, J.; Hopp, L. Chapter 3: Systematic reviews of effectiveness. In BJI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; 2020; Available online: https://synthesismanual.jbi.global (accessed on 4 April 2023). [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.; Holly, C.; Kahlil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an Umbrella review approach. Int. J. Evid. Based Healthc. 2015, 13, 132–140. [Google Scholar]
- Castillo, D.; Rodríguez-Fernández, A.; Ramírez-Campillo, R.; Raya-González, J. Effects of caffeine, beetroot juice and its interaction consumption on exercise-related fatigue. Kinesiology 2021, 53, 185–192. [Google Scholar] [CrossRef]
- Berjisian, E.; McGawley, K.; Saunders, B. Acute effects of beetroot juice and caffeine co-ingestion during a team-sport-specific intermittent exercise test in semi-professional soccer players: A randomized, double-blind, placebo-controlled study. BMC Sports. Sci. Med. Rehabil. 2022, 14, 52. [Google Scholar] [CrossRef]
- Burgos, J.; Viribay, A.; Fernández-Lázaro, D.; Calleja-González, J.; González-Santos, J.; Mielgo-Ayuso, J. Combined Effects of Citrulline Plus Nitrate-Rich Beetroot Extract Co-Supplementation on Maximal and Endurance-Strength and Aerobic Power in Trained Male Triathletes: A Randomized Double-Blind, Placebo-Controlled Trial. Nutrients 2022, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Burleigh, M.C.; Sculthorpe, N.; Henriquez, F.L.; Easton, C. Nitrate-rich beetroot juice offsets salivary acidity following carbohydrate ingestion before and after endurance exercise in healthy male runners. PLoS ONE 2020, 15, e0243755. [Google Scholar] [CrossRef] [PubMed]
- Le Roux-Mallouf, T.; Laurent, J.; Besset, D. Effects of acute nitric oxide precursor intake on peripheral and central fatigue during knee extensions in healthy men. Exp. Physiol. 2019, 104, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Oskarsson, J.; McGawley, K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl. Physiol. Nutr. Metab. 2018, 43, 697–703. [Google Scholar] [CrossRef]
- Forrai, G.; Bánkövi, G.; Vágújfalvi, D. Betaninuria: A genetic trait? Acta Physiol. Acad. Sci. Hung. 1982, 59, 265–282. [Google Scholar]
- Ladd, K.F.; Archer, M.C.; Newmark, H.L. Increased endogenous nitrosation in smokers. IARC Sci. Publ. 1984, 57, 811–817. [Google Scholar]
- Hall, C.N.; Kirkham, J.S.; Northfield, T.C. Urinary N-nitrosoproline excretion: A further evaluation of the nitrosamine hypothesis of gastric carcinogenesis in precancerous conditions. Gut 1987, 28, 216–220. [Google Scholar] [CrossRef]
- Bos, P.M.; Van den Brandt, P.A.; Wedel, M.; Ockhuizen, T. The reproducibility of the conversion of nitrate to nitrite in human saliva after a nitrate load. Food Chem. Toxicol. 1988, 26, 93–97. [Google Scholar] [CrossRef]
- Obrist, R.; von Meiss, M.; Obrecht, J.P. Verwendung paramedizinischer Behandlungsmethoden durch Tumorpatienten. Eine Erhebung an 101 ambulanten Patienten. Dtsch. Med. Wochenschr. 1986, 111, 283–287. [Google Scholar] [CrossRef]
- Crespi, M.; Ohshima, H.; Ramazzotti, V.; Muñoz, N.; Grassi, A.; Casale, V.; Leclerc, H.; Calmels, S.; Cattoen, C.; Kaldor, J. Intragastric nitrosation and precancerous lesions of the gastrointestinal tract: Testing of an etiological hypothesis. IARC Sci. Publ. 1987, 84, 511–517. [Google Scholar]
- Pátkai, G.; Barta, J.; Varsányi, I. Decomposition of anticarcinogen factors of the beetroot during juice and nectar production. Cancer Lett. 1997, 114, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, M.A.; Nyhlin, H. Beeturia and colonic oxalic acid. QJM-Int. J. Med. 1995, 88, 711–717. [Google Scholar]
- Morant, R.; Jungi, W.F.; Koehli, C.; Senn, H.J. Warum benützen Tumorpatienten Alternativmedizin? [Why do cancer patients use alternative medicine?]. Schweiz. Med. Wochenschr. 1991, 121, 1029–1034. [Google Scholar] [PubMed]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; Dimenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Ogbonmwan, I.; Mathers, J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013, 143, 818–826. [Google Scholar] [CrossRef]
- Hoon, M.W.; Johnson, N.A.; Chapman, P.G.; Burke, L.M. The effect of nitrate supplementation on exercise performance in healthy individuals: A systematic review and meta-analysis. Int. J. Sport Nutr. Exerc. Metab 2013, 23, 522–532. [Google Scholar] [CrossRef]
- Lane, S.C.; Hawley, J.A.; Desbrow, B.; Jones, A.M.; Blackwell, J.R.; Ross, M.L.; Zemski, A.J.; Burke, L.M. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1050–1057. [Google Scholar] [CrossRef]
- Stanelle, S.T.; McLaughlin, K.L.; Crouse, S.F. One Week of L-Citrulline Supplementation Improves Performance in Trained Cyclists. J. Strength Cond. Res. 2020, 34, 647–652. [Google Scholar] [CrossRef]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T.; Zero, D. The role of diet in the aetiology of dental erosion. Caries Res. 2004, 38 (Suppl. 1), 34–44. [Google Scholar] [CrossRef]
- Frese, C.; Frese, F.; Kuhlmann, S.; Saure, D.; Reljic, D.; Staehle, H.J.; Wolff, D. Effect of endurance training on dental erosion, caries, and saliva. Scand. J. Med. Sci. Sports 2015, 25, e319–e326. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Inter. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Keith, D.S.; Schwartz, T.A.; Ryan, E.D.; Stoner, L.; Persky, A.M.; Smith-Ryan, A.E. Effects of Citrulline Malate and Beetroot Juice Supplementation on Blood Flow, Energy Metabolism, and Performance During Maximum Effort Leg Extension Exercise. J. Strength Cond. Res. 2019, 33, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Vårvik, F.T.; Bjørnsen, T.; Gonzalez, A.M. Acute Effect of Citrulline Malate on Repetition Performance During Strength Training: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.M.; Yang, Y.; Mangine, G.T.; Pinzone, A.G.; Ghigiarelli, J.J.; Sell, K.M. Acute Effect of L-Citrulline Supplementation on Resistance Exercise Performance and Muscle Oxygenation in Recreationally Resistance Trained Men and Women. J. Funct. Morphol. Kinesiol. 2023, 8, 88. [Google Scholar] [CrossRef]
- Hurst, P.; Foad, A.; Coleman, D.; Beedie, C. Athletes Intending to Use Sports Supplements Are More Likely to Respond to a Placebo. Med. Sci. Sports Exerc. 2017, 49, 1877–1883. [Google Scholar] [CrossRef]
- Beedie, C.J.; Foad, A.J. The placebo effect in sports performance: A brief review. Sports Med. 2009, 39, 313–329. [Google Scholar] [CrossRef]
Databases | Search Strategy | Limits | Filters |
---|---|---|---|
Web of Science | ALL = (beetroot juice and supplementation); ALL = (beetroot juice and performance); ALL = (beetroot juice and caffeine); ALL = (beetroot juice and coffee); ALL = (beetroot juice and creatine); ALL = (beetroot juice and beta-alanine); ALL = (beetroot juice and citrulline); ALL = (beetroot juice and protein); ALL = (beetroot juice and amino acid); ALL = (beetroot juice and carbohydrates) | Title Article English | 563 filtered elements |
PubMed | (Beetroot juice) AND (supplementation); (Beetroot juice) AND (performance); (Beetroot juice) AND (caffeine); (Beetroot juice) AND (coffee); (Beetroot juice) AND (creatine); (Beetroot juice) AND (beta-alanine); (Beetroot juice) AND (citrulline); (Beetroot juice) AND (protein); (Beetroot juice) AND (amino acid); (Beetroot juice) AND (carbohydrates); | Title Article English Age | 137 filtered elements |
RCT Criteria | Quasi-Experimental Criteria |
---|---|
1. Randomization assignment | 1. There was clear ‘cause’ and ‘effect’ |
2. Allocation to treatment groups concealed | 2. Participants included in any comparisons were similar |
3. Treatment groups similar at the baseline | 3. Participants receiving similar treatment/care |
4. Participants blind to treatment assignment | 4. There was a control group |
5. Delivering treatment blind to treatment assignment | 5. Multiple measurements taken pre- and post-intervention |
6. Outcome assessors blind to treatment assignment | 6. Groups adequately described and analyzed |
7. Treatment groups treated identically | 7. Outcomes measured in the same way for treatment |
8. Groups adequately described and analyzed | 8. Outcomes measured in a reliable way |
9. Participants analyzed in the groups randomized | |
10. Outcomes measured in the same way for treatment | |
11. Outcomes measured in a reliable way | |
12. Appropriate statistical analysis used | |
13. Appropriate trial design |
Author, Year | Study | Objective | Sample | Study Design | Dose | Outcomes |
---|---|---|---|---|---|---|
Oskarsson et al., (2018) [34] | Quasi-experimental | Investigate the additive effects of the combination of BJ + CAF during submaximal and maximal short-duration treadmill runs. | n = 9 healthy endurance runners 7 men—Age: 30.4 ± 6.3 years Body mass: 73.2 ± 8.3 kg; 2 women—Age: 31.5 ± 9.2 years Body mass: 64.2 ± 1.5 kg | A preliminary test was conducted, followed by four experimental test sessions, which consisted of two submaximal running series of 5 min (at 70% and 80% of VO2 max) and a 1 km time trial (TT) in the laboratory. Participants ingested 70 mL of concentrated BJ or without NO3−, 2.5 h before each test session, and CAF or a PL 45 min before each test session. | BJ group: 7.3 mmol NO3− BJ + CAF group: 7.3 mmol NO3− + 4.8 ± 0.4 mg/kg CAF | in VO2max in running economy, rest energy rate, heart rate, or rate of perceived exertion (RPE) at the two submaximal intensities (p > 0.05). in performance, maximum heart rate, peak lactate, or RPE during the maximum TT (p > 0.05). |
Le Roux-Mallouf et al., (2019) [35] | Double-blind, randomized, crossover study. | Compare the effect of different NO precursors on muscle and cerebral oxygenation and peripheral and central neuromuscular fatigue during an isolated knee extension exercise. | n = 15 healthy, active men Age: 28 ± 6 years old Body mass: 73 ± 6 kg Height: 179 ± 7 cm | It was evaluated on four occasions after the ingestion of a drink with NO3− precursors NO3− only, NO3− + ARG (arginine), and NO3 + CIT or a PL. Separated by ≥4 days per washout period. The following measurements were taken: blood pressure (BP) before and after ingestion; venous blood 65 min after ingestion, followed by an ischemia–reperfusion test in the lower limb to assess NO3− dependent vasodilation; near-maximum levels of CIT, ARG, and nitrate-nitrite in blood with isometric knee extension test; and motor cortex excitability, neuromuscular transmission, and muscle contractility. | NO3− group: 520 mg NO3− NO3− + CIT group: 520 mg NO3− + 6 g CIT NO3− + ARG group: 520 mg NO3− + 6 g ARG PL group: 120 mL NO3− free | Nitrate [ ] with NO3− only, NO3− + ARG, and + CIT vs. PL (p < 0.001). ischemia–reperfusion test with NO3− + CIT vs. PL. BP with any supplementation. in pre-frontal cortex and quadriceps oxygenation, neuromuscular fatigue, or knee extension exercise performance. |
Burleigh et al., (2020) [36] | Quasi-experimental | Assess the effects of a dose of BJ (rich in NO3−) on salivary pH after carbohydrate supplementation at rest and after aerobic exercise. | n = 11 trained male runners Age: 30 ± 7 years Body mass: 86.9 ± 14.1 kg Height: 179 ± 7 cm | Participants ingested, 1 h before the test, (a) 140 mL of water (negative control), (b) 140 mL water + CHO (positive control), (c) 140 mL of NO3− +CHO, from BJ, or (d) 140 mL depleted BJ NO3− + CHO (placebo). During the tests, they ingested 750 mL of water or CHO drink and gel before, during, and after 90 min of submax running. After a 20-minute rest period, they performed 20 min of running at a speed equivalent to 90% of the GET. | Negative control group: 140 mL water Positive control group: 140 mL water + 30 g CHO BJ + CHO group: ~12.4 mmol NO3- + 30.8 g CHO PL group: 140 mL depleted BJ NO3− + 30.8 g CHO | salivary pH for several hours after ingestion with enriched BJ with NO3− + CHO. saliva acidification that followed the consumption of carbohydrate-rich supplements before and after a sustained period of exercise. For athletes who regularly consume carbohydrates, NO3− intake can provide a benefit. |
Castillo et al., (2021) [37] | Randomized controlled trial (double-blind, crossover). | To analyze the effects of different supplementation conditions with beetroot juice and caffeine on fatigue and performance in flywheel half-squat tests in men. | n = 16 active men. Age: 22.8 ± 4.9 years old Body mass: 74.4 ± 9.6 kg BMI: 23.7 ± 2.4 kg/m2 | Placebo (PL), caffeine (CAF), beetroot juice (BJ), and BJ + CAF combined were used. To assess the effect of supplementation, participants completed a countermovement jump (CMJ) before (Pre), 30 s after (post-30 s), and 180 s after (post-180 s) completing flywheel half-squats. | PL group: 140 mL (ECO Saludviva) CAF group: 6 mg/kg−1 CAF BJ + CAF group: 140 mL BJ + 6 mg/kg−1 CAF | mean power (~1000 W, p < 0.001) in flywheel half-squats with CAF, BJ, and BJ + CAF vs. PL on exercise-related fatigue. recovery with CAF + BJ after a demanding exercise protocol. |
Burgos et al., (2021) [38] | Randomized controlled trial (double-blind, placebo-controlled). | To determine the effects of 9 weeks of CIT (citrulline) + BJ supplementation on maximum performance, endurance strength, and aerobic power. | n = 32 amateur male triathletes Age: 32.17 ± 4.87 years Body mass: 73.5 ± 5.4 kg BMI: 22.57 ± 1.79 kg/m2 Height: 179 ± 8 cm | Six sessions were completed per week for 9 weeks (70% aerobic, 20% strength, and an additional 10% Core), totaling 2.5 h per session. Measurements included horizontal jump (HJUMP), hand dynamometry, 1-min abdominal test, and Cooper’s test. Supplementation included PL or 6 capsules/day | PL group: 3 g/day cellulose BJ + CIT group: 300 mg/day NO3− + 3 g/day CIT | maximum strength and endurance strength with CIT + BJ for 9 weeks. performance (in tests involving aerobic power) compared to supplementation with CIT or BJ alone. |
Berjisian et al., (2022) [39] | Randomized controlled trial (double-blind, placebo-controlled). | To assess the acute effects of combined BJ + CAF intake on specific team sports performance, compared to PL, BJ, and CAF. | n = 16 semi-professionals footballers’ men Age: 19.8 ± 2.2 years old Body mass: 69.2 ± 6.1 kg Height: 177.3 ± 6.0 cm | The participants ingested a 60 mL bottle of liquid containing NO3−, L-arginine, and L-ornithine or dry powder without NO3−, as PL, from the same bottle 2.5 h before the start of the tests. One hour before the test, they consumed one capsule of CAF. This resulted in four experimental trials, which consisted of BJ + CAF, CAF + PL, BJ + PL, and PL + PL. | BJ + CAF group: 6.3 mmol NO3− + 5 mg/kg CAF CAF + PL group: 5 mg/kg CAF + 0.015 g NO3− BJ + PL group: 6.3 mmol NO3− + 0.015 g NO3− PL + PL group: 0.015 g NO3− + 0.015 g NO3− | in the Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) among BJ + CAF, CAF + PL, BJ + PL, and PL + PL (p = 0.55). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrada-Contreras, E.; Bonomini-Gnutzmann, R.; Jorquera-Aguilera, C.; MacmiIlan Kuthe, N.; Peña-Jorquera, H.; Rodríguez-Rodríguez, F. Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review. Nutrients 2023, 15, 4838. https://doi.org/10.3390/nu15224838
Ferrada-Contreras E, Bonomini-Gnutzmann R, Jorquera-Aguilera C, MacmiIlan Kuthe N, Peña-Jorquera H, Rodríguez-Rodríguez F. Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review. Nutrients. 2023; 15(22):4838. https://doi.org/10.3390/nu15224838
Chicago/Turabian StyleFerrada-Contreras, Elida, Romina Bonomini-Gnutzmann, Carlos Jorquera-Aguilera, Norman MacmiIlan Kuthe, Humberto Peña-Jorquera, and Fernando Rodríguez-Rodríguez. 2023. "Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review" Nutrients 15, no. 22: 4838. https://doi.org/10.3390/nu15224838
APA StyleFerrada-Contreras, E., Bonomini-Gnutzmann, R., Jorquera-Aguilera, C., MacmiIlan Kuthe, N., Peña-Jorquera, H., & Rodríguez-Rodríguez, F. (2023). Does Co-Supplementation with Beetroot Juice and Other Nutritional Supplements Positively Impact Sports Performance?: A Systematic Review. Nutrients, 15(22), 4838. https://doi.org/10.3390/nu15224838